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Abstract: A vision system that can assess its own performance and take appropriate
actions online to maximize its effectiveness would be a step towards achieving the
long-cherished goal of imitating humans. This paper proposes a method for performing an
online perbrmance analysis of local feature detectors, the primary stage of many practical
vision systems. It advocates the spatial distribution of local image features as a good
performance indicator and presents a metric that can be calculated rapidly, concurs wit
human visual assessments and is complementary to existing offline measures such
as repeatability. The metric is shown to provide a measure of complementarity for
combinations of detectors, correctly reflecting the underlying principles of individual
detectors. Qualitative results on welstablished datasets for several stdtthe-art
detectors are presented based on the proposed measure. Using a hypothesis testing
approach and a newhcquired, larger image database, statistiesitipificant performace
differences are identified. Different detector pairs and triplets are examined quantitatively
and the results provide a useful guideline for combining detectors in applications that
require a reasonable spatial distribution of image features. A dadcfpamework for
combining feature detectors in these applications is also presented. Timing results reveal
the potential of the metric for online applications.

Keywords: local feature detection; coverage; complementarity; combining feature detectors;
prediction-based framework




Sensor013 13 10877

1. Introduction

The last decade has seen significant interest in the development-lefivelwision techniques that
are able to detect, describe and match image featuir@$ [The most popular of these algorithms
operate in a wayhat makes them reasonably independent of geometric and photometric changes
between the images being matched. Indubitably, the Scale Invariant Feature Transform (SIFT) [2] has
been the operator of choice since its inception and has provided the impetius d@velopment of
other techniques such as SpeetgdRobust Features (SURF) [3] and the Scale Invariant Feature
Operator (SFOP) [5].

One of the main driving factors in this area is the improvement of detector performance.
Repeatability [810], i.e., the ability of a detector to identify the same image features in a sequence of
images, is considered a key indicator of detector performance and is the most freeuonghblyed
measure in the literature for evaluating the performance of feature detectdtis\Wgver, it has been
emphasized that repeatability is not the only characteristic that guarantees performance in a particula
vision application [1,11]asattributes such as efficiency and the density of detected features are also
important. It is ther®re desirable to be able to characterize the performance of a feature detector in
several complementary ways, rather than relying only on repeatability [1,12,13]. Moreover, it is not
possible to compute repeatability online in practical applications iag g0 involvesiground truttd
data, which are generally not available. Hence, a performance measure that can be calculated rapidly t
assess detector performance online would be useful.

One property that is crucial for the success of any feature detector is the spatial distribution of
detected features, known as the coverage [12]. Many applications, such as tracking and
narrowbaseline stereo, require a reasonably even distributiontettdd interest points across an
image to yield accurate results; however, it is sometimes found that the features identified by detectors
are concentrated on a prominent textured object and hence cover only a small region of the image
Robustness to ocdion, accurate mulriew geometry estimation, accurate scene interpretation and
better performance on blurred images are some of the advantages of detectors whose features cov
images well [12,13].

Despite its significance, there is no standard metric m@asuring the coverage of feature
detectors [12]. An approach based on the convex hull is employed in [14] to measure the spatial
distribution of detected features. However, the convex hull traces the boundary of interest points
without considering theidensity within that boundary and, as will be demonstrated in Section 2,
results in an oveestimation of coverage. The convex hull approach is criticinefl5] and an
alternative measure, completeness, presented. Completeness, however, employsparceudtitig
scheme and Gaussian image model; results may vary with other coding schemes and image model
so this approach merits further investigation. Moreover, the metric is commpensive and so cannot
be employed online for evaluating performance.

To fill this void, this paper explores the online analysis of local feature detectors, proposing a
metric that can be computed rapidly to measure the spatial distribution of detected features. It is
intended to be used only with detectors that are knownat@ similar performances with offline
measures such as repeatability and robustness to geometric and photometric transformation; thi
eliminates the possibility of favoring a poor detector that randomly scatters its points everywhere in the
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image. It canalso be utilized in a framework such @t described if13], which is dependent

upon the coverage of interest points, including those that cannot be matched accurately. Unlike
repeatability [810], which is essentially a theoretical measure due teasirement for ground truth,

the proposed measure is a viable performance indicator for detectors in practical applications that
require a reasonable distribution of detected features (assuming similar performances with offline
measures). It will be demetrated that the proposed measure concurs with human visual assessments
and is reliable. By employing a statistical hypothesis testing approach, a quantitative evaluation basec
on the proposed measure will be carried out to ascertain the statisticacaigrafof performance
differences between several statehe-art local feature detectors.

Since the notion of complementary feature detectoes ¢combinations of detectors that identify
different types of feature) was introducéd [16], they have beame more popular for vision
tasks [1719]. Hence, it is valuable to have a measure of the complementarity of combinations of
feature detectors so that their combined performance can be predicted and measured [1]. This
paper shows how mutual coverage, thgerage of a combination of the interest points from multiple
detectors, can be used to measure complementarity and presents results from empirical investigation
for combinations of detectors that reflect their underlying principles. The paper aldighigytthe
potential of the proposed measure as an online analysis tool for compleméntaityrst of its kind,
to the authorsé knowl edge. Finally, it of fers
first described in the conference versif@#®], providing further background, description, insight,
analysis and evaluation.

The remainder of the paper is structured as follows: Section 2 describes the coverage measure
which is used to evaluate the performances of eleven-aftdbe-art feature detectors on
well-established datasets. In order to avoid inadvertent data dependencies, Section 3 presents resul
obtained by employing statistical hypothesis testing on a new database of 520 images using the
proposed coverage measure for the samebese A complementarity measure derived from coverage,
termed mutual coverage, is proposed in Section 4 and its effectiveness is demonstrated by results fo
combinations of detectors. Section 5 discusses the feasibility of the proposed measuresvimtdeal
scenarios and demonstrates their speed advantage from a computational perspective. A framework fo
combining feature detectors in applications which require reasonable distribution of feature points is
proposed in Section 6. Finally, the conclusiores@esented in Section 7.

2. Measuring Coverage

This section presents a method for measuring the spatial distribution of detector responses rapidly
that makes it suitable for use in practical applications. Qualitative results on the-usdelyOxford
datasets [21] are presented for eleven stditthe-art feature detectors to demonstrate the effectiveness
of the measure.

