
Sensors 2013, 13, 9223-9247; doi:10.3390/s130709223

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Parallel Hough Transform-Based Straight Line Detection and

Its FPGA Implementation in Embedded Vision

Xiaofeng Lu
1,2

, Li Song
1,
*, Sumin Shen

2
, Kang He

2
, Songyu Yu

1
 and Nam Ling

3

1
 Shanghai Key Laboratory of Digital Media Processing and Transmissions,

Shanghai Jiao Tong University, Shanghai 200240, China; E-Mails: luxiaofeng@shu.edu.cn (X.L.);

syyu@sjtu.edu.cn (S.Y.)
2
 School of Communication and Information Engineering, Shanghai University, Shanghai 200072,

China; E-Mails: leo_shu@126.com (S.S.); hkzy2001@gmail.com (K.H.)
3
 Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95053-0566, USA;

E-Mail: nling@scu.edu

* Author to whom correspondence should be addressed; E-Mail: song_li@sjtu.edu.cn;

Tel.: +86-21-3420-4468; Fax: +86-21-3420-4155.

Received: 22 May 2013; in revised form: 1 July 2013 / Accepted: 8 July 2013 /

Published: 17 July 2013

Abstract: Hough Transform has been widely used for straight line detection in

low-definition and still images, but it suffers from execution time and resource requirements.

Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware

acceleration to reap tremendous computing performance. In this paper, we propose a novel

parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time

straight line detection in high-definition videos. A resource-optimized Canny edge detection

method with enhanced non-maximum suppression conditions is presented to suppress most

possible false edges and obtain more accurate candidate edge pixels for subsequent

accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level

parallelism is proposed to upgrade computational accuracy by improving the minimum

computational step. Moreover, the FPGA based multi-level pipelined PHT architecture

optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution

videos without any off-chip memory consumption. This framework is evaluated on

ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and

it can calculate straight line parameters in 15.59 ms on the average for one frame.

Qualitative and quantitative evaluation results have validated the system performance

regarding data throughput, memory bandwidth, resource, speed and robustness.

OPEN ACCESS

Sensors 2013, 13 9224

Keywords: straight line detection; parallel Hough Transform; Canny edge detection;

FPGA; embedded vision

1. Introduction

Optimal straight line detection is a considerable step for several embedded vision applications, and

now the largest research focus is based on the Hough Transform (HT) [1]. The straight line detection

has been widely used in many industrial applications like image analysis, smart robots, intelligent

vehicles, and pattern recognitions [2]. Generally, the least squares method (LSM) can easily obtain the

slope and intercept of a straight line through a scanning of the edge image, but this method is very

sensitive to noise [3,4]. HT is widely used for its accuracy and robustness in digital low-definition and

still images [5], although it is memory and computation demanding.

Current trends in complex computing architectures integrate Field Programmable Gate Arrays

(FPGAs) as a competitive alternative due to its parallelism to accelerate computational performance

for embedded vision applications. There are many FPGA implementation research areas, such as lane

detection [6], stereo vision processing [7,8], high-speed face detection [9], image segmentation [10],

background subtraction [11], and more. These interesting real-time applications demonstrate the

great computational performance of the FPGA architecture. In this paper, a novel real-time FPGA

architecture based on a modified Canny edge detection method and spatial angle-level optimized

parallel Hough Transform (PHT) algorithm to accomplish straight line detection in high-definition

video sequence is proposed.

In this proposed real-time straight line detection system, detection of edge pixels is a basic task that

has a significant influence on the performance of follow-up calculation. Currently, edge detection

algorithm mainly includes the following two approaches: (1) Classical gradient differential operator,

such as Sobel operator, Canny operator [12], Prewitt operator, and Roberts operator; (2) Laplacian

algorithms [13], like Gaussian, Marrs Hildreth, and more. As we know, the edge is determined by the

brightness difference of one pixel to the others, and we can identify the edge pixels if the brightness

changes sharply [14]. Generally, the Canny operator proposed by Canny in 1986 is used in various

edge detection applications, and it can obtain single pixel edge feature images. However, this method

suffers from false edges or missing edge information in complex backgrounds; in addition, resource

requirement and hysteresis thresholds scheme make extensive processing worse. Troubled by these

factors, hardware acceleration architecture on FPGA to Canny operator becomes an attractive

alternative [15]. In our earlier work [16], an improved high-speed Canny edge detection architecture

based on FPGA was proposed. In that implementation, the gradient is calculated by the second

harmonic of the variable parameters to simplify complex arithmetic into basic logic operations. On the

basis of this modified edge detection algorithm, we also proposed a circle detection architecture

utilizing optimal parameter statistics model in FPGA as a vision application [17].

The classical HT converts the edge feature image into a new domain called the Hough parameter

space as a popular method for straight line detection. We can obtain the computational result in Hough

space by mapping the parameter points to image space. Each point in Hough space corresponds to a

Sensors 2013, 13 9225

line in the initial image. Reasonable use of peak information in the Hough space is the common

denominator of all HT-related detection methods [18]. A large amount of calculation parameters need

to be stored and this seriously constrains the HT performance of accuracy and robustness [19].

Simultaneously, HT research has been widely applied to detect a variety of shapes in images,

such as straight lines [5], elliptical objects [20], arbitrary objects [21], rectangles [22], triangles [23],

and circles [24].

Duda et al. [5] were the first to propose the parameter space transform method applied to straight

line detection in digital images. This transform converts the Cartesian coordinates to parameter

coordinates (,) for line equations. In the Hough parameter space, the corresponding line equations

intersect at (,) . Through accumulation of the intersection points, we can find a specific parameter

(,) with a peak value that respects to the candidate straight line [25]. But this method suffers from

great execution time and resource requirement. To overcome this problem, there are many modifications

of acceleration and accuracy improvement in the software algorithm of HT. Rau et al. [26] utilized the

principal axis analysis method to speed-up the straight line parameter estimation. Duquenoy et al. [27]

used spatial under-sampling and anticipated maxima detection to accelerate the algorithm execution.

Li et al. [28] and Illingworth et al. [29] proposed coarse-to-fine techniques to improve straight line

parameter calculation accuracy.

Furthermore, there are acceleration solutions based on different hardware architectures to increase

processing speed for tremendous real-time performance and avoid high development costs. Examples

include graphics processing unit (GPU) [30,31], digital signal processor (DSP) [32], coordinate

rotation digital computer (CORDIC) [33,34], distributed arithmetic (DA) architecture [35], array

processor (AP) [36], and FPGA architecture [2,37–39]. However, the calculation speed and hardware

resource on GPU or DSP cannot be satisfied to the requirement of computer vision systems. Especially,

for the performance and energy comparison on image processing in [31], FPGA can implement the

acceleration of up to 11× and 57× compared to that of GPU and multi-cores, respectively. FPGA is the

most energy-efficient architecture from the experiments; with one and two orders of magnitude

lower energy consumption than that of the same implementations in GPU and CPU, respectively.

