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Abstract: This paper presents a project on the development of a cursor control
emulating the typical operations of a computesuse, using gyroscope aageblinking
electromyographic signaishich are obtained tbugh a commercial 16électrodewireless
headset, reently released by rgotiv. The cursor position is controlled using information
from a gyroscope included in the headset.
blinking with an adequate detection procedure based on the spietri@chnique called
Empirical Mode Decomposition (EMD). EMD iproposedas a simple and quick
computational tool, yet effective, aimed &otifact reduction from head movemerss
well as a method tdetectblinking signalsfor mousecontrol. Kalman filtens used astate
edimator for mouse position control and jitter removahe detectiorrate obtained in
average was 94%9. Experimental setup and some obtained results are presented.
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1. Introduction

In the last decades there has been a growing effort from the research community to develop
humancomputer interfaces (HCI), aiming to provide convenient communication alternatives for
disabled pemns. Several approaches of uferndly interfaces using voice, vision, gesture, and
other modalities, can be found in recent literatuiigs]1As the technology advances, new affordable
devices make attractive the use of bioelectric signals sucklemsoencephalographic (EEG),
electromyographic (EMG), or electaxulographic signals (EOGhor the purpose of developing new
types of HCI systems [2.0]. Among these, EEG have receiveahsiderable attention due to several
factors arising on practical s@mos, such as noninvasiveness, portability, and relative cost, without
lost on accuracy and generalization. An important motivation to develogrigsetly HCI systems,
among some others, is to allow an individual with severe motor disabilities to bat®lcover
specialized devices such as assistive appliances, neural prostheses, speech synthesizers, or a persc
computer directly. The standarbmputer interface nowadays involves a keyboard and mouse,
although recently, touchscreen interfaces arefatg very popular. In that sense, computer mouse
emulation using hanedsee alternatives is still a very helpful resource éisabled personsThe
following is a partial list of some successful modalities which have been reported: visual tracking [5],
voice control [6], electromyographic signals [7], eleetulographic potentials (EOG) [8], and
electroencephalographic signals [9,10].

In this work we presera project focusing on the development of a hafitde mouse emulation
using the EEG headsetcetly released by Emotiv [11]The Emotiv EPCC headset represents a
practica] economical, and efficient alternative for Ef@sed applications, which has been recently
used in a number of applications such as emotions detection supporting instant m¢s8agirsgial
imagery for classification of primitive shapes [13], P300 rhythm detection [14], or a huazrine
interface applied into a tractor steering [15]. In the project described in this paper, the Emotiv headset
is used to emulate the basic opernasi of a mouse computevjth positioncontrolbased orthe speed
signals obtained from a gyscope included in the headsEhe clicks are carried out through the éGser
blinking, which generates electrical activity originated in muscle movements iforttmeeof BEMG
signals, and detected through the headset electiledethat purposezmpirical Mode Decomposition
(EMD) is explored as a separation technique in otdelocate in time and pseudpectrum the
energy of the associated pulses from a backgtawith noise and othartifacts. There are several
successful approaches reported in the literature aiming to separation of blinking signals from EEG
measurementsusing techniques such as Independent Component Analysis (IGA)7[ wavelet
analysis 18,19, a combination of the two previou2(], algebraic separatior2]], and HilbertHuang
transform(HHT) [22]. Most references found in the literatueder to blinking signals separation in the
context of artifact removal, although there are some studies on the use of blinking signals for control
applications 23i 25]. Reference[25] presents a machine learning approach to detect eye movements
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and blinks to control an external device, usi@@mmon Spatial Pattern (CSP) filtedaring feature
extraction with an accuracy of 95%Reference[26] presents a comparison @fiscrete Wavelet
Transform(DWT) and HilbertHuang Transforn{HHT), both used in EEGsignalfeature extretion.