2.1. Proposed Method

Thereare several desiderata for a coverage measure:

(a) Consistency with human visual inspectibflumans can easily distinguish between a set of
features that cover only a small region and one that isdistlibuted over the whole image.
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The differences in spatial distribution of two sets of features indicated by the measure should
be consistent wit those obtained by human visual inspection.

(b) Penalization of clustered feature sefss stated in Section 1, it is quite common for local
feature detectors to detect many feature points near a prominent textured object in an image. A
useful measurgvould penalize techniques that concentrate interest points in a small region as
that does not improve coverage.

(c) Avoidance of oveestimation.The measure should avoid ov&stimation of coverage by taking
into account the density of feature points. iloestrate this, consider the simple example in
Figure 1. Assuming that the four points shown in the image on the left are the output of a local
feature detector for an image of size 64@80, the region enclosed by the dotted line is the
convex hull of hese four points. The ratio of the area of the convex hull to the area of the
image, as used in [14], shows that these four points cover nearly 32% of the area of the entire
image. If an additional interest point is detected inside the same region, as shomwe
right-hand image of Figure 1, the coverage reported by this measure is unchanged, despite there
being an improvement in the spatial distribution of points. This is certainly not desirable.

Figure 1. A simple example: [éft) an image with four detted interest points and
their convex hull; (ight) the same image with an additional detected interest point and
convex hull
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(d) Homogeneous or neextured regionsMost local feature detectors work with hightropy
areas in the image. Consequently, homogeneous ottemtured regions have long been
considered uninteresting by the vision community. However, the development of methods like
NF-features [22] has showthe utility of nontextured regions in feature detection and
matching. Unlike [15], which penalizes features appearing in homogeneous areas, the authors
argue that a good coverage measure should encompass all repeatable features, irrespective ¢
the textue of the region in which they are detected.

(e) Ground truth information.As mentioned above, repeatability, the masgtely employed
performance measure for feature detectors, relies on the availability of ground truth, ultimately
limiting its use to offline evaluation only. A metric that does not require ground truth
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informaion or reference computation would be valuable for online applications. Since it is
assumed here that all regions of the image are equally important for feature detection
irrespective of the image content and textigee point(d)], it automatically elirmates the
requirement to compute a reference.

() Low computation costOnline performance analysis of a feature detector can help it adapt
to the nature of the imagery it is processing. However, existing performance measures for
local feature detectorallow only offline evaluation due to their high computation cost. The
completeness measure proposed in [15] requires calculation of entropy density of the entire
image for use as reference, also making it unsuitable for online use. A measure that can be
computed quickly is therefore required to achieve the goal of online performance analysis.

The (obvious) way to estimate coverage is to calculate the arithmetic mean of the Euclidean
distance between feature points. However, the arithmetic mean is gnélatiynced by outliers and
may provide misleading estimates, especially for skewed distributions. The geometric mean also
estimates the central tendency of a sample space in a way that is influenced by outliers, although les
than the arithmetic mean. Camrgely, large outliers have little effect on the harmonic mean while
small values are much more significant, making it good at penalizing clustered features while being
reasonably robust to noise. These properties have led to its widespread use in slatangclu
algorithms [23]. Indeed, the harmonic mean is an inherently conservative approach for estimating the
central tendency of a sample space, as
: ww 8w R (1)

® O ®

where the lefhand side otnequality (1) is the arithmetic, the middle term is the geometric and the
right-hand side is the harmonic mean of the samplg;se¢ x,, ® 1 Q

Formally, we assume thpt,é , py are theN interest points detected by a feature detector in image
| (X, y)wherex andy are the spatial coordinates. Takings a reference interest point, the Euclidean
distanced; betweerp; and some other interest popts:

Q O o B 6 @)

providingi | j. Computation of Equatiof2) providesN T 1 Euclidean distances for each reference
interest point;. The harmonic mean af; is then calculated to obtain a mean distabgce = 1€ , N
with p; as reference:

B . £ 3)

Since the choice of the reference interest poart affect the calculated Euclidean distance, this
process is repeated using each interest point as reference in turn, resulting in a set of Bistances
Finally, the coverage of the feature detector is calculated as

0
0¢0QI OQQ—

B % (4)
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Since multiscale feature detectors may provide image features at exactly the same image location
but different scales, interest points that result in zero Euclidean distance in EqRptaos excluded
from the calculations on the basis that they doimpirove the spatial distribution of features. It is
clear from Equatiorfd) that coverage has the dimension of length, (pixels), so its value needs to be
considered against the image dimensions as the same coverage value may indicate a goaoindistribut
for a small image but a poor distribution for a large one, a topic that is considered in more detail
in Section 3.3. In general, a large coverage value is desirable for a feature detector as a small valu
implies the concentration of interest pointtoia small region.

To illustrate the advantage of the proposed measure over the convex hull approach [14], the simple
example of Figure 1 is utilized again. For the case of four detected points (the image on the left), the
proposed coverage measure pregich small valu€39.49)to reflect that, although there are some
widely-spaced points, the density of points is low. The coverage value for the case that includes the
additional interest point in the righiand image of Figure 1 is 50.26, indicating apriovement in the
spatial distribution of feature points.

2.2. Qualitative Results

For the proposed coverage measure to have any value, its values need to be consistent with visug
assessments of coverage across a range of feature detectors and a vamatesf To that end,
this section presents a comparison of the coverage of eleverofstageart feature detectors: SIFT
(Differenceof-Gaussians), SURF (Fast Hessian), Hdreplace, Hessiahaplace, HarrisAffine,
HessiarAffine, Edgebased Regions(EBR), Intensitybased Regions (IBR), Salient Regions,
Maximally Stable Extremal Regions (MSER) and Scale Invariant Feature Operator (SFOP) [1,5].
These were chosen because they are representative of a number of different approaches to featu
detection (se Section 4.2 and [1]); also their implementations are widely available and they have
broadly similar repeatability performance. Although the control parameters of these feature detectors
can be varied to yield a similar number of interest points fated#ctors, this approach has a negative
effect on their repeatability and performance
source) have been utilized with parameters set to values recommended by them, and the result
presented were obtad with the widelyused Oxford datasets [21]. The parameter settings and the
datasets used make these results a direct complement to existing evaluations.

