
Sensors 2013, 13, 10561-10583; doi:10.3390/s130810561 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Gyroscope-Driven Mouse Pointer with an  

EMOTIV ® EEG Headset and Data Analysis Based on  

Empirical Mode Decomposition 

Gerardo Rosas-Cholula 
1
, Juan Manuel Ramirez-Cortes 

1,
* , Vicente Alarcon-Aquino 

2
,  

Pilar Gomez-Gil  
3
, Jose de Jesus Rangel-Magdaleno 

1
 and Carlos Reyes-Garcia 

3
 

1
 Department of Electronics, National Institute of Astrophysics, Optics and Electronics,  

Luis Enrique Erro No. 1, Tonantzintla, Puebla 72760, Mexico;  

E-Mails: grosas@inaoep.mx (G.R.-C.); jrangel@inaoep.mx (J.J.R.-M.) 
2 

Department of Electronics and Computer Science, Exhda. Sta. Catarina Martir, Cholula,  

University of the Americas, Puebla, Puebla 72720, Mexico; E-Mail: vicente.alarcon@udlap.mx 
3 

Department of Computer Science, National Institute of Astrophysics, Optics and Electronics,  

Luis Enrique Erro No. 1, Tonantzintla, Puebla 72760, Mexico;  

E-Mails: pgomez@inaoep.mx (P.G.-G.); kargaxxi@inaoep.mx (C.R.-G.)  

*  Author to whom correspondence should be addressed; E-Mail: jmram@inaoep.mx;  

Tel.: +52-222-266-3100; Fax: +52-222-247-2580. 

Received: 30 June 2013; in revised form: 2 August 2013 / Accepted: 6 August 2013 /  

Published: 14 August 2013 

 

Abstract:  This paper presents a project on the development of a cursor control  

emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking 

electromyographic signals which are obtained through a commercial 16-electrode wireless 

headset, recently released by Emotiv. The cursor position is controlled using information 

from a gyroscope included in the headset. The clicks are generated through the userôs 

blinking with an adequate detection procedure based on the spectral-like technique called 

Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick 

computational tool, yet effective, aimed to artifact reduction from head movements as  

well as a method to detect blinking signals for mouse control. Kalman filter is used as state 

estimator for mouse position control and jitter removal. The detection rate obtained in 

average was 94.9%. Experimental setup and some obtained results are presented. 
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1. Introduction  

In the last decades there has been a growing effort from the research community to develop  

human-computer interfaces (HCI), aiming to provide convenient communication alternatives for 

disabled persons. Several approaches of user-friendly interfaces using voice, vision, gesture, and  

other modalities, can be found in recent literature [1ï6]. As the technology advances, new affordable 

devices make attractive the use of bioelectric signals such as electroencephalographic (EEG), 

electromyographic (EMG), or electro-oculographic signals (EOG), for the purpose of developing new 

types of HCI systems [7ï10]. Among these, EEG have received considerable attention due to several 

factors arising on practical scenarios, such as noninvasiveness, portability, and relative cost, without 

lost on accuracy and generalization. An important motivation to develop user-friendly HCI systems, 

among some others, is to allow an individual with severe motor disabilities to have control over 

specialized devices such as assistive appliances, neural prostheses, speech synthesizers, or a personal 

computer directly. The standard computer interface nowadays involves a keyboard and mouse, 

although recently, touchscreen interfaces are becoming very popular. In that sense, computer mouse 

emulation using hands-free alternatives is still a very helpful resource for disabled persons. The 

following is a partial list of some successful modalities which have been reported: visual tracking [5], 

voice control [6], electromyographic signals [7], electro-oculographic potentials (EOG) [8], and 

electroencephalographic signals [9,10]. 