HHT was reported to providea more accurate tirAeequency analysis due to its adaptive ibas
according to the input datédditionally, when DWT is used, the choice of a suitable wavelet and
threshold valuess a crucial tasko be considered27]. Independent Component Analysis (ICA) has
been widely used in EEG analysm artifacts removal, SNR enhancement, and optimal electrodes
selection [28,29], however, some minor drawbacks such as power spectrum corruption [30], or
component localization3fl] may be presentAccording to the references consulté@A has been

mainly used in offline analysiPetection and removal of myogenic and ocular artifacts using ICA is
extensively analyzed if81]. A relevant discussion preged in this reference isow to objectively

identify components related to ocular artifacts, as this is often done based on visual inspection, thus
relying on the subjective judgment of the experimenBnd source separation delivers separated
independat componentsn no specific ordermaking difficult implementation of real time automatic
systems. Additional information is included in some studies in order to increase ICA performance,
such as eye tracking signdl81] or video sequencef32]. Although there are several developed
approaches, direct performance comparisons between reported methods is not straightforward givel
that in many cases EOG blinking signals used for controlling some devices, are measured through
electrodes located aroutite ocular globe, where power signal is higher and in consequence easier to
detect using techniques as simple thresholdihg. experimental prototype described in this paper has
been designed specifically with the goal of using the functionalities pobbagléhe EMOTIV wireless

EEG headseflthough Emotiv EPOC headset represents a practical alternative for the development of
accessible EE®ased applications, the obtained signals present usually poor signal to noise ratio, and
contacts between electrodemd scalp generate noise arising even from head movements. The
application reported in this work is based on the use of EMD as an adequate technique aiming to signa
detection of EMG blinking signals through the mentioned Emotiv EPOC heddbét.l sumnarizes

some techniques of preprocessing, feature extraction, assifedation, recently reportegpplied to

blinking detection using electrodes as element sensor.

Table 1. Comparison of several reported methéaisblinking detection using electrodes
aselement sensor.

Reference Pre-Processing Features Classifier Performance Metrics
N. Kurian, et al None Amplitude values Thresholding Not specified

2013 [33]

T. Wisse| et al Bessel filtering  Wavelet Transform  1NN/LDA/Neural 90% 94%

2011 [34] Networks

R. Bareaet al None Wavelet Transform  Neural Networks 92%

2011 [35]

B. Paulchamyet al  Not specified Wavelet Transform  AdaptiveNoise Based on SNR values
2012 [36] Cancellation

L.F. Araghi None Wavelet Transform  ADALINE (adaptive Not specified

2010 [37] linear neuron)

P. Kumaret al None Wavelet Transform  Thresholdingoy Not specified

2008[38] statistical parameters
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Table 1.Cont.
Reference Pre-Processing Features Classifier PerformanceMetrics
P.SenthilKumargtal None Wavelet Transform  ADALINE (adaptive Supression ratio:
2008 [39] linear neuron) 3i71dB
W. Hsu,et al Surface Wavelet Transform  Support Vector 84% average
2012 [40] Laplacian Machine
X.Yong,et al None Morphological Creation of Not specified
2009 [41] Component Analysis dictionary/template
J. Lin,etal Not specified FFT Simple Threshold Results in average time
2012 [42] consumed:
4.1513.35 mn
H. Shahahiet al None KalmanFilter Simple Threshold 98% modeling fitting
2012 [43] modeling
M.K.I. Molla, et al None EMD Thresholding by Not specified
2012 [44] statistical parameters
L. Ming-Ai, et al None EMD Simple Threshold RRMSE against ICA:
2011[45] 0.1143 and 01186
T. Junget al None Statistical Threshold filtering Expert manual
2000[46] parameter$CA/ evaluation
E-ICA
S. Woltering,et al None Statistical parameter Correlation Correlation values for
2013 [47] several electrodes
P.Balaiah et al Not specified Statistical parameter ADALINE (adaptive SNR average 10.29
2012 [48] linearneuron)
H. Nolan et al Filtering not Statistical Thresholding by Specificity >90%
2010[49] specified parameters/ICA statistical parameters
H. Cai,et al. Not specified ICA basedeatures  Thresholding by Correlation values:
2011 [50] statisticalparameters ~ 0.8457