To demonstrate the effectiveness of this coverage measure, first consider the case of the Leuvel
dataset [21] in Figure 2. It is evident that SFOP outperforms the other detectors in terms of coverage,
whereas values for EBR, Hadlisiplace and Harrig\ffine indicate a poor spatial distribution of
interest points. To back up these results, the actualbdistm of detector responses for SFOP, IBR,
HarrisLaplace and EBR famagel of the Leuven dataset are presented in Figure 3. Visual inspection
of these distributions is consistent with the coverage results of Figure 2: the interest points detected by
SFOP are distributed all over the image rather than being concentrated on a specific textured object in
Figure 3. IBR also seems to achieve a reasonable spatial distribution of interest points. On the othel
hand, the image features detected by EBR and $-aaiplace appear clustered in small regions and
fail to cover the image well, a fact that is correctly reflected by Equét)disee Figure 2).
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Figure 2. Coverage results faheLeuven dataset [21].
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The coverage values obtained for the Boat dataset [21] are presented in Figure 4. Again,
the performances of wedlstablished techniques like SIFT and SURF are eclipsed by SFOP.
HarrisLaplace, HarrisAffine, HessiarAffine and EBR again fare poorly. In addition, the curves
depicted in Figure2 and 4 incorporate the effects of illumination changes (Leuven dataset) and zoom
and rotation (Boat dataset) on coverage. The mean results obtained with all these feature detectors fc
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the Oxford datasets [21] are presented in Figure 5. It is cleeBF@® achieves better coverage than the
other feature detectors for almost all datasets under various geometric and photometric transformations.

Figure 4. Coverage results for the Boat dataset [21].
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3. Performance Evaluation

Although the results presented in Section 2 on the widedd Oxford datasets complement
existing evaluations, the small number of images involved makes drawing statistigalficant
conclusions difficult. Hence, a confirmatory data analysis is required to ascertain whether or not the
obtained results have occurred by chance due to inadvertent data dependencies, and to do this
larger database of images needs to be used.cOhfirmatory data analysis revolves around two
important questions:
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(a) Do the results obtained for the Oxford datasets provide a complete insight into the behavior of
feature detectors? In other words, are the results obtained for the Oxford datagestentons
with the results obtained on a larger image database, having a variety of scenes and variations
in texture?

(b) Are differences in coverage between various feature detectors statistically significant?

A discussion of the methodology employed to tadke above questions and the results obtained
are given below. A third important question, asking whether high coverage implies good performance
in an application, is considered in Section 5.

3.1. The Image Database

With the objective of yieldingstatisticallyvalid comparisons of coveragpased performance, the
authors have captured a database of 520 images, more than ten times the size of the Oxford datase
Since the distribution of detected local features is dependent upon the nature adgesy,ireuch as
natural scenes and mamade objects, it is quite possible that a specific type of content may favor a
particular detector during performance analysis. This issue has been addressed by including images wit
a variety of scene types, categedznto four datasets based on content: Snow, Indoor, Caimgod
Campus2. This categorization allows identification of the strengths and the weaknesses of detectors with
regards to image content. Each dataset contains more than 100 imagé400f 256 pixels, with
structured and nestructured scenes and medium to low levels of texture. For example, the Snow dataset
includes images that have large areas of scene covered with snow, leading to low texture. Similarly, mos
images in the Indoor dataset t@n one or two prominent objects in ldexture surroundings. Some
images from these foudatasets are shown kigure 6 To facilitate comparisons of other feature
detectors with the authorsé findings, these i m

Figure 6. Some images from the Snow, Indoor, Campusid Campuf datasets.
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3.2. Quantitative Evaluation on Image Database

To answer the first question, coverage values for the elevero$ttiteart detectors of Section 2
were calculated using the large image database [24], again utilizing binaries provided by the authors
and the recommended parameter settings. Since eegggtar included in this evaluation generally
extracts different numbers of interest points for a given image, the mean number of features detectec
by each detector for the four image datasets is depict&igure 7so as to determine its possible
impacton coverage. It is clear that SIFT, SURF and Salient detect large numbers of interest points
for all datasets, whereas the feature sets extracted by other detectors are relatively sparse. The me:
coverage results obtained with all these feature dete&worshe Snow, Indoor, Campis and
Campus2 datasets [24] are shownFigure 8 It should be noted that, following [15], the error bars in
this figure indicatethe-fi conf i dence intervals for the mean
error. The associated confidence level with these intervals is 95%, which is often used in practice [25].

Figure 7. Average number of interest points detected by stditthe-art detectors on image
database [24]
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Although the results obtained on the image dagabappear broadly consistent with the findings
for the Oxford datasets, there are some discrepancies. It is eviderifjora 8that SFOP and Salient
provide the best coverage. Apart from the Indoor and Ca?pletasets, there is only a marginal
difference between the mean coverage values achieved by SFOP and Salient for the other twc
image datasets. SFOP prevails in the case of Cathpus is ouperformed by Salient for Indoor, a
significant discrepancy from the results obtained for the Oxflatasets [2F this can perhaps be
attributed to the lack of indoor scenes in the Oxford datasets. On the other hand, the performance o
SFOP can be considered remarkable considering that it generally detects fewer interest points thar
Salient. For exampldor the first image of the Campusdataset, Salient detect¥®9 interest points
whereas SFOP detects only888 points, roughly 2.5 times fewer. However, SFOP still achieves a
better coverage value of 333.1 as compared to Salient (326.44).
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Figure 8. Coverage results forSnow (op left), Indoor (op right), Campusl
(bottom left) and Campuf (bottom right) dataset$24]; the error bars indicate the 95%
confidence intervals for mean values.
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Figure 8shows that SURF ouperforms SIFT in terms of coveged again, a digression from the
results obtained in Section 2. In addition, the performance of SIFT is eclipsed by IBR for all four
datasets, which is not apparent in the results presented in Section 2. A reasonable explanation for thi
might be the availaility of a limited number of scenes with texture variations in the Oxford datasets.
MSER achieves relatively good coverage values for the Cath@ums Campug datasets, both of
which contain images with good to medium levels of texture, but its perfeaemapoor for the more
challenging Snow and Indoor datasets. Also, the Hessiplace and Hessiafffine detectors
perform slightly better than their Harigised counterparts. It is evident that EBR fails to achieve good
coverage values for all four dasets.