In this work we present a project focusing on the development of a hands-free mouse emulation 

using the EEG headset recently released by Emotiv [11]. The Emotiv EPOC headset represents a 

practical, economical, and efficient alternative for EEG-based applications, which has been recently 

used in a number of applications such as emotions detection supporting instant messaging [12], visual 

imagery for classification of primitive shapes [13], P300 rhythm detection [14], or a human-machine 

interface applied into a tractor steering [15]. In the project described in this paper, the Emotiv headset 

is used to emulate the basic operations of a mouse computer, with position control based on the speed 

signals obtained from a gyroscope included in the headset. The clicks are carried out through the userôs 

blinking, which generates electrical activity originated in muscle movements in the form of EMG 

signals, and detected through the headset electrodes. For that purpose, Empirical Mode Decomposition 

(EMD) is explored as a separation technique in order to locate in time and pseudo-spectrum, the 

energy of the associated pulses from a background with noise and other artifacts. There are several 

successful approaches reported in the literature aiming to separation of blinking signals from EEG 

measurements, using techniques such as Independent Component Analysis (ICA) [16,17], wavelet 

analysis [18,19], a combination of the two previous [20], algebraic separation [21], and Hilbert-Huang 

transform (HHT) [22]. Most references found in the literature refer to blinking signals separation in the 

context of artifact removal, although there are some studies on the use of blinking signals for control 

applications [23ï25]. Reference [25] presents a machine learning approach to detect eye movements 
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and blinks to control an external device, using Common Spatial Pattern (CSP) filters during feature 

extraction, with an accuracy of 95%. Reference [26] presents a comparison of Discrete Wavelet 

Transform (DWT) and Hilbert-Huang Transform (HHT), both used in EEG signal feature extraction. 

HHT was reported to provide a more accurate time-frequency analysis due to its adaptive basis 

according to the input data. Additionally, when DWT is used, the choice of a suitable wavelet and 

threshold values is a crucial task to be considered [27]. Independent Component Analysis (ICA) has 

been widely used in EEG analysis for artifacts removal, SNR enhancement, and optimal electrodes 

selection [28,29], however, some minor drawbacks such as power spectrum corruption [30], or 

component localization [31] may be present. According to the references consulted, ICA has been 

mainly used in offline analysis. Detection and removal of myogenic and ocular artifacts using ICA is 

extensively analyzed in [31]. A relevant discussion presented in this reference is how to objectively 

identify components related to ocular artifacts, as this is often done based on visual inspection, thus 

relying on the subjective judgment of the experimenter. Blind source separation delivers separated 

independent components in no specific order, making difficult implementation of real time automatic 

systems. Additional information is included in some studies in order to increase ICA performance, 

such as eye tracking signals [31] or video sequences [32]. Although there are several developed 

approaches, direct performance comparisons between reported methods is not straightforward given 

that in many cases EOG blinking signals used for controlling some devices, are measured through 

electrodes located around the ocular globe, where power signal is higher and in consequence easier to 

detect using techniques as simple thresholding. The experimental prototype described in this paper has 

been designed specifically with the goal of using the functionalities provided by the EMOTIV wireless 

EEG headset. Although Emotiv EPOC headset represents a practical alternative for the development of 

accessible EEG-based applications, the obtained signals present usually poor signal to noise ratio, and 

contacts between electrodes and scalp generate noise arising even from head movements. The 

application reported in this work is based on the use of EMD as an adequate technique aiming to signal 

detection of EMG blinking signals through the mentioned Emotiv EPOC headset. Table 1 summarizes 

some techniques of preprocessing, feature extraction, and classification, recently reported applied to 

blinking detection using electrodes as element sensor. 

Table 1. Comparison of several reported methods for blinking detection using electrodes 

as element sensor. 

Reference Pre-Processing Features Classifier Performance Metrics 

N. Kurian, et al.  

2013 [33] 

None Amplitude values Thresholding Not specified 

T. Wissel, et al.  

2011 [34] 

Bessel filtering Wavelet Transform 1NN/LDA/Neural 

Networks 

90%ï94% 

R. Barea, et al.  

2011 [35] 

None Wavelet Transform Neural Networks 92% 

B. Paulchamy, et al. 

2012 [36] 

Not specified Wavelet Transform Adaptive Noise 

Cancellation 

Based on SNR values 

L.F. Araghi,  

2010 [37] 

None Wavelet Transform ADALINE (adaptive 

linear neuron) 

Not specified 

P. Kumar, et al.  

2008 [38] 

None Wavelet Transform Thresholding by 

statistical parameters 

Not specified 
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Table 1. Cont. 

