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Abstract: Miniaturized thermal flow sensors have opened the doors for a large variety of 

new applications due to their small size, high sensitivity and low power consumption. 

Theoretically, very small detection limits of air velocity of some micrometers per second 

are achievable. However, the superimposed free convection is the main obstacle which 

prevents reaching these expected limits. Furthermore, experimental investigations are an 

additional challenge since it is difficult to generate very low flows. In this paper, we 

introduce a physical method, capable of generating very low flow values in the mixed 

convection region. Additionally, we present the sensor characteristic curves at the zero 

flow case and in the mixed convection region. Results show that the estimated minimum 

detectable air velocity by the presented method is 0.8 mm/s. The equivalent air velocity to 

the noise level of the sensor at the zero flow case is about 0.13 mm/s.  
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1. Introduction 

The minimum detectable flow (MDF) becomes a crucial feature when flow sensors are used in  

very low-flow applications, such as gas detection and accurate supply of gases in some medical 

applications [1,2]. MDF is the minimum flow passing through the sensor which will give a signal 

different from noise. It represents a threshold that the flow should exceed to be considered non-zero. 
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This parameter differs from the resolution of the sensor which is defined as the smallest change in a 

measured quantity which causes a perceptible change in the corresponding indication [3]. 

MDF is basically influenced by natural (free) convection and thermal noise in the case of thermal 

flow sensors. Natural convection is a complex mechanism in which the fluid motion is generated by 

density differences in the fluid due to temperature gradients [4]. The air surrounding the sensor heater 

receives heat, expands and rises up. The cooler air subsequently moves to replace it. This cooler air is 

then heated and the process continues, forming convection current. Thermal noise is an electrical noise 

source caused by random motion of electrical charges in the material.  

Flow is characterized mainly by Reynolds number (Re). Re is a dimensionless number used in fluid 

mechanics to study the flow; it represents the ratio of inertial forces to viscous forces in the fluid. 

Reynolds number characterizes different flow regimes, i.e., laminar and turbulent flow. Laminar flow 

is characterized by a low Reynolds number where viscous forces are dominant and fluid flows in 

parallel layers with no mixing between the layers. By contrast, turbulent flow occurs when inertial 

forces are dominant and it is characterized by high Reynolds numbers where eddies, vortices, and other 

flow instabilities are produced. Reynolds number is given by the following equation: 

         (1) 

where v is air velocity; L is the characteristic length and   is the kinematic viscosity of the air.  

Free convection is characterized by Grashof number (Gr) which expresses the ratio between 

buoyancy forces due to spatial variation in fluid density (caused by temperature differences) to viscous 

forces acting on the fluid. It is given as: 

   
           

  
 (2) 

where g is the local acceleration due to gravity; β is the volumetric thermal expansion coefficient (for 

an ideal gas, β equals the inverse of the absolute temperature); Ts and    are temperatures of the 

surface and the surrounding fluid, respectively; L is the characteristic length and   is the kinematic 

viscosity of the fluid. Free convection on a surface depends on several parameters such as geometry, 

orientation, variation of temperature on the surface and thermo-physical properties of the fluid. For a 

vertical plate position, the plate is aligned with the gravitational vector, and the buoyancy force 

induces fluid motion in the upward (or downward) direction. However, if the hot plate is horizontal, as 

in our case, the buoyancy force is normal to the surface and the resulting fluid motion is in the vertical 

direction. When the temperature difference         rises, the surrounding air starts to move and the 

heat losses rise quickly. However, when the convective flow is established, the heat transfer rises 

slightly with increasing temperature difference [5].  

The ratio Gr/Re
2
 defines the importance of natural convection in respect to a forced convection. 

This ratio of the buoyancy forces and the inertial forces is expressed as: 

  

   
 

     

  
 (3) 

where g is the local acceleration due to gravity; L is the characteristic length of the hot plate; β is the 

volumetric thermal expansion coefficient, for an ideal gas β equals inverse of the absolute temperature; 

∆T is the temperature difference between the heater and surrounding air; and v is the velocity. It is well 

http://en.wikipedia.org/wiki/Temperature_gradient
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established that natural convection is negligible when         , forced convection is negligible 

when         , and both are significant when         . In the strict sense, a free convection 

flow is induced by buoyancy forces, if there is no well-defined forced convection velocity and  

Gr/Re
2
 =   [4]. In the flow sensor case, a pure free convection may occur when the “forced” flow is 

zero as depicted in Figure 1a. However, by increasing the flow, the forced convection increases as 

well. The free and forced convections enter the mixed convection region where both of them are 

significant as in Figure 1b. For higher velocities the contribution of the free convection can be 

neglected as represented in Figure 1c.  