3.3. Identifying StatisticalhBignificant Performance Differences

Since 20 confidence intervals for popul ati on m
significant results [26,27], it is desirable to perform some statistical testagtattain whether any
differences in performances between different feature detection algorithms are statistically significant
in order to back up the largely qualitative discussion of performance in Section 2. Formally, one
proposes a null hypothesisg(, that there is no difference in performance between methods) and uses a
statistical test to determine whether the data are consistent with this hypothesis. Although statistical
tests like ANOVA (analysis of variance), pairetest and Wilcoxon signed mk test provide direct
methods to assess the difference between population means depending upon distribution [25], the
authors find it more useful to identify statisticaflignificant performance differences in a manner that
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can be related to the spatéistribution of interest points in the image. An appropriate statistic in this
caseisthenepar ametri ¢ Mc Ne ma-squaed ted with pne degréeof freedamfthatc h
evaluates the performance of the two algorithms based on their outcomeasay-case basis over

the same dataset [28,29]:

(5)

where Ngt and Ns; are the numbers of occurrences when one algorithm succeeds and the other
algorithm fails. IfNst + Nt O30, the statistic is reliable arican beconverted into a probability using
tables [28,29].

The authors have wutilized McNemaros test to
detectors for the large image database [24]. To employ it, one needs a criterion to determine whether
test cae results in success or failure. As coverage has the dimension of a length, a criterion that
encapsulates the size of an image seems a suitable option for such an evaluation. A common suc
criterion in the physics literature that has long been used éaifgimg field sizes is the ratio of area to
perimeter [30]:

6 €L Qi (I)%Q'p“‘l Qw@ a wQQ . (6)
0 Qi Q& QTWAIOQQ

More precisely, if an algorithm satisfies Equat{6} it is considered to have succeeded; otherwise,
it is deemed to have failed. Although arbitrary, experiments show that this criterion is consistent
with the visual inspections discussed in Section 2. For example, for the first image of the Leuven
datasef21], which has dimensions of 960600 pixels, the area divided by perimeter is 180; detectors
which satisfy Equatior{6) exhibit good spatial distribution of interest points visually, whereas the
others fare poorly (see Figw2 and 3).

An experiment s performed in which the coverage was calculated for each detector on every
image in the database [24]. Where the coverage exceeded the threshold of EGuatiendetector
was deemed to have succeeded on that image; otherwise, it failed. This &llpetedin Equation(5)]
for each pair of detectors to be determined over the image database and Aestmreacalculated.
Table 1details the numbers of successes and failures for SFOP and Salient with the other detectors
under consideration and tihesultingZ-scores. Since it is not possible to include such detailed results
for all detectors, a summary oftdes c or es f or Mc Ne mar Odetedos sstgisen b e t
in Table 2 where positive values indicate that the detector in the leét balwumn performs better than
the detector mentioned on the top amzk versaAlthough theZ-score is always greater than or equal
to zero, this sign convention is used to facilitate identifying the detector with the better performance
of the two comparedZ-scores of about 3 are equivalent to a confidence of about 0.995, while larger
Z-score values indicate a more significant result. It is clear that mostsvialU@bles 1 and 2are
substantially larger than 3 and hence provide eweédhat differences in coverage values between the
detectors are statistically significant.
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Table1.Mc Nemar 6s test results for SFOP and
SIFT SIFT SURF SURF Salient  Salient MSER MSER
PASS FAIL PASS FAIL PASS FAIL PASS FAIL
SFOP PASS 239 174 308 105 403 10 132 281
SFOP FAIL 1 106 1 106 56 51 1 106
Computed Z-Score 13.0 10.0 5.53 16.61
EBR EBR IBR IBR Har-Lap Har-Lap Heslap Heslap
PASS FAIL PASS FAIL PASS FAIL PASS FAIL
SFOP PASS 36 377 280 133 35 378 55 358
SFOP FAIL 1 106 0 107 0 107 1 106
Computed Z-Score 19.28 11.44 19.39 18.78
SIFT SIFT SURF SURF MSER MSER B FAIL IBR
PASS FAIL PASS FAIL PASS FAIL FAIL
Salient PASS 240 219 306 153 133 326 279 180
Salient FAIL 0 61 3 58 0 61 1 60
Computed Z-Score 14.73 11.92 18.0 13.23
EBR EBR Har-Lap Har-Lap HeslLap HeslLap HesAff HesAff
PASS FAIL PASS FAIL PASS FAIL PASS FAIL
Salient PASS 37 422 35 424 56 403 48 411
Salient FAIL 0 61 0 61 0 61 0 61
Computed Z-Score 20.49 20.54 20.02 20.22
Table 2A summary of Mc Ne ma r 0 2%scoteg fertstatof¢heartl t s ( ¢

detectors; negative values indicate that the detector mentioned on the top performs better
than the detector shown on the left hand side.

SURF MSER IBR EBR HAR-LAP HES-LAP HAR-AFF HES-AFF

SIFT 16.90 10.15 14.41 14.17 14.24 13.41 14.28 13.78
SURF - 13.11 3.64 16.43 16.49 15.84 16.52 16.09
MSER - - 111.96 8.89 9.42 7.56 9.47 8.19
IBR - - - 15.39 15.58 14.76 15.62 15.03
EBR - - - - 0.17 12.62 0.33 11.52
HAR-LAP - - - - - 13.84 0 12.50
HES-LAP - - - - - - 3.96 2.47
HAR-AFF - - - - - - - 12.77

These results confirm the better performancehefSalient and SFOPetlectors over all other
featuredetectors considered. However, it is interesting to note that Saliepedatms SFOP, as there
are 56 images for which SFOP failed to achieve good coverage but where Salient succeeded.
conversely, there are only 10 images for which Salient failed a@dPSkcceeded. The resultiddor
these results is 5.53, indicating that Salient detectopedorms SFOP with a probability well in
excess of 0.995. Bang Salient, which detects two to three times more interest paie¢s-igure 7,
SFOP appears teelihe best detector of the remaining ones by a significant margin.

Apart from Salient and SFOP, hightscores were achieved by the SURF detector against all
remaining detectors, including SIFT and IBR. Of the two segmenthtiead detectors, IBR performs
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much better than MSER as indicated by a highcore of 11.96. The results also highlight that
EBR ranks very low in terms of coveragased performance. It is observed that Hdraiglace and
HarrisAffine behave in exactly the sanmanner Z = 0) and fd to outperform EBR. Moreover,
HessianLaplacebarely manages to prevail over Hess#fine, as indicated by a low value d@f this
presumably reflects the similar underlying principles of the two detectors.