Reference Pre-Processing Features Classifier Performance Metrics 

P. SenthilKumar, et al. 

2008 [39] 

None Wavelet Transform ADALINE (adaptive 

linear neuron) 

Supression ratio:  

3ï71 dB 

W. Hsu, et al.  

2012 [40] 

Surface 

Laplacian 

Wavelet Transform Support Vector 

Machine 

84% average 

X. Yong, et al.  

2009 [41] 

None Morphological 

Component Analysis 

Creation of 

dictionary/template 

Not specified 

J. Lin, et al.  

2012 [42] 

Not specified FFT Simple Threshold Results in average time 

consumed:  

4.15ï13.35 min 

H. Shahabi, et al.  

2012 [43] 

None Kalman Filter 

modeling 

Simple Threshold 98% modeling fitting 

M.K.I. Molla, et al.  

2012 [44] 

None EMD Thresholding by 

statistical parameters 

Not specified 

L. Ming-Ai , et al.  

2011 [45] 

None EMD Simple Threshold RRMSE against ICA: 

0.1143 and 01186 

T. Jung, et al.  

2000 [46] 

None Statistical 

parameters/ICA/ 

E-ICA 

Threshold filtering Expert manual 

evaluation 

S. Woltering, et al.  

2013 [47] 

None Statistical parameters Correlation Correlation values for 

several electrodes 

P. Balaiah, et al.  

2012 [48] 

Not specified Statistical parameters ADALINE (adaptive 

linear neuron) 

SNR average 10.29 

H. Nolan, et al.  

2010 [49] 

Filtering not 

specified 

Statistical 

parameters/ICA 

Thresholding by 

statistical parameters 

Specificity > 90% 

H. Cai, et al.  

2011 [50] 

Not specified ICA based features Thresholding by 

statistical parameters 

Correlation values: 

0.8457 

EMD is a technique used to decompose a time series into a finite number of functions called intrinsic 

mode functions (IMF) using an empirical identification based on its characteristic time scales [51]. 

EMD has been recently proposed as an analysis tool in a number of applications such as, image texture 

analysis [52], detection of human cataract in ultrasound signals [53], crackle sounds analysis [54], 

vibration signal analysis for localized gearbox fault diagnosis [55], image watermarking [56], and EEG 

signal analysis. Examples of the last category, closely related to the topic of the presented paper are 

event related potentials (ERP) [57], phase synchrony measurement from the complex motor imaginary 

potential of combined body and limb action [58], and EEG signals for synchronization analysis [59]. 

From the point of view of the EOG, the eye can be modeled as a fixed dipole with positive pole at the 

cornea and negative pole at the retina. The potential of this dipole is known as corneo-retinal potential, 

with typical amplitude values in the range of 0.4ï1.0 mV. Eye movements produce rotating dipole  

and consequently potential signals proportional to the movement appear. These signals can be 

relatively easy to acquire. There are several methods for determining eye movement such as infrared 

oculography, which uses corneal reflection of near infrared light with the pupil center as reference 

location [60], video oculography [61], magnetic field search coil technique [62], and others. EOG is  

an effective and direct method to detect eye movements. The main disadvantage applying EOG is that 

the corneoretinal potential is not always fixed and depends on diverse factors, for instance, diurnal 

variations, fatigue, and intensity of light. In consequence frequent calibration is needed.  
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In this work, a feature extraction procedure based on the spectral-like technique EMD is described. 

Results obtained using the proposed technique indicate an adequate process to hand the non-stationarity 

characteristic of EEG signals. Additional experiments using DWT were carried out for comparison 

purposes. Typical mouse-like function is a sequential process in which the user performs a movement 

to locate the cursor in the required position, and then selects an operation by applying a click action. 