Zhou et al. [33] proposed the use of CORDIC algorithm for fast HT, and Karabernou et al. [34] used

the gradient and CORDIC for real-time straight line detection architecture. But CORDIC and DA

architecture both require many iterations for accurate parameters calculation in HT space and the

number of iterations has a significant impact on computational complexity, resource requirement, and

data throughput. The AP architecture is an angle-level parallel algorithm, but its edge feature scanning

mode limits its data throughput. Ahmed et al. [39] proposed a memory efficient FPGA implementation

of HT for line and circle detection, and its HT space was sampled in an efficient way to reduce the

size of HT space and memory requirement. However, the sampling rate affected the detection

accuracy greatly, and it led to about 50% lower than that of the region-based method. Additionally,

Kim et al. [2] presented a finite line detection system based on partitioned parallel HT units in Hough

space to increase speed and accuracy. However, it was just fit for still image processing based on

caching whole image data, and the computational frame rate was improved by increasing the line

identification clock frequency. A resource-efficient architecture and implementation of HT on FPGA

was presented in [40]. In this processing element (PE) based architecture, the pre-calculated edge

feature image was divided into blocks to facilitate algorithm parallelism, and the incrementing

Sensors 2013, 13 9226

property was applied to reduce resource requirement. The major disadvantages of this pixel-level

optimized method were that it should cache the entire edge feature image for zero-run-length encoding,

and it just implemented the voting process of HT algorithm in resolution 512 × 512 without qualitative

and quantitative experimental results. Shang et al. [41] roughly prejudged the lines in original image

through the directional filter and calculated the exact value later. This method successfully cut back the

computation load by narrowing the range of accuracy. In [42], He et al. proposed a new algorithm

using shift and addition operations to replace the complex trigonometric functions and multiplications

in traditional HT, and a new threshold method based on the peak information extraction was presented

to eliminate the fake lines. But in this method and implementation, the minimum step of ()

equaled to 1.79°, and the detection accuracy was limited.

Some attempts in literatures as mentioned above have been made to detect straight lines in

low-definition and still images for some vision applications. Many researchers depend on increasing

the signal processing frequency for the pre-stored edge image to upgrade computational speed. From

the performance and resource consumption perspective, few refine them by the associated optimization

of HT software algorithm and hardware architecture applied to real-time high-definition video

sequences. So in this paper, we extend the work in [5] and [42], and propose a novel dedicated PHT

algorithm and FPGA hardware architecture associated parallel framework for real-time straight line

detection for high-definition video sequences. This complete embedded vision system includes

high-definition video capture, modified edge feature image calculation, straight line parameter

computation, and detection result display. The main contributions of this new framework include the

following. First, a new resource-optimized Canny edge detection method is presented to suppress most

possible false edges and obtain fewer, but more accurate, candidate edge pixels for subsequent accelerated

computation with more enhanced non-maximum suppression conditions, compared with our previous

work [16]. Second, instead of acting towards increasing calculation frequency, the novel spatial

angle-level PHT algorithm was derived for the 1,024 × 768 resolution real-time video frames to

improve the minimum computational step to 0.8952° for the balance of computing speed and parameter

detecting accuracy. Finally, optimized with the spatial angle-level parallelism, the novel multi-level

pipelined PHT hardware accelerating architecture is proposed for straight line parameter fast estimation

and we also present the FPGA implementation in detail. In particular, parallel pipeline calculation

units based maximum searching scheme in HT space is described for candidate straight line parameter

decision. The proposed framework is mapped on to ALTERA Cyclone IV EP4CE115F29 FPGA with

the maximum frequency 200 MHz. Under the guidance of associated optimization both on algorithm

and on architecture, this real-time and robust PHT can achieve straight line detection in videos of

1,024 × 768 resolution with a pixel clock of 43 MHz effectively. In addition, this implementation

avoids high development costs and obtains enough flexibility, which enables many potential pattern

recognition applications.

2. Overview of the Proposed Embedded Straight Line Detection Vision System

We primarily present a novel PHT-based straight line detection algorithm and the corresponding

architecture implementation on FPGA to deal with the acceleration and accuracy problems of classical

HT. As Figure 1 shows, there are two main stages in this algorithm: edge feature image detection stage

Sensors 2013, 13 9227

and straight line parameter estimation stage. In order to obtain the edge feature from original digital

image for accelerating computation, a resource-optimized Canny edge detection algorithm is adopted.

In the procedure of straight line parameter estimation, a spatial angle-level PHT algorithm derivation

for the 1,024 × 768 resolution real-time video sequences is firstly proposed. Then, the associated optimized

multi-level pipelined PHT architecture is presented for parameter estimation and implements on a

single FPGA. Finally, the maximum searching scheme in HT parameter space for candidate straight

line parameter decision is used based on parallel pipeline calculation units.

Figure 1. PHT straight line detection algorithm flow.

Edge feature

image

detection

stage

Line

parameter

estimation

stage

Edge feature

image

Estimated

Straight line

parameters

Original

digital

image Maximum

parameter

searching

Straight line

parameter

display

The block diagram of the proposed straight line detection architecture is depicted in Figure 2. The

ALTERA DE2-115 FPGA evaluation platform with the chip EP4CE115F29 is employed for algorithm

implementation. Initially, the industrial camera (OK_AM1320) captures the CameraLink serial video

sequence with the 1,300 × 1,024 resolution at 20 frames per second, and through the CameraLink

decoding board, the input original RGB images are captured into on-chip RAMs for data processing.

The inner RAMs in FPGA are both needed in the edge feature detection module and straight line

parameter computation module. The real processed resolution in FPGA is 1,024 × 768 cropped from

original image, and calculated straight line parameters are displayed on LCD at a 1,024 × 768 resolution

through the VGA control module.

Figure 2. The block diagram of embedded straight line detection system.

Display

Module

Industrial

Camera

(OK_AM1320)

Resource-

optimized Canny

edge detection

module

FPGA

EP4CE115F29
CameraLink

Decoding

Board

LVDS

serial video

Original

digital

images

Multi-level pipelined

PHT-based Straight

line detection

module

Inner RAM Inner RAM

VGA Control

Module
RAMs

Sensors 2013, 13 9228

3. Resource-Optimized Canny Edge Detection Method

The resource-optimized edge detection algorithm is an extension of our previous work [16]. Here

we put forward more enhanced non-maximum suppression conditions compared with [16] to suppress

most of possible false edges and obtain fewer, but more accurate candidate edge pixels for subsequent

accelerated computation. Of course, some real edge pixels will be lost in this treatment. But in our

straight line detection case, the limited loss of some real edge pixels on a candidate line does not

have a big impact on the final calculating result, but it can reduce the computational complexity of

follow-up line parameter estimation. The experimental results also prove the validity of this approach.

In the classical Canny algorithm, it is difficult to detect accurate edge features in complex

backgrounds, because the smoothness of Gaussian filtering with artificial parameters can lead to

excessive smoothing (losing edge information) or insufficient smoothing (unable to remove noise).

Moreover, insufficient non-maximum suppression conditions result in false edges. In this proposed

method, parallel and fast median filter was selected to suppress grain noise, and we do not need to set

parameters for implementation in FPGA with flexibility [43]. Furthermore, enhanced non-maximum

suppression is employed to suppress false edges by presenting more stringent suppression conditions.

The modified Canny edge detection flow chart is shown in Figure 3. Accordingly, many parallel

computing mechanisms about the fast median filtering, parallel gradient computation, and enhanced

non-maximum suppression are explained in detail in the following paragraphs for resource

optimization and accuracy improvement.