3.4. Discussion

It is valuable to correlatthese performance differences to the underlying principles of the detectors
in order to validate the proposed measure. Whilst responding to a number of different feature shapes
most feature detectors exhibit a strong response for a specific type oé féatiaxample, SIFT shows
a bias for blobs in the | mage. Conversely, Sal
to different feature types [6]; this allows it to achieve good coverage, though the large number of
interest points detectedsal plays an important role in this regard. The design of SFOP utilizes several
feature types in the same spirit as Salient, includinglig@rand circular shapes. The good ranking
achieved by SFOP emphasizes the benefits of extracting multiple typedwoes.

As completeness and coverage serve similar purposes, it is also interesting to compare this ranking
of detectors with the results presented in [15]. Salient is identified as the best detector in both studies
Although MSER is reported to have coefeness scores comparable to those of Salient in [15], the
rank for MSER here is lower than SFOP, IBR and SIFT. It is, however, agreed that the performance of
MSER is commendable considering the sparseness of its features as compared to SFOP and SIF
In addition, the presented results suggest that SIFT is significantly better than thelbjalacse,
HessianLaplace, HarrisAffine and Hessiam\ffine detectors in terms of coverage. Since all these
detectors, including SIFT, are stated to have similar éetepess scores (s€ggure 12 in [15]), this
observation is contradictory to [15].

4. Mutual Coverage for Measuring Complementarity

This section extends the coverdupsed metric of Section 2 to measure the complementarity of
combinations of detectors. #&f describing the mathematical formulation, the metric is utilized to
present results for detector pairs and triplets.

4.1. Method

Since the utilization of combinations of detectors is an emerging trend in feature detection [1], the
authors propose a nmae, based on coverage, to estimate how well these detectors complement
one another. In addition to the principles mentioned in Section 2, the objective here is to penalize
techniques that detect several interest points in a small region of an imagfecibrs A and B detect
most feature points at the same locations in an image, they should have a low complementarity score
Conversely, a high score should be achieved if detectors A and B detect most features-apadely
locations, indicating thathey complement each other well. Again, a metric utilizing the harmonic
mean seems a promising solution to achieve the required goal, for the reasons discussed in Section 2.



Sensor013 13 10890

Formally, let us cosider anmagel (X, y), wherex and y are the spatial coordiles, being operated
on by M feature detectorfy, F2,6 , Fy, sothal 0 D 8 R s the set oiN feature points
detected byr,. We then define

"Y 0 0 (7)

as the set of feature points detected in image y) by F, andFy. The coverage is then calculated as
described in Section 2 usiAg as that includes points detected by betland Fy, it is denoted as the
mutual coverage df, and F for imagel (x, y). Although this paper confines itself to combinations

of two and three detectors only, this notion of mutual coverage can be extended to more by simply
combining their feature points in Equatif).

4.2 Results for Detector Pairs

To ascertain how well the detectors under discussion complement one another, the mutual
coverages of combinations of these detectors were calculated. The authors start with the hypothesi
that all detectors are complementary to one another and combihedatactor with all other detectors
in groups of two; if a pairds mutual coverage
types of featur@ in other words, a high mutual coverage should reflect their different principles
of operation.

A categorization of the eleven feature detectors was publistjéfland is summarized ifmable 3
This experiment allows us to ascertain whether or not this taxonomy requires revision to reflect the
findings on the larger database employed here.

Table 3.A taxonomy of statef-the-art feature detectors based on [1].

Category Type Detectors
1. Blob detectors SIFT, SURF, Hessiahaplace,
HessiarAffine, Salient Regions
2. Spiral detectors Scale Invariant Feature Operator (SFOF
3. Corner detectors Edgebased Regions (EBR),
HarrisLaplace, HarrisAffine
4, Segmentatiofbased detectors MSER, Intensitybased Regions (IBR)

Figure 9depictsthe mean mutual coveragés the detectors under investigation when grouped
with all other detectors for image database [24jteNthat the error bars in this figureicate the 4
confidence intervals for mean values, with a confidence level of 95%. As expected, all combinatio
involving Salient acldve good coverage (sdeéigure 9. The best results are obtained from a
combination of Salient and SFOP, which is not surprising as both detect several types of features
and have good individual coverages. Grouping Salient with 88RMSER also provides good
performance; this also reflects underlying principles, as the two segmetiiatied detectors usually
detect irregularlyshaped patterns and some blide structures, which helps to complement Salient.
The combination of EBRral Salient also performs well, which again can be attributed to the different
type of features they detect. Apart from Hairaplace and Harrié\ffine, which start from the
Harris corner detector, the detectors that yield low coverage values whemedmlth Salient
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(seeFigure 9 are those that mainly detect blobs. A good explanation of this is the fact that Salient
itself typically fifireso on bloklike structures in the image. It is also interesting to note that SURF and
SIFT perform the worst of all combinations involving Salient, despite detecting large number o
interest points (seigure 7.

Figure 9. Mutual coverage of different feate detector pairs for image database [24];
the error bars indicate the 95% confidence intervals for mean values.
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Apart from Salient, SFOP works best with IBi#d MSER (as shown ifigure 9 which is
again understandable due to the detection of different feature types. SURF and EBR also yield
good coverage when combined with SFOP, for the same reason. Of all the remaining combinations
involving SFOP, SIFT again performs worst, which may be attribittdte ability of SFOP to find
some SIFTlike blobs in an imageFigure 9 shows that combining SURF or SIFT with EBR
achieves reasonable coverage. Grouping EBR with IBR or MSER is not particularly rewarding.
Similarly, combinations involving Hessidraplace, HessiatAffine, HarrisLaplace and Harriéffine
fare poorly.

MSER and IBR often detect bldike structures in an image in addition to irreguleshaped
paterns. Figure 9 highlights that they work better with Salient and SFOP as comp&reblob
detectors. tis interesting to note that a combination of MSER and IBR, which are somewhat similar in
spirit, achieves higher coverage than a group involving MSER and SIFT. This shows that the feature
sets of MSER and SIFT have some redundancy. On the ldhelf IBR does not share this property
and its combination with SIFT achieves higher coverage than a group of two segmdraatidn
detectors. FindJ, it is evident fromFigure 9that combinations of SURF and SIFT with other
blob detectors yield low cevage as compared to their combination with detectors that extract
different feature type. Also, Hessthmaplace, HessiaAffine, HarrisLaplace and Harrigffine, when
combined with one another in a group of two, fare fyoor

4.3. Results for Detector Pliets

In order to reduce the number of detectors to discuss for combinations of three, the results
for detector pairs presented above are utilized for identification of possible similar trends in the
behavior of detectors. This allows detectors shovsgimgilar characteristics to be grouped together.
Some key inferences made from the results for dateehirs Figure 9 are described in the
following paragraphs.