Figure 1. Representation of natural, mixed, and forced convections around thermal  

flow sensor. 

 

Van Putten et al. [6] found that the upper limit on the mixed convective region (which is defined by 

the ratio Gr/Re
2
) equals to [0.3–0.8] for a horizontal hot plate. The method used to generate velocities 

in the mixed convection region is based on a vertical piston controlled by a computer. It moves back 

and forth in order to generate the airflow in two opposite directions. A hardware clock in the engine 

control unit measures the number of rotations of the engine that moving the piston. Velocities achieved 

by this method ranged from 1 to 25 mm/s, 1 mm/s was clearly detected whereas velocities below  

0.5 mm/s could not be generated in a reliable way. Cubacku et al. [7] presented a design of a low 

power 2D flow sensor. They found that the velocity detection limit is about 5 mm/s, which is in the 

range of the critical velocity for the transition to the mixed convective flow. Microchannels realized by 

microfluidic structures were used for measuring very low flow rates as reported by some authors, such 

as, Buchner et al. [8] and Patsis et al. [9]. In these two reports water flow was used for the evaluation 

of the thermal flow sensors. Liao et al. [10] reported a minimum detectable airflow velocity of  

0.2 mm/s by presenting a novel CMOS micromachined capacitive flow sensor for respiratory 

monitoring. Resolution is also reported in several flow sensors reports. Some examples of the reported 

resolution values are: 0.1 mm/s in [11], 2 mm/s in [12], and 0.5 m/s in [13].  

The focus of this paper is directed towards the minimum detectable air velocity by calometric 

thermal flow sensor. Thermal noise and free convection are considered as basic parameters which 

affect MDF. After a short description of the used sensor, we present a simple experimental method 

provide very low flow rates. It allows obtaining the characteristic curve in the mixed convection 

region, up to 20 mm/s. This value is the velocity for the upper limit of the mixed convection region 

determined by the ratio Gr/Re
2
. Then, a statistical study for sensor output at zero flow is done. From 

the characteristic curve and noise level at zero flow, we calculate the minimum detectable velocity by 

this method and the corresponding velocity to noise level at zero flow. 
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2. Description of the Proposed Method 

The investigated thermal flow sensor is based on silicon as substrate material; it consists of a heater 

and two symmetric thermopiles embedded in silicon nitride membrane as shown in Figure 2. The 

heater is made of tungsten-titanium, whereas the thermopiles are made from a combination of 

polycrystalline silicon and tungsten-titanium. The sensor membrane area is 1 mm
2
 with a thickness of 

600 nm. The distance between heater and both thermopiles is 20 µm. More information about the 

fabrication process of the sensor can be found in [14]. An airflow channel is mounted on the sensor 

PCB in such way that the sensor membrane is located in the middle of the channel (see Figure 2). This 

air channel has rectangular cross section with the dimensions 1.5 × 2 mm
2
. The sensor is operated by a 

constant power circuit which provides constant power to the heater during the measurement. Response 

time of the sensor is related to the velocity and geometry of the membrane. It decreases from about  

5 ms in the stagnant flow case to 1.5 ms in the case of 44 m/s as air velocity [15,16]. 

Figure 2. (a) IMSAS thermal flow sensor, (b) the sensor within its PCB, and (c) the air 

channel mounted on the sensor PCB.  