Figure 3. Flow chart of resource-optimized canny edge detection algorithm.

Original

Image

Fast

Median

Filtering

Parallel

Gradient

Computation

Enhanced

Non-maximum

Suppression

Hysteresis

Thresholding

Feature

Image

3.1. Fast Median Filtering

In this new edge detection method, digital image is first smoothened by median filter to reduce

noise in the image. In this paper, the 3 × 3 template is used to achieve parallel fast median filtering,

and the diagram is shown in Figure 4. Median filtering is used to sort pixel data in the template from

small to large, and taking the middle data as the result of current pixel. Usually, median filtering

implementation on FPGA needs to cache three image lines and three line FIFOs are required. But in

this architecture, we use the pipelined structure by two FIFOs, one register, and six D-type flip-flops

(DFF) with delay operations to get the 3 × 3 pixel template. Figure 5 shows the optimal parallel

hardware architecture of template pixel cache for computation.

After the nine template pixel data is obtained, we design a new parallel sorting and comparing

architecture based on the parallelism of FPGA as shown in Figure 6 for real-time computation.

In this parallel calculation method, seven three-value comparators are needed to build a three-level

computing architecture.

Sensors 2013, 13 9229

Figure 4. Median filtering diagram.

f(x+1,y+1) f(x+1,y) f(x+1,y-1)

f(x,y+1) f(x,y) f(x,y-1)

f(x-1,y+1) f(x-1,y) f(x-1,y-1)

f(x+1,y) f(x+1,y-1)

f(x,y+1) Median f(x,y-1)

f(x-1,y+1) f(x-1,y) f(x-1,y-1)

f(x+1,y+1)

Figure 5. Architecture of a 3 × 3 pixel template cache.

Line

FIFO1

Write_clk1

Read_clk1

f(x,y)

Register

Line

FIFO2

Original

video data

DFF DFF

DFF DFF

Write_clk2

Read_clk2 DFF DFF

f(x,y-1)f(x,y+1)

f(x+1,y) f(x+1,y-1)f(x+1,y+1)

f(x-1,y) f(x-1,y-1)f(x-1,y+1)

Figure 6. Calculation architecture of parallel fast median filtering.

T
h

ree-V
a

lu
e

C
o

m
p

a
ra

to
r

T
h

ree-V
a

lu
e

C
o

m
p

a
ra

to
r

T
h

ree-V
a

lu
e

C
o

m
p

a
ra

to
r

f(x-1,y-1)

f(x-1,y)

f(x-1,y+1)

f(x,y-1)

f(x,y)

f(x,y+1)

f(x+1,y-1)

f(x+1,y)

f(x+1,y+)

T
h

ree-V
a

lu
e

C
o

m
p

a
ra

to
r

Max_1

Max_3

Max_2

Mid_2

Mid_1

Mid_3

Min_1

Min_2

Min_3

Min

Mid

Max

Median

T
h

ree-V
a

lu
e

C
o

m
p

a
ra

to
r

T
h

ree-V
a

lu
e

C
o

m
p

a
ra

to
r

T
h

ree-V
a

lu
e

C
o

m
p

a
ra

to
r

Sensors 2013, 13 9230

In the first level, we divide the nine values into three groups, and three three-value comparators can

calculate in parallel with a two clock delay in this level to decide the maximal value (Max), middle

value (Mid), and minimal value (Min). For the second level of this architecture, three maximal values,

three middle values and three minimal values are assigned into respective groups. Through data

analysis, it is clear that in the group of three maximal values, just the minimal value will be the final

candidate middle data in nine pixels. So in this group, the Min is selected for the third level middle

data comparison. In the middle values group in the second level, just the middle value will be the final

candidate middle data. Similarly, in the minimal values group in the second level, just the maximal

value will be the final candidate middle data. Finally, in the third level comparison, the real middle

data can be decided by a three-value comparator. Therefore, the fast median filtering can be done after

a six clock delay.

3.2. Parallel Gradient Computation

Equations (1) and (2) show the 3 × 3 pixel template based horizontal gradient xG and vertical

gradient yG calculation. Then the total gradient (,)G x y can be calculated as in Equation (3) with a

sum of two gradients’ absolute values. In FPGA implementation, the N-th power operations of 2

can be converted to the fast N-bit right shifts. And the selection of N can be made empirically

through experiments:

 1, 1, 2N

xG f x y f x y (1)

 , 1 , 1 2N

yG f x y f x y (2)

 , x yG x y G G (3)

In order to reduce the computational complexity in parameter coordinates, it is also needed to

record whether the gradient is positive or negative as well as its absolute value. As Figure 7 shows,

two two-value comparators are used to decide the actual differences of pixel values. Based on this

difference, the gradient absolute value is calculated with corresponding subtractor. Finally, through the

parallel comparators and basic logic operations, the gradient can be obtained easily and fast.

Figure 7. Parallel gradient computation architecture.

T
w

o
-v

a
lu

e

C
o

m
p

a
ra

to
r

V_Pixel_1 Max

Min

S
u

b
tra

cto
r

N
-b

it S
h

ifts

Max

Min

T
w

o
-v

a
lu

e

C
o

m
p

a
ra

to
r

S
u

b
tra

cto
r

N
-b

it S
h

ifts

V
ertica

l

g
ra

d
ien

t

H
o

rizo
n

ta
l

g
ra

d
ien

t

G
ra

d
ien

t

H_Pixel_1

H_Pixel_2

V_Pixel_2

Sensors 2013, 13 9231

3.3. Enhanced Non-Maximum Suppression

As expressed in Equation (4), inverse trigonometric function calculation is needed in the classical

Canny algorithm to determine the gradient direction in non-maximum suppression, but inverse

trigonometric calculation is complex and resource consumption in FPGA architecture:

 arctan y xG G (4)

In this proposed algorithm, we divide the gradient directions into eight regions as Figure 8 shows,

and every direction region contains a range of a 45 degree angle. Depending on whether the gradient is

positive or negative and its absolute value difference in the horizontal and vertical directions, we can

roughly find out the gradient direction of current pixel. This gradient direction definition can greatly

reduce computational region and FPGA resource requirement. Moreover, through the gradient

direction standardization and all of the non-peak amplitudes suppression, we can refine the object edge

in digital image.

Figure 8. Eight gradient directions division diagram.

