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Abstract: Hough Transform has been widely used for straight line detection in  

low-definition and still images, but it suffers from execution time and resource requirements. 

Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware 

acceleration to reap tremendous computing performance. In this paper, we propose a novel 

parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time 

straight line detection in high-definition videos. A resource-optimized Canny edge detection 

method with enhanced non-maximum suppression conditions is presented to suppress most 

possible false edges and obtain more accurate candidate edge pixels for subsequent 

accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level 

parallelism is proposed to upgrade computational accuracy by improving the minimum 

computational step. Moreover, the FPGA based multi-level pipelined PHT architecture 

optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution 

videos without any off-chip memory consumption. This framework is evaluated on 

ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and 

it can calculate straight line parameters in 15.59 ms on the average for one frame. 

Qualitative and quantitative evaluation results have validated the system performance 

regarding data throughput, memory bandwidth, resource, speed and robustness. 
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1. Introduction 

Optimal straight line detection is a considerable step for several embedded vision applications, and 

now the largest research focus is based on the Hough Transform (HT) [1]. The straight line detection 

has been widely used in many industrial applications like image analysis, smart robots, intelligent 

vehicles, and pattern recognitions [2]. Generally, the least squares method (LSM) can easily obtain the 

slope and intercept of a straight line through a scanning of the edge image, but this method is very 

sensitive to noise [3,4]. HT is widely used for its accuracy and robustness in digital low-definition and 

still images [5], although it is memory and computation demanding. 

Current trends in complex computing architectures integrate Field Programmable Gate Arrays 

(FPGAs) as a competitive alternative due to its parallelism to accelerate computational performance  

for embedded vision applications. There are many FPGA implementation research areas, such as lane 

detection [6], stereo vision processing [7,8], high-speed face detection [9], image segmentation [10], 

background subtraction [11], and more. These interesting real-time applications demonstrate the  

great computational performance of the FPGA architecture. In this paper, a novel real-time FPGA 

architecture based on a modified Canny edge detection method and spatial angle-level optimized 

parallel Hough Transform (PHT) algorithm to accomplish straight line detection in high-definition 

video sequence is proposed. 

In this proposed real-time straight line detection system, detection of edge pixels is a basic task that 

has a significant influence on the performance of follow-up calculation. Currently, edge detection 

algorithm mainly includes the following two approaches: (1) Classical gradient differential operator, 

such as Sobel operator, Canny operator [12], Prewitt operator, and Roberts operator; (2) Laplacian 

algorithms [13], like Gaussian, Marrs Hildreth, and more. As we know, the edge is determined by the 

brightness difference of one pixel to the others, and we can identify the edge pixels if the brightness 

changes sharply [14]. Generally, the Canny operator proposed by Canny in 1986 is used in various 

edge detection applications, and it can obtain single pixel edge feature images. However, this method 

suffers from false edges or missing edge information in complex backgrounds; in addition, resource 

requirement and hysteresis thresholds scheme make extensive processing worse. Troubled by these 

factors, hardware acceleration architecture on FPGA to Canny operator becomes an attractive 

alternative [15]. In our earlier work [16], an improved high-speed Canny edge detection architecture 

based on FPGA was proposed. In that implementation, the gradient is calculated by the second 

harmonic of the variable parameters to simplify complex arithmetic into basic logic operations. On the 

basis of this modified edge detection algorithm, we also proposed a circle detection architecture 

utilizing optimal parameter statistics model in FPGA as a vision application [17]. 

The classical HT converts the edge feature image into a new domain called the Hough parameter 

space as a popular method for straight line detection. We can obtain the computational result in Hough 

space by mapping the parameter points to image space. Each point in Hough space corresponds to a 
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line in the initial image. Reasonable use of peak information in the Hough space is the common 

denominator of all HT-related detection methods [18]. A large amount of calculation parameters need 

to be stored and this seriously constrains the HT performance of accuracy and robustness [19]. 

Simultaneously, HT research has been widely applied to detect a variety of shapes in images,  

such as straight lines [5], elliptical objects [20], arbitrary objects [21], rectangles [22], triangles [23],  

and circles [24]. 

Duda et al. [5] were the first to propose the parameter space transform method applied to straight 

line detection in digital images. This transform converts the Cartesian coordinates to parameter 

coordinates ( , )   for line equations. In the Hough parameter space, the corresponding line equations 

intersect at ( , )  . Through accumulation of the intersection points, we can find a specific parameter 

( , )   with a peak value that respects to the candidate straight line [25]. But this method suffers from 

great execution time and resource requirement. To overcome this problem, there are many modifications 

of acceleration and accuracy improvement in the software algorithm of HT. Rau et al. [26] utilized the 

principal axis analysis method to speed-up the straight line parameter estimation. Duquenoy et al. [27] 

used spatial under-sampling and anticipated maxima detection to accelerate the algorithm execution.  