EMD is a technique used to decompose a time series into a finite number of functionscaikd
mode functions (IMF) using an empirical identification based on its characteristic time [g&dgles
EMD has beenecently proposed as an analysis tool in a number of applications such as, image texture
analysis 2], detection of human cataract in ultrasound signaB, [crackle sounds analysi®],
vibration signal analysis for localized gearbox fault diagndsk [mage watermarkings], and EEG
signal analysis. Examples of the last category, closely related to the topic of the presented paper ar
event related potentials (ERP7], phase synchrony measurement from the complex motor imaginary
potential of commed body and limb actiorb§], and EEG signals for synchronization analy&9].[
From the point of view of the EOG, the eye can be modeled as a fixed dipole with positive pole at the
cornea and negative pole at the retina. The potential of this digalewa as corneoetinal potential,
with typical amplitude values in the range of ild mV. Eye movements produce rotating dipole
and consequently potential signals proportional to the movement appear. These signals can be
relatively easy to acquire. Tteeare several methods for determining eye movement such as infrared
oculography, which uses corneal reflection of near infrared light with the pupil center as reference
location BQ], video oculographydl], magnetic field search coiechnique[62], and others. EOG is
an effective and direct method to detect eye movements. The main disadvantage applying EOG is tha
the corneoretinal potential is not always fixed and depends on diverse factors, for instance, diurnal
variations, fatigue, and intensity aght. In consequendeequent calibration is needed.
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In this work, a feature extraction procedure bamedhe spectrdike technique EMD is described.
Results obtained using the proposed technique indicate an adequate process to harstahenawity
characteristic of EEG signalé&dditional experiments using DWT were carried out for comparison
purposesTypical mousdike function is a sequential process in which the user performs a movement
to locate the cursor in the required positiand then selects an operation by applying a click action.
Experiments were carried out considering extreme situations, where the subject is instructed to move
the head at different speeds while applying a double click in indicated theetson 2 descrilzesome
theoretical background on the used techniques. Section 3 presents a description of the experimente
setup. Section 4 describes some obtained results, and section 5 presents some concluding remarks a
future work about the described project.

2. Empirical Mode Decomposition (EMD)

EMD was first introduced by Huan§1]] for spectral analysis of neimear and nosstationary time
series, as the first step of a two stage process, currently known as the Hilbert Huang Transform (HHT).
EMD is used in thisvork with two objectives: signalrpprocessing to reduce noigesing fromhead
movement and double blinking detection to simulate fidickd operation of a traditional mouse
device.Essentially, EMD aims to empirically identify the intrinsic oscillgtanrodes or intrinsic mode
functions (IMF) of a signal by its characteristic time scales, in adaptive way. These modes represent
the data by means of local zero mean oscillating waves obtained by a sifting process. Thus, an IMF
satisfies two main conditiongaking account the complete data set, the number of extrema points
(min and max) must be equal or differ at most by one to the number of zero crossing points; the mean
value of the envelopes is always zero which are defined by the local maxima anditocs. EMD
can be summarized as follows (468] for details): Given a signaf(t) (t is the time)identify its
extrema (both minimaeming and maximaemaxy). Generate the envelope by connecting maxima
and minima points with a curve, for instancabic spline interpolation, although other interpolation
techniques are allowedeermine the mean by averaging; Equation (1). Extract the detail
Equation (2) Finally iterate on the residuai(t):

+e

emin max

2
d(t) = x(t) - m() )

There are iteration stoppirggiteriasuch as establighg a certain number of siftinghresholdsor
minimum amplitude of residuaEMD satisfes completeness and orthogonality propertiethesame
way asspectral decompositions such as Fourier or wavelet transfidiencompleteness preqy is
satisfied by EMD in the sensdhat it is possible taeconstructthe original signabased ortheir
decompositins. These decomposition functiosisould all be locally origonal to each other, as
expressed in Equation (3), although some leakamearise