0
0

45
0

135
0

1800

2250

2700

3150

Gx>0,Gy>0

Gx>0,Gy<0

Gx<0,Gy>0 Gx>0,Gy>0

Gx>0,Gy>0

Gx<0,Gy<0

Gx<0,Gy<0 Gx>0,Gy<0

900

2

1

3

4

1

2 3

4

|Gx|<|Gy| |Gx|<|Gy|

|Gx|<|Gy| |Gx|<|Gy|

|Gx|>|Gy|

|Gx|>|Gy|

|Gx|>|Gy|

|Gx|>|Gy|

For example, if gradient direction of one pixel is at the range of 0° to 45° or 180° to 225°, the

gradient value of this pixel along these two directions can be measured by ()M a and ()M b as

Equations (5) and (6) shown. In the classical Canny algorithm, if conditions (,) ()G x y M a and

(,) ()G x y M b are both met at the same time, we treat this pixel with the gradient (,)G x y as an edge

feature point. In this proposed method, through experimental empiricism, we further add four

enhanced suppression conditions defined as Equation (7) to Equation (10) to suppress the potential

false edges effectively. These conditions mean that the gradient of the candidate pixel must be larger

than that in the neighborhood four directions. The cost of doing under these conditions is losing some

of the true edge pixels, but it has no significant effect on the final calculation results for specific length

straight line parameter estimation, and the computational complexity will be reduced for a more

accurate feature edge, as experimental results demonstrated. For the pixels in other directions,

corresponding operations and judgments can be used similarly:

Sensors 2013, 13 9232

 () (1, 1) (, 1) 2M a G x y G x y (5)

 () (, 1) (1, 1) 2M b G x y G x y (6)

(,) (1, 1)G x y G x y (7)

(,) (, 1)G x y G x y (8)

(,) (, 1)G x y G x y (9)

(,) (1, 1)G x y G x y (10)

3.4. Dual-Threshold Detection

Finally, our dual-threshold detection implementation is based on the verification mechanism

proposed by Mondal et al. [44]. The higher threshold value (HTV) and the lower threshold value (LTV)

are selected to track the remaining candidate pixels that have not been suppressed. Verifications were

implemented against the candidate pixels by selected HTV and LTV, respectively. The candidate pixel

is then chosen as an edge feature pixel, one situation is that its gradient value is greater than HTV, and

another situation is that its gradient value is between the LTV and HTV, but it is connected to an edge

pixel directly. In the other cases, the pixel will be declared as a non-edge pixel. Both of LTV and HTV

can be calculated empirically by experiments. In our design, HTV is set to 90, and LTV is set to 20 to

obtain continuous and detailed edges.

4. Multi-Level Pipelined PHT Based Straight Line Parameter Estimation and Decision

4.1. Overview of HT

HT is a well-known and effective method for straight line detection in digital images. This

transform converts the binary edge feature image from Cartesian coordinates (,)x y into parameter

coordinates (,) . Equation (11) is used to define a straight line in HT parameter space by parameters

ρ and θ. According to the coordinate correspondence, each point on the straight line in the Cartesian

coordinate corresponds to a curve in the parameter space. Meanwhile, all the points on same straight

line must correspond to a curve cluster intersected at same point (,) in the parameter space as

Figure 9 shows.

Figure 9. HT representation (a) cartesian coordinate; (b) parameter coordinate.

Sensors 2013, 13 9233

Through accumulating the intersection points, we can find the specific parameter (,) with peak

information with respect to the candidate straight line. It is clear that trigonometric function and

multiplication are the main calculations in the HT expression, and the computational complexity is

depending on the number of edge feature pixels and the precise definition of angles:

cos sinx y (11)

4.2. Spatial Angle-Level Parallel PHT Algorithm Derivation

Most HT implementations in FPGA platform depend on increasing the processing frequency for

low-definition and still images pre-stored in off-chip memory. The sin and cos calculated values are

stored in inner ROM LUTs. For every edge point, it is needed to traverse the whole LUTs to calculate

specific , and accumulate to the corresponding counter. Whereas in our vision system, the captured

video resolution is 1,300 × 1,024, so the range of is (–804, 804), and the range of is (/ 2 , / 2)

as Equation (12) shows. In order to realize real-time computation, it is not allowed to pre-store any

edge image information. In this calculation manner, if the minimal step of is 1°, there are 360 times

of the multiplication operation and 180 times of the addition operation, just for one edge point. This

calculation style is resource and time consuming:

cos sin
2 2

x y

 (12)

In this paper, refering to [42], we derivate spatial angle-level optimized parallel HT calculation

form for real-time and high-definition video sequence demands. Instead of acting towards increasing

calculating frequency that causes great power consumption, this new PHT algorithm adapts to the

FPGA hardware architecture as an associated optimization. Considering the trigonometric conversion

relations, Equation (12) can be divided into two related parts, as Equation (13) shows. Where a and

b represent the value of when 0, / 2 and / 2,0 , respectively:

cos sin 0
2

cos sin 0
2

a

b

x y

x y

 (13)

Now, we further define / 2 , then the part of / 2, 0 can be expressed as:

' ' ' ' 'cos() sin() sin cos 0
2 2 2

b x y x y

 (14)

After the definition as Equation (14), the two parts of can be modified into the same angle range

in Hough parameter space as shown in Equation (15). can be calculated in parallel in two opposite

parts and the calculated angle range of is cut to half:

' ' '

cos sin 0
2

sin cos 0
2

a

b

x y

x y

 (15)

Sensors 2013, 13 9234

On the assumption that the minimal step of is , and the location of edge point is ,x y . In

Equation (15), the value of is digitized to 0, ,2 ,..., ,..., / 2i . We then derive the equation in

accordance with the discrete values.

When 0 ，Equation (15) can be expressed as:

 0

0

a

b

x
y

(16)

Next, when , Equation (15) can be expressed as:

 1 0 0

01 0

cos sin cos ()
sin cos cos ()

a a b

ab b

tg
tg

x y
x y

(17)

and so on; when 1i , the new PHT calculation can be indicated as follows:

(1)

(1)

cos ()
cos ()

aia i bi

aib i bi

tg
tg

(18)

Obviously, if we traverse all the possible discrete values of , the current calculation result

is related to the last one. With further approximation, if 61/ 2tg , then = 0.8952° and

cos = 0.9999 ≈ 1, so Equation (18) can be further approximated to Equation (19). This approximate

expression can be calculated in parallel and just include basic addition and shift operations:

(1) 6

(1) 6

1

2
1

2

aia i bi

aib i bi

(19)

4.3. Multi-Level Pipelined PHT Architecture Based Straight Line Parameter Estimation

Through Equation (19), we successfully convert traditional multiplication and trigonometric

function operations in HT algorithm into addition and shift operations, which is adaptive to the parallel

calculation structure in FPGA circuit. If = 0.8952°, the steps of is equal to 101. For each edge

pixel, our parallel HT needs to do 101 times the calculation in the range of 0, / 2 for straight line

parameter estimation, which greatly improves calculation accuracy. Meanwhile, the improvement of

calculation accuracy brings substantial computational load increase and more effective computing structure

is needed. According to the relationship between two consecutive calculations in Equation (19),

associated with spatial angle-level parallelism, a novel multi-level pipelined PHT calculation architecture

is proposed as in Figure 10, to improve computational efficiency.

In this multi-level pipelined PHT architecture, the straight line parameters can be calculated through

101 pipeline units (0,1,...,100n) for one edge pixel, and every pipeline unit represents an angle

stepper calculation. All of these calculation units are subject to pipelined computing, and the output

of any unit is served as input parameter to the next pipeline unit. The advantage of thus pipeline

structure is that the calculation of 101 pairs of (,) for one edge pixel can be completed in just one

clock cycle.

Sensors 2013, 13 9235

Figure 10. Multi-level pipelined PHT architecture.