Experiments were carried out considering extreme situations, where the subject is instructed to move 

the head at different speeds while applying a double click in indicated times. Section 2 describes some 

theoretical background on the used techniques. Section 3 presents a description of the experimental 

setup. Section 4 describes some obtained results, and section 5 presents some concluding remarks and 

future work about the described project. 

2. Empirical Mode Decomposition (EMD) 

EMD was first introduced by Huang [51] for spectral analysis of non-linear and non-stationary time 

series, as the first step of a two stage process, currently known as the Hilbert Huang Transform (HHT). 

EMD is used in this work with two objectives: signal preprocessing to reduce noise arising from head 

movement, and double blinking detection to simulate the ñclickò operation of a traditional mouse 

device. Essentially, EMD aims to empirically identify the intrinsic oscillatory modes or intrinsic mode 

functions (IMF) of a signal by its characteristic time scales, in adaptive way. These modes represent 

the data by means of local zero mean oscillating waves obtained by a sifting process. Thus, an IMF 

satisfies two main conditions: taking account the complete data set, the number of extrema points  

(min and max) must be equal or differ at most by one to the number of zero crossing points; the mean 

value of the envelopes is always zero which are defined by the local maxima and local minima. EMD 

can be summarized as follows (see [63] for details): Given a signal x(t) (t is the time) identify its 

extrema (both minima emin(t) and maxima emax(t)). Generate the envelope by connecting maxima  

and minima points with a curve, for instance, cubic spline interpolation, although other interpolation 

techniques are allowed. Determine the mean by averaging; Equation (1). Extract the detail d;  

Equation (2). Finally iterate on the residual m(t): 

2
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)max()min( tt ee
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=  (1)  

)()()( tmtxtd -=  (2)  

There are iteration stopping criteria such as establishing a certain number of siftings, thresholds, or 

minimum amplitude of residual. EMD satisfies completeness and orthogonality properties in the same 

way as spectral decompositions such as Fourier or wavelet transform. The completeness property is 

satisfied by EMD, in the sense that it is possible to reconstruct the original signal based on their 

decompositions. These decomposition functions should all be locally orthogonal to each other, as 

expressed in Equation (3), although some leakage may arise: 

0)())()(( =¶- txtxtx  (3)  



Sensors 2013, 13 10566 

 

 

An orthogonality index expressed in Equation (4) is used to keep track of leakage magnitude of 

some limits. X is the original signal with i Í j, where n is the number of decompositions and T is the 

number of samples inside the analysis window: 
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Occasionally, the consideration of a local EMD is necessary. In this case, sifting operations are  

not applied to the full length signal. Sometimes, a better local approximation is obtaining through  

over-iteration of a specific zone; however, this process produces contamination in other signal zones 

and in consequence over-decomposing. Thus, the algorithm must keep iterating only over zones where 

the error remains large. Local EMD is implemented introducing a weighting function (w(t)), that 

describes a soft decay outside the problem zone. In consequence Equation (2) can be written as: 

)()()()( tmtwtxtd -=  (5)  

Figure 1 shows typical results obtained from an EEG signal using EMD with five decomposition 

iterations. 

Figure 1. (a) Original EEG signal, (b) first five IMFs. 

 

3. Proposed Scheme and Module Description 

In EEG signal detection, it is important to get consistent records of electric brain activity from 

specific surface electrode location. For that purpose, scientists and physicians rely on a standard system 

for accurately placing electrodes, which is called the International 10ï20 System, generally used in 

clinical EEG recording and EEG research. Figure 2 shows the electrode positions and denominations 

used in the International 10ï20 System. Red squares indicate the available electrodes on Emotiv 

system. The EEG signals required to perform the detection are obtained from electrodes AF3/AF4 

(green marked in Figure 2), which are labeled according to the mentioned 10ï20 International System. 
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Figure 2. International system 10ï20. 