(X(t) - X(1)) Tx(t) =0 3)
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An orthogonality in@x expressed in Equation (%) usedto keep track of leakage magnitude of
some limits.X is the original sinal withi | j, whee n is the number of decompositions ahds the
number of samples inside the analysis window:

n+l

a3 A, IMF, ()IMF, () §
&
¢

X2 (1) 8 (4)

Occasionally, theconsideation of a local EMDis necessaryln this case, sifting operations are
not applied to the full length signabometimes, a better local approximation is obtaininguiin
overiteration of a specific zone; however, this process produces contamination in other signal zones
and in consequence oveecomposing. Thus, the algorithm must keep iterating only over zones where
the error remains largd.ocal EMD is implementedntroducing a weighting functiorfw(t)), that
describs a soft decay outside the problem @om consequence Equati{#f) can be written as:

d(t) = () - WM )

Figure 1 shows typical results obtained from an EEG signal using EMD with five decomposition
iterations.

Figure 1. (a) Original EEG signal k) first five IMFs.
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3. ProposedSchemeand Module Description

In EEG signal detection, it is important to get consistent records of electric brain activity from
specific surface electrode location. For that purpssientists and physicians rely on a standard system
for accurately placing electrodes, which is called the Internatiori&018ystem, generally used in
clinical EEG recording and EEG research. Figure 2 shows the electrode paasiitbdenominations
usedin the International10i 20 System Red square indicate the available electrodes on Emotiv
system.The EEG signal required to perform the detecti@re obtained from electrodesd-3/AF4
(green marked in Figure 2), which are labeled according to the menfi6h2@international System.
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Figure 2. International system 1QO0.
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The modules proposed to detect dottdiaking event and to process gyroscope data are sirown
the block diagranof Figure 3 A preprocessing stage using a bgads filter (0.5Hzi 10 Hz) is
applied before doing the spectral analysis.

Figure 3. Proposed scheme, blinking detection and gyroscope processing system.

Band- - : Threshold
AF3/AF4 Empirical Mode Pearson Mahalanobis
Eec [ "] P35 ™™ Decomposition [ ™ | correlation |~ distance | ™| RosHy
filtering processing
Gyroscope Kalman Integration .
digital data| filtering —> ey —> Scaling

3.1. NoiseReduction

EEG signals provided by the EMOTIV headset EEG acquisition system are contaminated by noise
produced by different sources such amiscular movements (head movement, breathetg), or
electromagnetic noise (50/60 Hz electric lindg)hough Emotiv EPOCheadsetepresents an efficient,
practical and economical alternative, the EEG detected signals are often nessl.mdvemenst
associated to the expected use of the device as a mouse polhf@oduce noise on the signal
acquired by the electrode dteea slight movement of the electrode over the séatjure 4shows five
double blinking eventgammerse innoise produced by head movermenhich can occur even in the
same order of magnitude than expechdidking amplitude valug The artifactcould bedetected
considering that noiseresent m all electrodes over the scalp will show high correlatiohusia
preprocessing stage includ@sding common signalsn the electrodesThe preprocessing casistsof
EMD decomposition, correlation based functio anintegration modulgas described in Figure 5
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Figure 4. Head movement noise during double blinking events.
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Figure 5. Preprocessing to reduce head movement noise.

_.i_

As previously stated, noise produced by head or body movement will appear in all electtbdes of
system with small variations, therefore, correlation analysis i#agson coefficiens used for noise
detection purposes. Pearson correlation coeffigieavides ameasureof dependence between two
random variablesEquation(6) defines the Pearson correlation with expected vgiieand py and
standard deviation3 andCy:
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Correlation function applied directly to the signals obtained from elackrode will statelependence
betweenchannels. Common signals detected would have to be removed; however, applying directly
an operation to separate those signals could cause removing also important information. Therefore
decomposing the signal fronaeh electrode will reduce the loss of informatialipwing the system to
distinguish between artifacts from head movementsdandble blinkingsignals That decomposition
has been carried out using EMD technidtigure6 shows an example of EMD decompgasi, with a
plot of IMF 1 to IMF 5 obtained from fo different electrodes near AF3isval inspectionndicates
similaritiesin IMFs 1, 3, 4 and 3n this partof the experimentEMD decompositiortypically yielded
between 14nd 16lMFs.