Although Salient is categorized as a blob detextdable 3 its behavior is rather diffent from
other detectors extracting the same feature type, such as SIFT and SURF. The authors consider th:
this is in agreement with the underlying design principles of these detectors as Salient responds equally
to different feature types whereas othelnew bias towards blobs. Salient is therefore separated from
blob detectors and put into a new category of entimzgsed detectors.

The behavior of MSER and IBR is similar when combined with all other detectors. Moreover,
these two detectors achieve lowverage when grouped together. They are thus categorized as
segmentatin-based detectors (asTable 3.

Although SURF and SIFT are both blob detectors, there are discrepancies in their behavior when
combined with other detectors: For example, they provide similar performance when combined with a
corner detector but different when grouped with a spiral datethis disparity may be attributed to
the method they use to detect blobs. SIFT approximates Laplacian using Diffefébaassians
whereas SURF is based on the determinant of the Hessian matrix. Although they do not complement
each other well, as indaited by their relativgl low mutual coverageF{gure 9, SIFT and SURF are
placed in different categories as their behavior is inconsistent when combined with other detectors.
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Harris-Laplace, Hessiahaplace, HarrisAffine and Hessiamffine exhibit similar behavior when
combined with all other detectors. Low coverage values for combinations of these detectors indicate
that they do not complement each other well. It is also evident that their behavior is different from
Laplacianbased and Hessian matihased blob detectors. These detectors are therefore grouped
together in a new category namf@tybrido detectors which subsumes some detectors ftefiblobo
category inTable 3and others fro theficornen category.Table 4summarizes the reategorization b
the detectors under investigation.

Table 4.Re-classification of statef-the-art detectors based on results for detector pairs.

Category Type Detectors
1. Laplacianbased SIFT (Differenceof-Gaussians)
2. Hessian Matrixbased SURF (Determinant dflessian)
3. Hybrid detectors HarrisLaplace, Hessiahaplace,
HarrisAffine, HessiaprAffine
4, Corner detectors Edgebased Regions (EBR)
5. Spiral detectors SFOP
6. Entropybased detectors Salient
7. Segmentatiofbased detectors MSER, IntensitybasedRegions (IBR)

By grouping detectors from three different categories in Table 4, the authors have investigated the
performance of detector triplets using image database [24]. Instead of presenting individual findings,
the authors have generalized thesults for detector triplets and produced a ranking of these
combinations, which provides more useful insight into the performance of different detector categories
in Table 5 when combined with other categories. Table 5 presents-arciarkd list of thee classes
of detector triplets that achieve highest mutual coverage; it can be thought of as a guideline to choosinc
which classes of detector to combine. However, entb@®ed detectors are slow to compute, making
them undesirable for online use, thenaof this paper, so Table 6 presents a similar list of detector
triplet classes that excluslentropybased ones.

Table 5.Top ranking detector triplets in terms of detector categories.

Rank Detector Triplet (for all Combinations)
1. Entropy-based +Spiral + Segmentatiehased
2. Entropybased + Spiral + Corner
3. Entropy-based + Spiral + Hybrid
4, Entropybased + Corner + Segmentatiobased

Table 6. Some other promising detector triplets in terms of detector categories.

Rank Detector Triplet (for Combinations Excluding Entropy -Based Detectoy

1. Spiral + Hessian Matribased + Segmentatidrased
2. Spiral + Corner + Segmentatidiased

3. Spiral + Hessian Matribased + Corner

4 Spiral + Hessian Matribased + Hybrid
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It is evident fromTable 5that combining entropy spiral and segmentatiebased detectors produces
the highest mutual coverage across all combinations of detector categories. For combinations that do nc
involve an entropypased detector, grouping a rspidetector with a Hessian matitased and a
segmentatioibased detector provides the best performance. Combining a spiral detector with a
segmentatioibased and a corner detector also achieves good results. It is interesting to note that the
Laplacianbased detector category does not appe&able 6due to the relatively low mutual coverages
obtained; this is the same observation made in Table 3 of [15]. Overall, the results can be considerec
broadly consistent to the findings in [15]. In addition,stheesults provide a guideline as to which
detectors to combine in applications that require a reasonable distribution of image features, such a:
image registration and accurate muléw geometry estimation, apart from good repeatability and speed.

5. Feasibility of Proposed Methods for ReaWorld Applications

This section discusses the viability of the proposed measures favaddlapplications. It analyzes
how well the results presented above map to-weald problems, both for detectors and their
combinations. In particular, it shows that high coverage implies better performance for homography
estimation. The section also provides a timing analysis that shows the speed of calculating coverage
allowing it to be employed online as part of a pradtaystem.

5.1. Mapping Coverage Results to Practical Problems

Since the suitability of local feature detectors for automatic image orientation systems was studied
in detail by [14] recently, it is interesting to compare the results of this work to thgsé]oThat
evaluation was done using SFOP, Entropy [14], SIFT, MSER, Haffiree and HessiatAffine. For
separate detectors, SFOP was identified as providing the overall best performance; SIFT and MSER
work well with images having good and medium antsuof texture, whereas Har#dfine and
HessiarAf f i ne per form poorly. Although the author
images to [14], the conclusions drawn from the results of Section 3 largely agree with the findings
in [14] asSFOP is recognized as the best among SIFT, MSER, Hfie and HessiatAffine.

The coveragdased performance measure ranks SIFT higher than MSER. Moreover, the quantitative
evaluation of Section 3 also demonstrates that SIFT and MSER performdretteages with good

and medium texture (Campdsand Campug datasets in this case [24]) but their performance is
somewhat poorer for images with low texture. Hesgifime and HarrisAffine are at the bottom
according to the ranking, consistent with][14

For detector pairs, it was concluded in [14] that combining Hegdiame with SIFT has a
detrimental effect on performance for an automatic image orientation problem as they have highly
redundant feature sets. The results for detector pairs in Sdctilmo yield the same conclusion for a
combination involving SIFT and Hessi&ldfine. A combination of SFOP, SIFT and MSER was
identified as the most promising setting in |
also identify this configration as one of the top groupings when considering only those triple
combinations that involve the detectors evaluated in [14]. The high degree of correlation between the
results presented here and those of [14] provides evidence that coverage anadowatage provide
reliable methods of determining spatial distribution of interest points for image feature detectors.
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To illustrate the impact of these results on-«eatld applications, consider the task of homography
estimation for the Leuven datasétl]. The mean error was computed between the positions of
points projected from one image to the other, usirfgraundtruthd homography from [21], and a
homography determined using the above detectors. SFOP performed best, with a mean error of 0.24E
whereas EBR achieved a poor value of 3.672, consistent with the results shbignras 2 and 3.