Li et al. [28] and Illingworth et al. [29] proposed coarse-to-fine techniques to improve straight line 

parameter calculation accuracy.  

Furthermore, there are acceleration solutions based on different hardware architectures to increase 

processing speed for tremendous real-time performance and avoid high development costs. Examples 

include graphics processing unit (GPU) [30,31], digital signal processor (DSP) [32], coordinate 

rotation digital computer (CORDIC) [33,34], distributed arithmetic (DA) architecture [35], array 

processor (AP) [36], and FPGA architecture [2,37–39]. However, the calculation speed and hardware 

resource on GPU or DSP cannot be satisfied to the requirement of computer vision systems. Especially, 

for the performance and energy comparison on image processing in [31], FPGA can implement the 

acceleration of up to 11× and 57× compared to that of GPU and multi-cores, respectively. FPGA is the 

most energy-efficient architecture from the experiments; with one and two orders of magnitude  

lower energy consumption than that of the same implementations in GPU and CPU, respectively.  

Zhou et al. [33] proposed the use of CORDIC algorithm for fast HT, and Karabernou et al. [34] used 

the gradient and CORDIC for real-time straight line detection architecture. But CORDIC and DA 

architecture both require many iterations for accurate parameters calculation in HT space and the 

number of iterations has a significant impact on computational complexity, resource requirement, and 

data throughput. The AP architecture is an angle-level parallel algorithm, but its edge feature scanning 

mode limits its data throughput. Ahmed et al. [39] proposed a memory efficient FPGA implementation 

of HT for line and circle detection, and its HT space was sampled in an efficient way to reduce the  

size of HT space and memory requirement. However, the sampling rate affected the detection  

accuracy greatly, and it led to about 50% lower than that of the region-based method. Additionally,  

Kim et al. [2] presented a finite line detection system based on partitioned parallel HT units in Hough 

space to increase speed and accuracy. However, it was just fit for still image processing based on 

caching whole image data, and the computational frame rate was improved by increasing the line 

identification clock frequency. A resource-efficient architecture and implementation of HT on FPGA 

was presented in [40]. In this processing element (PE) based architecture, the pre-calculated edge 

feature image was divided into blocks to facilitate algorithm parallelism, and the incrementing 



Sensors 2013, 13 9226 

 

 

property was applied to reduce resource requirement. The major disadvantages of this pixel-level 

optimized method were that it should cache the entire edge feature image for zero-run-length encoding, 

and it just implemented the voting process of HT algorithm in resolution 512 × 512 without qualitative 

and quantitative experimental results. Shang et al. [41] roughly prejudged the lines in original image 

through the directional filter and calculated the exact value later. This method successfully cut back the 

computation load by narrowing the range of accuracy. In [42], He et al. proposed a new algorithm 

using shift and addition operations to replace the complex trigonometric functions and multiplications 

in traditional HT, and a new threshold method based on the peak information extraction was presented 

to eliminate the fake lines. But in this method and implementation, the minimum step of   (  ) 

equaled to 1.79°, and the detection accuracy was limited. 

Some attempts in literatures as mentioned above have been made to detect straight lines in  

low-definition and still images for some vision applications. Many researchers depend on increasing 

the signal processing frequency for the pre-stored edge image to upgrade computational speed. From 

the performance and resource consumption perspective, few refine them by the associated optimization 

of HT software algorithm and hardware architecture applied to real-time high-definition video 

sequences. So in this paper, we extend the work in [5] and [42], and propose a novel dedicated PHT 

algorithm and FPGA hardware architecture associated parallel framework for real-time straight line 

detection for high-definition video sequences. This complete embedded vision system includes  

high-definition video capture, modified edge feature image calculation, straight line parameter 

computation, and detection result display. The main contributions of this new framework include the 

following. First, a new resource-optimized Canny edge detection method is presented to suppress most 

possible false edges and obtain fewer, but more accurate, candidate edge pixels for subsequent accelerated 

computation with more enhanced non-maximum suppression conditions, compared with our previous 

work [16]. Second, instead of acting towards increasing calculation frequency, the novel spatial  

angle-level PHT algorithm was derived for the 1,024 × 768 resolution real-time video frames to 

improve the minimum computational step to 0.8952° for the balance of computing speed and parameter 

detecting accuracy. Finally, optimized with the spatial angle-level parallelism, the novel multi-level 

pipelined PHT hardware accelerating architecture is proposed for straight line parameter fast estimation 

and we also present the FPGA implementation in detail. In particular, parallel pipeline calculation 

units based maximum searching scheme in HT space is described for candidate straight line parameter 

decision. The proposed framework is mapped on to ALTERA Cyclone IV EP4CE115F29 FPGA with 

the maximum frequency 200 MHz. Under the guidance of associated optimization both on algorithm 

and on architecture, this real-time and robust PHT can achieve straight line detection in videos of  