Figure 6. EMD decomposition from four different electrodes near ABBHCS5, p) FC6,
(c) P8, andq) P7.

200 a) 20 b)
= JANAY M N n, -
g 0 S, \\,,‘ & 0 . VA vi

200 =20

0 1.0 2.0 3.0 40 5.0 6.0 7.0 0 1.0 20 3.0 40 5.0 6.0 7.0
20 10
oo ~ AR N /
/ = w < - R
s s v /
= -20 =-10
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

100 50
m . m
[ — - — ——]

s ~ g 0 — — !
100 ~-50
0 1.0 20 3.0 4.0 5.0 6.0 7.0 0 0 2.0 3.0 4.0 5.0 6.0 7.0
< 20 5
| ] N — T
w 0 b—— - — w 0 g
2 I R s 1 —
50 - 5
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0 1.0 2.0 30 4.0 5.0 6.0 7.0
10 — — 0 —
N F— I SRS I e N
s 0 — & N — ——— —
10 T2
0 1.0 20 3.0 4.0 5.0 0 7.0 C) 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 d)
seconds seconds

1w 50 N
- " - |
o A ”/\{, A» .o LA
2 10 i 2 v

~ 50
1.0 2.0 3.0 4.0 5.0 6.0 7.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

10 50

oo - N f/\ N —
E \/ - — L0 =
2 40 - 2 5p

1.0 20 3.0 4.0 5.0 6.0 7.0 1.0 2.0 30 4.0 5.0 6.0 7.0
- 10 20

— — ! — &

H_\ = L — u_\ 0 N
= ~ e = ™ —
= a0 ~ 20

1.0 20 3.0 4.0 5.0 6.0 7.0 1 2.0 3.0 4.0 5.0 6.0 7.0

0.5
<, P P <, 10 - ] — T
oo Lo > —

2 05 — B i 2.5 ™~ —
~o 1.0 20 3.0 4.0 5.0 6.0 7.0 o 1.0 2.0 3.0 4.0 5.0 6.0 7.0
5
wn 0.5 | — n —
gw o 1 _— B = 5‘ o AN T | e
=05 ~_ N ~—
0 1.0 20 3.0 4.0 5.0 6.0 7.0 0 1.0 20 3.0 4.0 5.0 6.0 7.0

seconds seconds

In order to find the amount of similarity or dependence, tregdea correlation is calculated from
corresponding IMF functiongAdditionally, ap-value iscomputed by transforimg the correlation to
createa t statistiovith n-2 degrees of freedom, whemnas the number of rows the correlation matrix
Thus,p-values less than 0.05 were considered to imply bayrelation.Figure6 shows an example in
which IMF3 from electrode AF6 is compared to thest, from a total number of 12 electrodes,
resulting inp-values close to 0, except for F@&ctrode (0.639). This algthm is repeated for all
IMFs,taking asreference the electrode AF6. A slide window & 4 is applied during ccelation
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calculation. Figure Bhows the noise reduction using the correlation coefficiass®ciated tahe
correspondingMF. If there is a correlation in most of the electrodeg, tbrrespondindMF is
prevented from passing the integration module.

Figure 7. Noise reduction based on correlation function removiagl (IMF, (b) 2 IMFs,
(c) 3IMFs andd) 4 IMFs.
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Once the noise is reduced, a second derivative is obtained in order to determine whether a critical
point is a bcal maximum or a local minimum. A typical double blinking event will have two local max
points inside a 0.5 s window. Figure 8 shows the signal after this processing, thus the classifier is
reduced to a simple riashold function.

Figure 8. Double blinkingdetection with noise reduction.