R

X() R

>>6

>>6

+

-

0a

Y(-)0b

1a

1b
R

R

>>6

>>6

+

-

2a

2b

)1(na

)1(nb
R

R

>>6

>>6

+

-

an

bn

+1

RAM_a(0)
+1

RAM_a(1)
+1

RAM_a(2)
+1

RAM_a(n-1)
+1

RAM_a(n)

+1

RAM_b(0)

+1

RAM_b(1)

+1

RAM_b(2)

+1

RAM_b(n-1)

+1

RAM_b(n)

Pipeline unit Pipeline unit Pipeline unit

For each pipeline unit, the hardware architecture in FPGA needs two registers, two 6-bit shifts, one

adder, and one subtractor. The initial inputs 0a
X and 0b

Y of this pipelined calculation architecture

are the location of the corresponding edge pixel. Each unit has two accumulators RAM_a(i) and

RAM_b(i) for parameter accumulating. For the i-th calculation unit, the calculated value of ai is

treated as the corresponding memory address in RAM_a(i), and the value in this address plus one. For

bi , a similar operation is taken. In two accumulators, the accumulating address just need the value of

 without , because to every unit and corresponding accumulator RAM_a(i) and RAM_b(i), the

corresponding value of is identified by *i or (* / 2)i previously.

4.4. Parallel Pipeline Units Based Maximum Searching Scheme

After parameter estimation for all of the candidate edge pixels in one image with multi-level

pipelined PHT architecture, RAM_a(i) and RAM_b(i) will contain all the candidate accumulating

results. Current work is to find the peak accumulating information in these two inner RAMs for all of

intersection points, and this peak corresponds to the candidate longest straight line. To RAM_a(i) or

RAM_b(i), through the multi-value comparators, it is easy to find the maximum for FPGA implementation

respectively. The maximum search results in RAM_a(i) are the three parameters: the accumulating

maximum value aiMAX , the address of the accumulating maximum value (max)aiADD , and the step

number of the accumulating maximum value (max)aiSTEP . There is a similar operation to RAM_b(i) to

get the corresponding three parameters. In the follow-up straight line parameter computation module, a

two-value comparator is used to determine the final maximum between (max)aiADD and (max)biADD in

both RAM_a(i) and RAM_b(i). Referring to the initial HT definition, we can obtain the specific

parameter (,) for this detection procedure, where equals the final maximum address (max)ADD

in RAM_a(i) or RAM_b(i), and equals the step number of the final maximum (max)STEP multiplied

by if the maximum is in RAM_a(i), or multiplied by and subtract / 2 if the maximum is in

RAM_b(i). The block diagram of parallel pipeline units based maximum search scheme is shown in

Figure 11. Obviously, this parallel searching scheme in HT parameter space further improves the

real-time performance of this detection architecture.

Sensors 2013, 13 9236

Figure 11. Block diagram of the maximum search scheme for parallel pipeline units.

Multi-value
Comparator

for RAM_a(i)
values

Multi-value
Comparator

for RAM_b(i)
values

Two-value
Comparator

for
Parameter

computation
module

aiMAX (max)aiADD

(max)aiSTEP

biMAX (max)biADD

(max)biSTEP

(max)ADD

(max)* STEP

4.5. The Integral Multi-Level Pipelined PHT Based Straight Line Detection Algorithm

The integral multi-level pipelined PHT based straight line detection algorithm is shown in Figure 12.

The arrows indicate the direction of data flow and clock control. We can get the edge image by the

resource-optimized edge detection module as described in Section 3. Every candidate edge pixels are

computed by multi-level parallel pipeline units and the parameters of real straight line can be

determined in parameter calculation circuit in the PHT module. In order to draw a red indicating line

on the display image to show the location and direction of detected line, we use the CORDIC processing

unit in the FPGA to effectively calculate the value of sin and cos for straight line identification.

Figure 12. Integral PHT algorithm diagram.

Edge Detection Module

Fast Median filter

Non Maximum

Suppression

Gradient and

Gradient

Direction

PHT Module

Pixel Position

Calculator

Angle-level

parallelism

Parameter

Calculation

Line

identification

ed
g
e im

ag
e

VGA Control Module

Clock Manager

Line

Generation

Module

clock & sync signals

sin

cos

Original

digital

image

Sensors 2013, 13 9237

5. Evaluation

In this section, we propose this embedded vision system based on a FPGA evaluation platform. We

evaluate the performance of the FPGA-based straight line detection with throughput, maximum error,

memory access bandwidth, and computational time. In addition, we also present qualitative and

quantitative experimental results for the accuracy and robustness of our proposed algorithm.

5.1. Embedded Vision System Based on FPGA

The proposed architecture has been evaluated on ALTERA DE2-115 platform with Cyclone IV

EP4CE115F29 FPGA and QuartusII version 10.0 synthesis tool, with the maximum operation

frequency of 200 MHz, as Figure 13 shows. This embedded straight line detection vision system can

process digital video of 1,024 × 768 resolution cropped from the high-definition LVDS video signal

with 1,300 × 1,024 resolution captured by ALTERA DE2-115 evaluation platform through an

expansion board CLR_HSMC and CameraLink protocol. This hardware implementation takes 0.24 μs

to calculate the edge feature for one pixel and 15.59 ms on the average to compute straight line slope

and intercept parameters for one frame, which ensure real-time performance. Finally, the results are

displayed with a VGA interface of 1,024 × 768 resolution.

Figure 13. FPGA based embedded straight line detection vision system.

LVDS

Serial

Signal

VGA Video

Signal

HD Embedded Vision

Platform

DE2-115 Evaluation Platform

VGA Monitor

5.2. Performance of FPGA Architecture Implementation

5.2.1. Performance Comparison among Different Approaches

In our hardware architecture and implementation, the fraction part F is represented in 15 bits. In the

definition in Chen et al. [40], the maximum error of introduced by incremental computation is

calculated by (W + H) × 2
−(F + 1)

, where W is the width and H is the height of the processed image.

Besides, the throughput per cycle is defined as the average number of computed values per cycle,

and the throughput is defined as millions of values per second. Table 1 presents the performance

comparison among different approaches with different processing resolutions.

Sensors 2013, 13 9238

Table 1. Performance comparison among different approaches.

 Maximum

Error of

Throughput

per Cycle

Maximum

Frequency

Throughput

(M/s)

Processing

Resolution

Zhou et al. [33] 0.177 2 384 MHz 768 256 × 256

Mayasandra et al. [35] 0.125 1/9 500 MHz 56 256 × 256

Chern et al. [36] 0.125 1 387 MHz 387 512 × 480

Chen et al. [40] 0.012 16 333 MHz 5,328 512 × 512

Proposed method 0.027 101 200 MHz 20,200 1,024 × 768

If the fractional part is 15, the maximum error from Chen et al. [40] is 0.012, and the maximum

error of our proposed architecture is 0.027. Because our multi-level pipelined architecture can calculate

101 values per cycle, the throughput per cycle of our proposed implementation is much higher than

the other four approaches. Furthermore, our PHT architecture could achieve great higher throughput of

20,200 compared to other approaches with the cost of a large amount of on-chip memory consumption,

although the maximum frequency of our architecture is lower than other approaches. Obviously,

enhancing the throughput of hardware architecture is much more important than other requirements in

real-time vision applications [40]. In addition, with respect to processing target, still images with

low-definition are used in the other four methods whereas our proposed algorithm can deal with

highest definition resolution video sequences without any off-chip memory consumption.