 

In order to measure the sensor MDF, we built a physical method which generates very small flow 

rates. The method principle is based on weighing the mass changes of one bottle partially filled with 

water during its discharge into another bottle. Mass readings were taken in time steps of 2.5 s in order 

to calculate the mass flow. Water flow between the two bottles occurs by means of a small pipe. This 

method is shown in Figure 3. In the experiments, we initiate a water flow between two bottles, placed 

in different height positions, by pushing air into the first bottle. This action forces an equivalent air 

flow to go out from the second bottle. The generated air flow is guided through a pipe to the sensor  

air-channel. The first bottle is placed on an electronic microbalance (readability 0.1 mg, Sartorius, 

Göttingen, Germany) interfaced to a computer through DAQ NI 6212 device. Balance readings are 

synchronized with the sensor output voltage difference through the program LabVIEW. As initial 

conditions, the first bottle is half full with water and the second one is empty. Then we consider three 

different cases regarding the height positions of the two bottles. In such a way their height differences 

are large, moderate and small respectively. In the first two cases, the first bottle is discharged 

completely into the second one, but at different speeds, whereas in the third case, water starts to flow 

slowly between the two bottles until equilibrium is reached. This happens when the two bottles have 

the same water level. 
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Figure 3. Setup for generating very small flow rates. The flow is identified by measuring 

the water flow rate between two closed bottles.  

 

The accuracy of the calculated flow velocity depends basically on the accuracy of the balance. The 

balance accuracy is 0.1 mg. The mass flow is calculated as successive discrete values. Each one 

represents the mean flow between two successive weighing operations separated by 2.5 s. Thus we 

have 600 flow values. The accuracy of velocity values (is calculated by substituting the corresponding 

values of pipe section area and water density) resulted from using the balance is about 0.03 mm/s. 

Additionally, the relative errors generated by using the mean velocity value between each two 

successive weighing operations are less than 5%.  

3. Results and Discussion 

The discharging curve in the previous experiments is exponential as shown in Figure 4. This figure 

compares the equivalent air velocity (left) and the related sensor output voltage difference (right) vs. 

time. The flow decreases very slowly toward zero. The equivalent air velocity is calculated at 20 °C by 

assuming that the water density is 998.2 kg/m
3
, and the section area of the air channel is 3 mm

2
. The 

resulting curve of velocity (v) as function of time has similar behavior of the sensor output voltage 

difference (∆U) as function of time. In order to obtain the direct relationship between the sensor output 

voltage difference and air velocity, we modeled the both curves by using MATLAB based program. 

The resultant fitted curves for the air velocity (in mm/s) and the sensor output voltage difference  

(in mV), are given in the following expressions, respectively: 

                         (4) 

                          (5) 
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Figure 4. (left) Induced air velocities vs. time, (right) the correspondent sensor output 

voltage differences vs. time for three different positions of both bottles regarding their 

height difference.  

 

We can obtain the characteristic curve of the sensor in the mixed convention region by eliminating 

time between the above two equations, which give: 

                (6) 

This equation assumes the linear relationship in the mixed convection region. Sensor sensitivity (S) 

is defined as the derivative of the output voltage difference with respect to the airflow velocity, as in 

the following equation [17]: 

  
   

  
 (7) 

The sensitivity is then 0.017 V/m/s. The experimental data between ∆U and v are plotted in  

Figure 5. This Figure shows their linear relationship and that the number of data in the early part of the 

curve is very high and then it decreases with the velocity increase. This is due to the constant time step 

of extracting data. When the two bottles are in the vicinity of equilibrium the flow becomes very slow 

which causes the accumulation of data in this region. In order to estimate the MDF of the sensor, we 

calculate first the deviations of all experimental data from the fitted line, by calculating their standard 

deviation and then divide it by the sensor sensitivity. Standard deviation of the experimental data has 

been calculated from 600 points, and is 7 µV. We consider 2σ (which represent 95% of the population in 

a normal distribution). Minimum detectable flow velocity of the sensor by means of this method is then: 

     
  

 
          (8)  

The relative error by this method is less than 20% for the range from 0 to 5 mm/s; it decreases 

significantly afterwards to less than 10% for the range 5 to 20 mm/s. The larger relative errors for 

small velocities are due to the high significance of the free convection in heat transfer in addition to the 

instability of the balance at low values which is another reason for these relatively high errors. By 

extracting the maximum deviation from the fitting line we found that the maximum error is about  

0.03 mV. The corresponding error in velocity according to Equation (6) is about 1.8 mm/s. This MDF 

result is in the same order as the results found in the previously mentioned reports [6,7]. However, it is higher 
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than the one mentioned in [10] where a different sensor principle is used. Eliminating the error caused 

by the balance in the previous method is possible by evaluating the sensor noise at zero flow where the 

natural convection is maximum. This can be done by doing second experiment without flow. 