Figure 10shows a plot of coverage (read values from the left ordinate axis) and mean homography
estimation error (read values from the right ordinate axisjhierMSER detector utilizing the Bikes
dataset [21]; this is a typical resuli@o0witiPa ar s c
p-value of 0.03jndicating that a high coverage implies a low mean error of homography estimation.

Figure 10. Curves for coverage and homography estimation error for MSER detector
utilizing the Bikes dataset [21].
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5.2. Computational Aspects

A method that can quickly predict the performance of feature detectors accurately would be
valuable for timecritical applications. This section illustrates the potential of coverage and mutual
coverage for ascertaining the performance of detectors and the complementarity of their combinations.
Since the completeness measur e [ 15ting schemetfam t h
carrying out such an analysis, coverage appears to be the first measure that makes possible the onlir
adaption of feature detection to image content in order to improve performance.

Figures 11 and 12plot the total computation times for @pzing the performance of a specific
detector and detector combinations respectively for 48 images of the Oxford datasets [21] utilizing
coveragebased measures and the completeness measure of [15] (read values from the left ordinate
axis). The dotted lies in these figures show the relative spepdfor the proposed methods as
compared to the completeness tool (read values from the right ordinate axis); the authors have
excluded the time taken to compute the reference entropy density for the completeasse, some
716.68 minutes for the 48 images of the Oxford datasets. These results were obtained by running
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MATLAB implementations of these methods on a Lirhased HP ProLiant DL380 G7 system with

Intel Xeon 5600 series processors. Since every detegtaacts a different number of features for

a given input image, as mentioned above, the mean number of interest points detected by every
technique for the Oxford datasets is providedTeble 7 so as to visualize the dependence of
computation time on theumber of feature points.

Figure 11. Timing analysis of the proposed coverage method and the Completeness
tool [15] for 48 images of the Oxford Datasets [21].
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Figure 12.Timing analysis of the proposed mutual coverage method and the Completeness
tool [15] for 48 images of the Oxford Datatsets [21].
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Table 7.Average number of interest points detected by feature detectors for Oxford datasets [21].

Bark Bikes Boat Graffiti Leuven Trees UBC Wall
SIFT(DoG) 4549 1505 6,939 4,060 1,910 10,707 6,310 11,499

Salient 2,238 2,027 4,231 2,653 2081 5921 3817 6584
Harris -Lap 539 611 2,107 2,060 624 4669 1540 2,520
HessianLap 451 870 2,527 3,028 944 3942 1,762 1479
Harris -Aff 537 590 2,056 2,041 612 4650 1500 2470
HessianAff 450 801 2,070 2,424 757 3872 1617 1434
SURF(FH) 3526 2,692 4822 5,520 3405 7482 5184 5047
EBR 299 465 1,024 1,074 495 577 821 2,716
IBR 706 673 635 807 330 1,623 649 758
MSER 545 286 1,012 692 392 2,148 890 1,975
SFOP 1,735 1,186 1,692 1,031 974 3,159 1,725 2,720

It is evident fromFigures 11 and 12that coverage has the potential to analyze feature detectors
quickly. For example, analysis of the SFOP detector requires a mean time of only 241.85 ms per image
Detectors such as IBR, which have sparse feature sets, are analyzed more quickly (5@ramagep
on average for IBR).

6. A Prediction-BasedFramework for Combining Detectors

This section presents a principled framework for combining local feature detectors automatically,
having the capability of handling varying scene types reliably, to achieve better performance in
realworld applications that require a reasonable distriioutf feature points. Utilizing the proposed
framework, results are presented for the task of image registration which highlight its usefulness.

The emerging trend of running multiple feature detectors simultaneously to take advantage
of complementary features for solving complex vision problems, such as cakegsrybject
recognition [31], stems from an inability to utilize different detectors in a selective and efficient
manner depending upon the image content. Although this @aegdproach may help in tackling
the uncertainty of image content in situations where there is no prior knowledge available, it has
detrimental effect on computation time due to increasing amount of data to process. Moreover, it
results in an ovecomplee representation of an image rather than a compact one [1], and is not
particularly useful for timecritical applications.

Complementarity of different feature types was first articulated in [16] which investigated the
ability of edge and bloblike featues to carry image information based on a model of retinal cells for
image reconstruction. With the aim of dealing with a wider range of images and exploiting several
types of image structure, the desire to buildfapportunistio system by combining theutput of
several feature detectors was advocated by [32]. Similarly, a sparse texture representation using
affine-invariant regions was proposed in [18] that utilized a combination of a corner and a blob
detector. It details an interesting case studywbich the recognition rate for a combination of
detectors was lower than what was achieved using a single detector. This particular work emphasizec
two important points: the need to acquire a better understanding of the performance of different
detectors n different types of texture and to investigate how the output of different detectors can be
combined so as to avoid detrimental effects on combined performance. Combinations of feature
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detectors have also been employed for catelgwmgl object recognitio and object detection in
videos [17,31,33]. As already mentioned in Section 5, the performance of different detector pairs
and triplets was studied for the task of automatic image orientation in [14]. This work showed the
negative effects on performanaden SIFT is combined with Hessidtdfine and attributed it to the
redundancy of features extracted by the two techniques.

The lack of a principled framework for combining feature detectors automatically in an effort to
achieve better performance in reabrld vision applications hence presents a major bottleneck.
Development of such a framework is vital, as combining multiple detectors may have detrimental
effects on combined performance, in some cases making it even lower than what can be achieved by
single detector [14,18].