5.2.2. Memory and Bandwidth

As a PE-based resource-efficient FPGA architecture, the approach in [40] can greatly reduce the

required memory bandwidth and on-chip memory bits, depending on pixel-level optimization. In that

method, the voting results are temporarily stored in the on-chip memories and then be transferred to

the off-chip memory after completing one angle computation of all the edge feature pixels. In [40], the

required memory access bandwidth is calculated by Equation (20), where K = 180 is the number of

angles, DataWide = 9 is the vote memory address width, and the processing image resolution is

512 × 512. In addition, the off-chip memory used in [40] includes the binary feature image store part

(2,097,152 bits) and vote memory data transfer store part (1,172,880 bits) of 180 angles at least.

In our proposed multi-level pipelined PHT architecture based on spatial angle-level optimization,

after clock delay, it can calculate 101 angles per cycle for one edge feature pixel and get the straight

line parameters through peak value search for current pixel. So, in our proposed architecture, the

memory address width is 16, and the required memory access bandwidth usage is much larger than [40]

as Table 2 shows, because of the higher processing image resolution (1,024 × 768) and higher angle

accuracy (= 0.8952°). Accordingly, our proposed FPGA architecture does not require any off-chip

memory to cache image or accumulated results, but this advantage is built on the basis of the consumption

of a large number of on-chip memories:

2 2 * *BandWidth W H K DataWidth (20)

Sensors 2013, 13 9239

Table 2. Memory and bandwidth comparison results.

 Processing Image

Resolution

Off-Chip

Memory Bits

On-Chip

Memory Bits

Memory

Bandwidth (bits)

Chen et al. [40] 512 × 512 3,270,032 223,360 1,172,880

Proposed 1024 × 768 0 3,052,544 2,674,480

5.2.3. Calculation Time

Table 3 shows the calculation time comparison between our proposed architecture and other three

methods on different platforms.

Table 3. Calculation time comparison.

Algorithm and Platform Execution Time Processing Image Resolution

LSM of Ji et al. [3] on FPGA 15.57 ms 1,024 × 768

Chen et al. [40] on FPGA 2.07–3.61ms 512 × 512

Proposed Method on FPGA 15.59 ms 1,024 × 768

Direct HT Computation on PC

(a-1) 0.93 s 1,024 × 768

(a-2) 1.26 s 1,024 × 768

(a-3) 1.62 s 1,024 × 768

(a-4) 1.45 s 1,024 × 768

In Chen et al. [40], one binary feature image is pre-stored in the off-chip memory for run-length

encoding and PE-based HT computation can reduce the execution time to 2.07–3.61 ms for

512 × 512 image resolution without the edge detection procedure. In our proposed PHT architecture,

the processing target is real-time video with 1,024 × 768 processed resolution, and it executes the PHT

algorithm on edge pixels sequentially. The execution time of straight line detection in our proposed

architecture is 15.59 ms on average, which includes the parameter computation time of 0.02 ms. In

Table 3, (a-1) to (a-4) refer to the experimental testing images in Figure 16 and direct HT computation

on PC needs more than one second to process an image with MATLAB simulation tools. It is clearly

that if taking into account the resolution factor and edge pixel number factor of the processed image,

our execution time is similar to [40], and all of the methods implemented on FPGA can ensure

real-time processing.

5.2.4. Synthesis Result on Target FPGA

Table 4 shows the synthesis summary of our proposed FPGA architecture resource consumption.

From this compiled report, it is clear that the logic element (LE) utilization includes combinational LE

with no register (13.72%), combinational LE with a register (10.38%), and sequential LE (1.61%). The

total LE used in this implementation is 29,431, and accounts for 25.71%, but it consumes a lot of

FPGA inner on-chip memory bits as the parallel pipeline units in PHT. Therefore, 377 M9Ks (True

dual-port RAM blocks with 9 K bits of memory) and many block memory bits (3,052,544 bits) are

used to construct large amounts of parameter accumulators in pipeline units. Due to numerous

variables definition and middle data buffer, the dedicated logic registers utilization is 11.73%. The

logic array in FPGA consists of logic array block (LAB), with 10 LEs in each LAB. Every LE is a

Sensors 2013, 13 9240

small logic unit for user logic functions implementation. The usage of embedded multiplier elements is

very small, and many multiplications are converted into additions and shift operations because of our

angle-level parallel PHT algorithm derivation. In addition, one phase-locked loops (PLL) is used for

the high frequency clock generation.

Table 4. FPGA implementation resource consumption.

Resource Categories Used Available Utilization

Combinational LE with no register 15,704 114,480 13.72%

Sequential LE 1,839 114,480 1.61%

Combinational LE with a register 11,888 114,480 10.38%

Dedicated logic registers 13,727 117,053 11.73%

LABs 2,589 7,155 36.18%

M9Ks 377 432 87.27%

Block memory bits 3,052,544 3,981,312 76.67%

Embedded Multiplier 9-bit elements 8 532 1.50%

PLLs 1 4 25.00%

From the work of Fowers et al. [31], FPGA can implement the acceleration of up to 11× compared

to GPU, and FPGA is the most energy-efficient architecture with one and two orders of magnitude

lower energy than the same implementation in GPU and CPU for the same image processing task.

Table 5 is the power consumption report of our proposed straight line detection circuit. The total

thermal power dissipation is 640.89 mW, and the core dynamic thermal power dissipation accounts for

the most part (64.73%). Additionally, the I/O thermal dissipation consumes more power than core

static thermal dissipation obviously.

Table 5. FPGA implementation power consumption.

Power Summary Power Consumption

Total thermal power dissipation 640.89 mW

Core dynamic thermal power dissipation 414.83 mW

Core static thermal power dissipation 105.40 mW

I/O thermal power dissipation 120.66 mW

5.3. Qualitative Experimental Results for Resource-Optimized Canny Edge Detection

Figures 14 and 15 compare the qualitative experimental results between classical Canny [12] and

our proposed resource-optimized Canny with enhanced non-maximum suppression conditions.

Obviously, the proposed modified Canny edge detection method can obtain more continuous and sharp

edges, and the false edges are significantly reduced in some cases. In the circle image detection results,

the edge image obtained by classical Canny is discontinuous; and in the article image results, taking the

words “Key” and “passages” for example, some edge information obtained by classical Canny is lost, but

in modified Canny case, most of the characters and the corresponding edge information are retained. And

the tested frames shown in Figures 14–16 are generated by ourselves.

Sensors 2013, 13 9241

Figure 14. (a) Circle image; (b) Result of [12]; (c) Result of proposed canny.

(a) (b) (c)

Figure 15. (a) Article image; (b) Result of [12]; (c) Result of proposed canny.

(a) (b) (c)

Figure 16. The experimental comparisons of LSM and PHT method: (a-1)–(a-4) are the

original images; (b-1)–(b-4) are the results of LSM of Ji et al. [3]; (c-1)–(c-4) are the result

of the proposed PHT.