Figure 5. Sensor output voltage difference (∆U) as function of air velocity (v) in the mixed 

convection region.  

 

Zero Flow Case 

Noises on the sensor signals are caused by the sensor itself and by the measurement system. At zero 

flow, new experiments were done to evaluate noise level. The noise of the sensor is mainly caused by 

thermopiles noises and natural convection. In this case, we can examine the pure natural convection 

together with the thermal noise as there is no defined forced convection and 
  

     .  

Firstly, the thermopile noise is basically the temperature noise and the thermal noise. The 

temperature noise is caused by temperature fluctuations in the surrounding atmosphere. We assume 

that this noise has negligible effect on our calculations as all our measurements have been performed at 

room temperature 20 to 22 °C. Meanwhile the thermal noise or the Johnson noise is an electrical noise 

source caused by random motion of electrical charges in the material. The Johnson noise is determined 

by the following equation [18]: 

                        (9) 

where kB is the Boltzmann’s constant; Text is the external temperature; Re is the electrical  

serial resistance and ∆f is the frequency bandwidth. With kB = 1.38066 × 10
−23

 J/K; Text = 323 K;  

Re = 200 K; ∆f = 1 Hz. The thermal noise of the sensor is then 0.06 µV.  

Secondly, the main noise source of the measurement system is that of the Analogue to Digital 

Convertor (ADC). Since the thermopiles signals are analogue they are converted into digital by ADC 

with reference voltage of 400 mV and resolution of 16 digits. The root-mean-square quantization noise 

(N) is obtained from the following equation [19]. 
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 (10) 

where q equals one Least Significant Bit (LSB). The quantization noise is then 1.76 µV which is much 

higher than the thermal noise of the sensor. Due to the difficulty of estimating the exact participation 

of the natural convection and other parameters in the measurement system in the total noise, we 

performed experimental measurement to identify the noise level at zero flow. The sensor output 

voltage difference (∆U) at zero flow is extracted for large number of data through a LabVIEW 

program. The heater was powered on, and then 1,000 samples with time interval step of 5 s were taken. 

Figure 6 shows the sensor’s output voltage difference (∆U) as function of time. The mean value of the 

extracted data is 0.12 mV which represents the sensor offset, whereas the signal noise expressed as 

standard deviation (2σ) is about 2.26 µV. The corresponding air velocity to this noise level is 

calculated according to the Equation (8) and presented in Figure 7: 

                                                       
  

 
           (11) 

This value represents the theoretical limit for the minimum detectable flow velocity for the  

studied sensor.  

Figure 6. Sensor’s output voltage difference vs. time in the zero flow case.  

 

Figure 7. Representation of the detection limit of the flow sensor.  
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These results show that thermal flow sensors are capable to detect very low air velocities by 

optimizing the noise sources. Firstly, the thermal noise of the thermopile is very small as it gives a 

detection limit of 0.9 µm/s for temperature resolution of 0.1 mK. Secondly, the natural convection can 

be minimized by either reducing the characteristic length such as by using narrow and deep air 

channels, or by reducing the temperature difference between the heater and the surrounding air. The 

first solution requires reducing the sensor dimensions whereas the second solution will decrease the 

sensor sensitivity and the measuring range. Thirdly, the noise arising from the measurement system 

can be reduced by optimizing the choices of the circuit elements such as ADC with higher resolution. 

Moreover, the promising results of using microchannels realized by microfluidic structures in 

providing very accurate measurements for very low flow rates, especially for liquids, motivate us to 

use such structure for air as flow as well.  

4. Conclusion 

We have introduced in this paper a physical test method which is capable of generating very low 

flow values in the mixed convection region from 0 to 20 mm/s. We found that the characteristic curve 

is linear in this region and the sensor sensitivity is about 0.017 V/m/s. The estimated minimum 

detectable velocity obtained by the presented method is 0.8 mm/s. Equivalent velocity to the noise 

level at zero flow is about 0.13 mm/s.  
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