1,024 × 768 resolution with a pixel clock of 43 MHz effectively. In addition, this implementation 

avoids high development costs and obtains enough flexibility, which enables many potential pattern 

recognition applications. 

2. Overview of the Proposed Embedded Straight Line Detection Vision System 

We primarily present a novel PHT-based straight line detection algorithm and the corresponding 

architecture implementation on FPGA to deal with the acceleration and accuracy problems of classical 

HT. As Figure 1 shows, there are two main stages in this algorithm: edge feature image detection stage 
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and straight line parameter estimation stage. In order to obtain the edge feature from original digital 

image for accelerating computation, a resource-optimized Canny edge detection algorithm is adopted. 

In the procedure of straight line parameter estimation, a spatial angle-level PHT algorithm derivation 

for the 1,024 × 768 resolution real-time video sequences is firstly proposed. Then, the associated optimized 

multi-level pipelined PHT architecture is presented for parameter estimation and implements on a 

single FPGA. Finally, the maximum searching scheme in HT parameter space for candidate straight 

line parameter decision is used based on parallel pipeline calculation units. 

Figure 1. PHT straight line detection algorithm flow. 
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The block diagram of the proposed straight line detection architecture is depicted in Figure 2. The 

ALTERA DE2-115 FPGA evaluation platform with the chip EP4CE115F29 is employed for algorithm 

implementation. Initially, the industrial camera (OK_AM1320) captures the CameraLink serial video 

sequence with the 1,300 × 1,024 resolution at 20 frames per second, and through the CameraLink 

decoding board, the input original RGB images are captured into on-chip RAMs for data processing. 

The inner RAMs in FPGA are both needed in the edge feature detection module and straight line 

parameter computation module. The real processed resolution in FPGA is 1,024 × 768 cropped from 

original image, and calculated straight line parameters are displayed on LCD at a 1,024 × 768 resolution 

through the VGA control module. 

Figure 2. The block diagram of embedded straight line detection system. 
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3. Resource-Optimized Canny Edge Detection Method 

The resource-optimized edge detection algorithm is an extension of our previous work [16]. Here 

we put forward more enhanced non-maximum suppression conditions compared with [16] to suppress 

most of possible false edges and obtain fewer, but more accurate candidate edge pixels for subsequent 

accelerated computation. Of course, some real edge pixels will be lost in this treatment. But in our 

straight line detection case, the limited loss of some real edge pixels on a candidate line does not  

have a big impact on the final calculating result, but it can reduce the computational complexity of 

follow-up line parameter estimation. The experimental results also prove the validity of this approach. 

In the classical Canny algorithm, it is difficult to detect accurate edge features in complex 

backgrounds, because the smoothness of Gaussian filtering with artificial parameters can lead to 

excessive smoothing (losing edge information) or insufficient smoothing (unable to remove noise). 

Moreover, insufficient non-maximum suppression conditions result in false edges. In this proposed 

method, parallel and fast median filter was selected to suppress grain noise, and we do not need to set 

parameters for implementation in FPGA with flexibility [43]. Furthermore, enhanced non-maximum 

suppression is employed to suppress false edges by presenting more stringent suppression conditions. 

The modified Canny edge detection flow chart is shown in Figure 3. Accordingly, many parallel 

computing mechanisms about the fast median filtering, parallel gradient computation, and enhanced 

non-maximum suppression are explained in detail in the following paragraphs for resource 

optimization and accuracy improvement. 

Figure 3. Flow chart of resource-optimized canny edge detection algorithm. 
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3.1. Fast Median Filtering 

In this new edge detection method, digital image is first smoothened by median filter to reduce 

noise in the image. In this paper, the 3 × 3 template is used to achieve parallel fast median filtering, 

and the diagram is shown in Figure 4. Median filtering is used to sort pixel data in the template from 

small to large, and taking the middle data as the result of current pixel. Usually, median filtering 

implementation on FPGA needs to cache three image lines and three line FIFOs are required. But in 

this architecture, we use the pipelined structure by two FIFOs, one register, and six D-type flip-flops 

(DFF) with delay operations to get the 3 × 3 pixel template. Figure 5 shows the optimal parallel 

hardware architecture of template pixel cache for computation. 