(a-1) (b-1) (c-1)

(a-2) (b-2) (c-2)

(a-3) (b-3) (c-3)

(a-4) (b-4) (c-4)

Sensors 2013, 13 9242

5.4. Qualitative Experimental Results for Straight Line Detection

Figure 16 shows the qualitative experimental results comparison of LSM [3] and the proposed PHT

method on FPGA platform. The first column is the original image, the second column is the result of

LSM, and the third column is the result of our proposed PHT. In the first experiment as pictures (a-1)

to (c-1), the original image is very simple, so LSM and PHT both can detect the straight line accurately

as the red lines show. However, in the second, third, and fourth experiments, the LSM fails to detect

the location of straight line in images, but the proposed PHT method obtains the exact straight line

object. In these three images, the backgrounds are complex and have many other interference shapes.

LSM is very sensitive to the background of testing images, but our proposed PHT method is robust and

accurate because of the associated optimization of spatial angle-level PHT software algorithm and

multi-level pipelined PHT hardware accelerating architecture.

5.5. Quantitative Experimental Results for Straight Line Detection

From the above qualitative experimental results, our proposed PHT algorithm can detect single

straight line in complex background correctly. In this subsection, we present quantitative experimental

results to show the accuracy and robustness of this algorithm and hardware architecture. In Figure 17,

six hand-generated testing straight lines are given with the angles of –30°, –60°, 0°, 30°, 60°, and 90°.

To every testing sample, 10 times measurements were carried out in the implemented embedded vision

system, and the deviations of detected angles are expressed in Figure 18. These curves show that the

results of this algorithm are robust. This proposed architecture has considerable stability and satisfies

the accuracy requirement of embedded vision applications.

Figure 17. Accuracy and robustness testing samples.

In this experiment, we defined the average testing deviation rate of every angle situation (
i

ATD) as

in Equation (21) shown, where N is the measurement numbers, and
i

TD is the tested deviation. The

maximum and minimum deviations of every angle situation are defined as
i

MXTD and
i

MNTD ,

respectively. In addition, Equation (22) defines the average testing deviation (ATD) of all the measured

angles and M is the testing sorts. Finally, Table 6 shows the quantitative experimental results of straight

line detection angle deviation. It is clear that the average testing deviation is 1.236% and this result

already has great application value in embedded vision systems:

Sensors 2013, 13 9243

1

1()
N

i i
i

ATD TD
N

 (21)

1

1()
M

i
i

ATD ATD
M

 (22)

Figure 18. The deviations of tested angles. (a) deviation of –60° angle line; (b) deviation

of –30° angle line; (c) deviation of 90° angle line; (d) deviation of 60° angle line; (e) deviation

of 30° angle line; (f) deviation of 0° angle line.

Table 6. Quantitative experimental results for straight line detection angle deviation.

 –60° –30° 90° 60° 30° 0°

iATD 0.753% 0.854% 1.016% 1.492% 1.508% 1.791%

iMXTD 0.764% 3.056% 1.528% 2.948% 1.530% 2.984%

iMNTD
 0.728% 0.072% 0.461% 0.036% 1.456% 0.995%

ATD 1.236%

Sensors 2013, 13 9244

6. Conclusions

In this paper, we have presented a novel PHT algorithm and its FPGA implementation architecture

for real-time straight line detection in high-definition video sequences. To obtain fewer but accurate

candidate edge pixels, we enhance the non-maximum suppression conditions by a resource-optimized

Canny edge detection algorithm. For real-time straight line detection purpose on high-definition video

sequences, a novel spatial angle-level PHT algorithm and the corresponding multi-level pipelined PHT

hardware architecture are proposed. This gives us an advantage over existing methods which rely on

increasing processor frequency.

The proposed algorithm and architecture have been evaluated on the ALTERA DE2-115 evaluation

platform with a Cyclone IV EP4CE115F29 FPGA. Quantitative results, including throughput,

maximum error, memory access bandwidth, and computational time, on 1,024 × 768 resolution videos are

presented and compared with four representative algorithms on different hardware platforms. Due to

the PHT software algorithm and its implemented architecture associated optimization, we are not

limited just to estimate straight line parameters fast and accurately in high-definition video sequences.

This robust and effective embedded vision system has potential applications in various pattern

recognition tasks based on high-definition images. Future work consists of exploring spatial and

temporal parallelism in the sequence of frames to further reduce computational load.

Acknowledgments

This work was supported by NSFC (61221001), 973 Program (2010CB731401), the 111 project

(B07022) and the Shanghai Key Laboratory of Digital Media Processing and Transmissions.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Paul, V.C.H. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654,

18 December 1962.

2. Kim, D.; Jin, S.H.; Thuy, N.T.; Kim, K.H.; Jeon, J.W. A Real-Time Finite Line Detection System

Based on FPGA. In Proceedings of the 6th IEEE International Conference on Industrial

Informatics, Daejeon, Korea, 13–16 July 2008; pp. 655–660.

3. Ji, Y.; Xu, A.W. A New Method for Automatically Measurement of Vickers Hardness Using

Thick Line Hough Transform and Least Square Method. In Proceedings of the 2nd International

Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; pp. 1–4.

4. Fitzgibbon, A.W.; Pilu, M.; Fisher, R.B. Direct least square fitting of ellipses. IEEE Trans. Patt.

Anal. 1999, 21, 476–480.

5. Duda, R.O.; Hart, P.E. Use of hough transform to detect lines and curves in picture.

ACM Commun. 1972, 15, 11–15.

https://vpn0.shu.edu.cn/prx/000/http/ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300806
https://vpn0.shu.edu.cn/prx/000/http/ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5300806

Sensors 2013, 13 9245

6. Lee, S.; Son, H.; Min, K. Implementation of Lane Detection System using Optimized Hough

Transform Circuit. In Proceedings of the IEEE Asia-Pacific Conference on Circuit and Systems,

Kuala Lumpur, Malaysia, 6–9 December 2010; pp. 406–409.

7. Jin, S.H.; Cho, J.; Pham, X.D.; Lee, K.; Park, S.; Kim, M.S.; Jeon, J.W. FPGA design and

implementation of a real-time stereo vision system. IEEE Trans. Circ. Syst. Vid. 2010, 20, 15–26.

8. Zhang, X.; Chen, Z. SAD-based stereo vision machine on a system-on-programmable-chip

(SOPC). Sensors 2013, 13, 3014–3027.

9. Jin, S.H.; Kim, D.K.; Nguyen, T.T.; Kim, D.J.; Kim, M.S.; Jeon, J.W. Design and implementation

of a pipelined datapath for high-speed face detection using FPGA. IEEE Trans. Ind. Inform. 2012,

8, 158–167.

10. Li, H.Y.; Hwang, W.J.; Chang, C.Y. Efficient fuzzy c-means architecture for image segmentation.

Sensors 2011, 11, 6697–6718.

11. Rodriguez-Gomez, R.; Fernandez-Sanchez, E.J.; Diaz, J.; Ros, E. FPGA implementation for

real-time background subtraction based on horprasert model. Sensors 2012, 12, 585–611.

12. Canny, J.F. A computational approach to edge detection. IEEE Trans. Patt. Anal. 1986, 8,

679–698.

13. Kimmel, R.; Bruckstein, A.M. Regularized laplacian zero crossings as optimal edge integrators.

Int. J. Comput. Vision 2003, 53, 225–243.