6.1. Proposed Framework

Figure 13shows a block diagram of the proposed framework for combining local feature detectors
automatically in vision applications that require a reasonable distribution of feature points. Depending
upon tke image content, the framework decides whether to operate in a single detector mode or employ
multiple detectors. For predicting the performance of a single detector or a combination of detectors
for a specific vision task, this framework utilizes the cage and mutual coverage measures
presented in Sectier2.1 and 4.1lrespectively. The aim here is not to produce an optimal solution (in
the sense that it is the best conceivable) but rather to provide a reliable framework that allows
performance to be iproved when it is clear that a single detector will not perform adequately and to
have a low enough overhead that it can be used online.

Figure 13.A block diagram of the proposed framework for combining local feature detectors.
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Before discussing the framework in detail, it is worth stating that the proposed framework is
genericin the sense that it can be utilized for any set of local feature detectors and a variety of vision
applications, including those that involve a singleage. To keep this generality, the framework
is discussed here without referring to any specific detector or giving example of any particular
application; more specific results will be discussed later in Section 6.2. To complement Figure 13,
a short psedo-code for the presented framework is provided below to allow better understanding:

Run detector group A;

while (mutual) coverage < A/P:

run another detector group B/C/D (use knowledge database), combine features;
continue with specific vision task

Accordng to the proposed framework, the available feature detectors are first divided into specific
groups based on general knowledge about complementarity of their detected features. For this
categorization, the results given in Section 4, which provide alupafieline for combining detectors
in pairs and triplets, can be utilized. Any suitable detector is then selected from one of the groups to
run on a pair of images. The coverage values are computed for the two sets of detected feature point
utilizing the metric proposed in Section 2.1. A criterion is then needed to determine whether to use a
single detector or a combination of detectors. As discussed in Section 3.3, the ratio of area to perimete
[Equation(6)], which has long been used in physicsdpecifying field sizes [30], provides results that
are consistent with the visual inspections of Section 2 (see Biguaed 3). It is therefore a suitable
criterion to be used for ascertaining whether the coverage of a single detector is good ertbagh. If
coverage values achieved by the selected detector are greater than or equal to the ratio of area f
perimeter of image for both the images individually, the single detector mode is selected by the
proposed framework and the rest of the processingrestjtor the specific vision task (such as feature
description and matching) is done utilizing the detected feature points.

In the event that the coverage value achieved by the selected detector for any one image is less tha
the ratio of area to perimetef image, the proposed framework opts for multiple feature detectors for
that particular image pair. For selecting another detector which can be combined with the first detector,
a knowledge database is employed which contains information about the cemialety of different
feature detector groups. Again, the results given in Section 4 can be utilized for building such a
database. After getting the input from the knowledge database, a second detector is selected from
complementary detector group to fivst; mutual coverage values are then calculated using the metric
presented in Section 4.1 for both input images. If the computed mutual coverage values are greate
than or equal to the ratio of area to perimeter of image, the detected feature panatecieel and the
rest of the processing is done. If this is not the case, the second detector is discarded and anothe
detector is selected from some other detector group whose detected features are generally considere
complementary for the first detectd his process of selecting a second detector is repeated until the
required mutual coverage threshold is achieved for both the images. In case it does not happen afte
combining the first detector with all available detector groups, one of the eastaradkd detectors is
used with the first detector on the basis that this combination yields the highest mutual coverage.

Theproposed framework iRigure 13can be extended in a number of ways. Instead of employing a
pre-defined, fixed knowledge base, & possible to utilize one which updates its stored information
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dynamically by taking into account the current combined performance of different feature detectors.
Another variation that can be introduced is to look for a third detector to make a tripligtefo
particular scenario when a detector pair fails to achieve the required mutual coverage values.

6.2. Results

To demonstrate the utility of the proposed framework, an image registration task is used here as
it is dependent on achieving a reasonabbiapdistribution of detected feature points. A database of
37 image pairs with rotation and viewpoint changes is employed for this particular task. Each image in
the database has dimensions @80 x 717 pixels and any two images that form a pair havgel
overlapping regions, to provide ample opportunity for an employed detector to show its best
performance. This database has been made available online at [34].

Before presenting the results for the proposed framework, it is worth having a look at the individual
performance of the detector to be employed as the starting detector for the framework. Hése, IBR
chosen arbitrarilyo serveas the starting detectatthough IBR manages to solve the image registration
problem for all image pairs in the database, there is large variation in the@cof registration.
Figures 14i 17 show four sample registered image pairs from the database utilizing IBR alone.

Figure 14.Image registration result for the image pair 7 of the database using IBR alone.
The region inside the green circle shows good registration.

Figure 15.Image registration result for the image pair 8 of the database using IBR alone.
The regionsnside the red circles indicate poor image registration.
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Figure 16.Image registration result for the image pair 4 of the database using IBR alone;
the region inside the red circle indicates that better registration is required.

Figure 17.Image registration result for the image pair 12 of the database using IBR alone;
the region inside the red circle indicates that better registration is required.

It is evident fromFigure 14that image pair 7 is registered reasonably well from the feature matches
of IBR. Contrary to that, the image registration result for image pair 8 is quite podfigsee 15.
Although the results for image pair Bigure 1§ and image pair 12F{gure 17 can be considered
better than that of image pair 8, more accurate registration is desirable for these cases.

The variation in the accuracy of registration for the database when using feature points detected by
IBR can be explained by the coverage valaelsieved by the detector for this database (as shown in
Figure 18). It can be seen clearly that the coverage values of IBR for the image pair 7 are much greate
than the area to perimeter ratio of image (215.45 for this particular case). The reasortalle spa
distribution of detected features for both the images thus allows IBR to register this particular image
pair accurately (Figure 14 and Figure 18). On the other hand, the coverage values for image pairs 4, 8
and 12 are below the required threshold2d6.45 and provide reasonable justification for the
inaccurate registration results shown in Figut&i 17. It should be noted that coverage values for
image 8 are particularly low, which ultimately leads to such a poor result.
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Figure 18.Coverage results of IBR for the database.

Figure 19.Coverage results achieved using the proposed framework for the database.

When the proposed framework is employed with IBR as the starting detector (selected from the
segmentatiofbased detector group), coverage values are computed for every image pair of the
database as described in Section 6.1. The SFOP detector is thenezbelimmatically with IBR for
only those image pairs which have coverage values below the required threshold of area to perimete
ratio. For the remaining image pairs, the framework opts for the single detector mode (continuing with
IBR only) as the covege values are greater than or equal to 215.45. The coverage values achieved by
this fintelligen® dual mode system for the database are shown in Figure 19. To indicate when the
framework selects single detector mode or employs multiple detectors, thermgperade is shown by