 

The modules proposed to detect double-blinking event and to process gyroscope data are shown in 

the block diagram of Figure 3. A preprocessing stage using a band-pass filter (0.5 Hzï10 Hz) is 

applied before doing the spectral analysis. 

Figure 3. Proposed scheme, blinking detection and gyroscope processing system. 

 

3.1. Noise Reduction 

EEG signals provided by the EMOTIV headset EEG acquisition system are contaminated by noise 

produced by different sources such as: muscular movements (head movement, breathing, etc.), or 

electromagnetic noise (50/60 Hz electric lines). Although Emotiv EPOC headset represents an efficient, 

practical and economical alternative, the EEG detected signals are often noisy. Head movements 

associated to the expected use of the device as a mouse pointer will produce noise on the signal 

acquired by the electrode due to a slight movement of the electrode over the scalp. Figure 4 shows five 

double blinking events immerse in noise produced by head movement, which can occur even in the 

same order of magnitude than expected blinking amplitude values. The artifact could be detected 

considering that noise present in all electrodes over the scalp will show high correlation. Thus a 

preprocessing stage includes finding common signals in the electrodes. The preprocessing consists of 

EMD decomposition, correlation based function and an integration module, as described in Figure 5. 
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Figure 4. Head movement noise during double blinking events. 

 

Figure 5. Preprocessing to reduce head movement noise. 

 

As previously stated, noise produced by head or body movement will appear in all electrodes of the 

system with small variations, therefore, correlation analysis using Pearson coefficient is used for noise 

detection purposes. Pearson correlation coefficient provides a measure of dependence between two 

random variables. Equation (6) defines the Pearson correlation with expected values µX and µY and 

standard deviations ůX and ůY: 
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Correlation function applied directly to the signals obtained from each electrode will state dependence 

between channels. Common signals detected would have to be removed; however, applying directly  

an operation to separate those signals could cause removing also important information. Therefore, 

decomposing the signal from each electrode will reduce the loss of information, allowing the system to 

distinguish between artifacts from head movements and double blinking signals. That decomposition 

has been carried out using EMD technique. Figure 6 shows an example of EMD decomposition, with a 

plot of IMF 1 to IMF 5 obtained from four different electrodes near AF3. Visual inspection indicates 

similarities in IMFs 1, 3, 4 and 5. In this part of the experiment, EMD decomposition typically yielded 

between 14 and 16 IMFs. 

Figure 6. EMD decomposition from four different electrodes near AF3. (a) FC5, (b) FC6, 

(c) P8, and (d) P7. 

 

In order to find the amount of similarity or dependence, the Pearson correlation is calculated from 

corresponding IMF functions. Additionally, a p-value is computed by transforming the correlation to 

create a t statistic with n-2 degrees of freedom, where n is the number of rows in the correlation matrix. 

Thus, p-values less than 0.05 were considered to imply high correlation. Figure 6 shows an example in 

which IMF3 from electrode AF6 is compared to the rest, from a total number of 12 electrodes, 

resulting in p-values close to 0, except for FC6 electrode (0.639). This algorithm is repeated for all 

IMFs,taking as reference the electrode AF6. A slide window of 10 s is applied during correlation 



Sensors 2013, 13 10570 

 

 

calculation. Figure 7 shows the noise reduction using the correlation coefficients associated to the 

corresponding IMF. If there is a correlation in most of the electrodes, the corresponding IMF is 

prevented from passing to the integration module. 

Figure 7. Noise reduction based on correlation function removing, (a) 1 IMF, (b) 2 IMFs, 

(c) 3 IMFs and (d) 4 IMFs. 

 

Once the noise is reduced, a second derivative is obtained in order to determine whether a critical 

point is a local maximum or a local minimum. A typical double blinking event will have two local max 

points inside a 0.5 s window. Figure 8 shows the signal after this processing, thus the classifier is 

reduced to a simple threshold function. 

Figure 8. Double blinking detection with noise reduction. 

 
  