14. Worawit, P.; Nattha, J.; Leang, K.; Nikom, S. A Study of the Edge Detection for Road

Lane. In Proceedings of the 8th Conference of Electrical Engineering/Electronics, Computer,

Tele-Communications and Information Technology, Khon Kaen, Thailand, 17–19 May 2011;

pp. 995–998.

15. Qian, X.; Chaitali, C.; Lina, J.K. A Distributed Canny Edge Detector and Its Implementation on

FPGA. In Proceedings of Digital Signal Processing and Signal Processing Education Meeting,

Sedona, AZ, USA, 4–7 January 2011; pp. 500–505.

16. Peng, F.X.; Lu, X.F.; Lu, H.L.; Shen, S.M. An improved high-speed canny edge detection

algorithm and its implementation on FPGA. Proc. SPIE 2012, 8350, doi:10.1117/12.920950.

17. Lu, X.F.; Li, X.W.; Shen, S.M.; He, K.; Yu, S.Y. A Circle Detection Method Based on Optimal

Parameter Statistics in Embedded Vision. In Proceedings of the Advances on Digital Television

and Wireless Multimedia Communications—9th International Forum on Digital TV and Wireless

Multimedia Communication, Shanghai, China, 9–10 November 2012; pp. 440–447.

18. Du, S.Z.; Tu, C.L.; van Wyk, B.J.; Chen, Z.Q. Collinear segment detection using HT

neighborhoods. IEEE Trans. Image Process. 2011, 20, 3612–3620.

19. Niblack, W.; Petkovic, D. On Improving the Accuracy of the Hough Transform: Theory,

Simulations, and Experiments. In Proceedings of Computer Society Conference on Computer

Vision and Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988; pp. 574–579.

20. Ho, C.; Chen, L. A high-speed algorithm for elliptical object detection. IEEE Trans. Image Process.

1996, 5, 547–550.

21. Ballard, D.H. Generalizing the hough transform to detect arbitrary shapes. Patt. Recogn. 1981, 13,

111–122.

22. Liu, Y.; Ikenaga, T.; Goto, S. An MRF model-based approach to the detection of rectangular

shape objects in color images. Signal Process. 2007, 87, 2649–2658.

Sensors 2013, 13 9246

23. Li, H.; Yi, W.D. An effective algorithm to detect triangles in image. J. Image Graph. 2008, 13,

456–460.

24. Cuevas, E.; Wario, F.; Zaldivar, D.; Perez-Cisneros, M. Circle detection on images using learning

automata. IET Comput. Vis. 2012, 6, 121–132.

25. Li, W.; Tsai, D. Detect inspection in low-contrast LCD images using hough transform based

nonstationary line detection. IEEE Trans. Ind. Inform. 2011, 7, 136–147.

26. Rau, J.Y.; Chen, L.C. Fast straight line detection using hough transform with principal axis

analysis. J. Photogramm. Remote Sens. 2003, 8, 15–34.

27. Duquenoy, E.; Taleb-Ahmed, A. Applying the hough transform pseudo-linearity property to

improve computing speed. Patt. Recogn. Lett. 2006, 27, 1893–1904.

28. Li, H.W.; Lavin, M.A.; Le Master, J.R. Fast hough transform: A hierarchical approach. Lect.

Note. Comput. Sci. 1986, 36, 139–161.

29. Illingworth, J.; Kittler, J. The adaptive hough transform. IEEE Trans. Patt. Anal. 1987, 9,

690–698.

30. Strzodka, R.; Ihrke, I.; Magnor, M. A Graphics Hardware Implementation of the Generalized

Hough Transform for Fast Object Recognition, Scale, and 3D Pose Detection. In Proceedings

of the 12th International Conference on Image Analysis and Processing, Mantova, Italy,

17–19 September 2003; pp. 188–193.

31. Fowers, J.; Brown, G.; Cooke, P.; Stitt, G. A Performance and Energy Comparison of

FPGAs, GPUs, and Multicores for Sliding-Window Applications. In Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, CA,

USA, 22–24 February 2012; pp. 47–56.

32. Khan, M.; Bais, A; Yahya, K.; Hassan, G.; Arshad, R. A Swift and Memory Efficient Hough

Transform for Systems with Limited Fast Memory. In Proceedings of International Conference on

Image Analysis and Recognition, Halifax, Canada, 6–8 July 2009; pp. 297–306.

33. Zhou, F.; Kornerup, P. A High Speed Hough Transform Using CORDIC. In Proceedings of

the International Conference on Digital Signal Processing, Limassol, Cyprus, 26–28 June 1995;

pp. 27–39.

34. Karabernou, S.M.; Terranti, F. Real-time FPGA implementation of hough transform using

gradient and CORDIC algorithm. Image Vis. Comput. 2005, 23, 1009–1017.

35. Mayasandra, K.; Salehi, S.; Wang, W.; Ladak, H.M. A distributed arithmetic hardware

architecture for real-time hough-transform-based segmentation. Can. J. Elect. Comput. Eng. 2005,

30, 201–205.

36. Chern, M.Y.; Lu, Y.H. Design and Integration of Parallel Hough Transform Chips for High-Speed

Line Detection. In Proceedings of 11th International Conference on Parallel and Distributed

Systems, Fukuoka, Japan, 20–22 July 2005; pp. 42–46.

37. Tagzout, S.; Achour, K.; Djekoune, O. Hough transform algorithm for FPGA implementation.

J. Signal Process. 2001, 81, 1295–1301.

38. Geninatti, S.R.; Benitez, J.I.B.; Calvino, M.H.; Mata, N.G.; Luna, J.G. FPGA Implementation of

the Generalized Hough Transform. In Proceedings of International Conference on Reconfigurable

Computing and FPGAs, Cancun, Mexico, 9–11 December 2009; pp. 172–177.

Sensors 2013, 13 9247

39. Ahmed, E.; Medhat, M. A Memory Efficient FPGA Implementation of Hough Transform for Line

and Circle Detection. In Proceedings of the 25th Canadian Conference on Electrical and

Computer Engineering, Montreal, QC, Canada, 29 April–2 May 2012.

40. Chen, Z.H.; Su, A.W.Y.; Sun, M.T. Resource-efficient FPGA architecture and implementation of

hough transform. IEEE Trans. VLSI Syst. 2012, 20, 1419–1428.

41. Shang, E.K.; Li, J.; An, X.J. Fast hough transform for FPGA-based applications. Comput. Eng.

Appl. 2010, 46, 72–75.

42. He, W.H.; Yuan, K. An Improved Hough Transform and Its Realization on FPGA. In Proceedings

of the World Congress on Intelligent Control and Automation, Taipei, Taiwan, 21–25 June 2011;

pp. 13–17.

43. Zeng, J.; Li, D.H. An Improved Canny Edge Detector Against Impulsive Noise Based on

CIELAB Space. In Proceedings of International Symposium on Intelligence Information

Processing and Trusted Computing, Huanggang, China, 28–29 October 2010; pp. 520–523.

44. Mondal, T.; Jain, A.; Sardana, H.K. Automatic craniofacial structure detection on cephalometric

images. IEEE Trans. Image Process. 2011, 20, 2606–2614.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