After the nine template pixel data is obtained, we design a new parallel sorting and comparing 

architecture based on the parallelism of FPGA as shown in Figure 6 for real-time computation.  

In this parallel calculation method, seven three-value comparators are needed to build a three-level  

computing architecture. 
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Figure 4. Median filtering diagram. 
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Figure 5. Architecture of a 3 × 3 pixel template cache. 
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Figure 6. Calculation architecture of parallel fast median filtering. 
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In the first level, we divide the nine values into three groups, and three three-value comparators can 

calculate in parallel with a two clock delay in this level to decide the maximal value (Max), middle 

value (Mid), and minimal value (Min). For the second level of this architecture, three maximal values, 

three middle values and three minimal values are assigned into respective groups. Through data 

analysis, it is clear that in the group of three maximal values, just the minimal value will be the final 

candidate middle data in nine pixels. So in this group, the Min is selected for the third level middle 

data comparison. In the middle values group in the second level, just the middle value will be the final 

candidate middle data. Similarly, in the minimal values group in the second level, just the maximal 

value will be the final candidate middle data. Finally, in the third level comparison, the real middle 

data can be decided by a three-value comparator. Therefore, the fast median filtering can be done after 

a six clock delay. 

3.2. Parallel Gradient Computation 

Equations (1) and (2) show the 3 × 3 pixel template based horizontal gradient xG  and vertical 

gradient yG  calculation. Then the total gradient ( , )G x y  can be calculated as in Equation (3) with a 

sum of two gradients’ absolute values. In FPGA implementation, the N-th power operations of 2  

can be converted to the fast N-bit right shifts. And the selection of N can be made empirically  

through experiments: 

   1, 1, 2N

xG f x y f x y       (1) 

   , 1 , 1 2N

yG f x y f x y       (2) 

 , x yG x y G G   (3) 

In order to reduce the computational complexity in parameter coordinates, it is also needed to 

record whether the gradient is positive or negative as well as its absolute value. As Figure 7 shows, 

two two-value comparators are used to decide the actual differences of pixel values. Based on this 

difference, the gradient absolute value is calculated with corresponding subtractor. Finally, through the 

parallel comparators and basic logic operations, the gradient can be obtained easily and fast. 

Figure 7. Parallel gradient computation architecture. 
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3.3. Enhanced Non-Maximum Suppression 

As expressed in Equation (4), inverse trigonometric function calculation is needed in the classical 

Canny algorithm to determine the gradient direction in non-maximum suppression, but inverse 

trigonometric calculation is complex and resource consumption in FPGA architecture: 

 arctan y xG G   (4) 

In this proposed algorithm, we divide the gradient directions into eight regions as Figure 8 shows, 

and every direction region contains a range of a 45 degree angle. Depending on whether the gradient is 

positive or negative and its absolute value difference in the horizontal and vertical directions, we can 

roughly find out the gradient direction of current pixel. This gradient direction definition can greatly 

reduce computational region and FPGA resource requirement. Moreover, through the gradient 

direction standardization and all of the non-peak amplitudes suppression, we can refine the object edge 

in digital image. 

Figure 8. Eight gradient directions division diagram. 
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For example, if gradient direction of one pixel is at the range of 0° to 45° or 180° to 225°, the 

gradient value of this pixel along these two directions can be measured by ( )M a and ( )M b as 

Equations (5) and (6) shown. In the classical Canny algorithm, if conditions ( , ) ( )G x y M a  and 

( , ) ( )G x y M b  are both met at the same time, we treat this pixel with the gradient ( , )G x y  as an edge 

feature point. In this proposed method, through experimental empiricism, we further add four 

enhanced suppression conditions defined as Equation (7) to Equation (10) to suppress the potential 

false edges effectively. These conditions mean that the gradient of the candidate pixel must be larger 

than that in the neighborhood four directions. The cost of doing under these conditions is losing some 

of the true edge pixels, but it has no significant effect on the final calculation results for specific length 

straight line parameter estimation, and the computational complexity will be reduced for a more 

accurate feature edge, as experimental results demonstrated. For the pixels in other directions, 

corresponding operations and judgments can be used similarly:  
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 ( ) ( 1, 1) ( , 1) 2M a G x y G x y      (5) 

 ( ) ( , 1) ( 1, 1) 2M b G x y G x y      (6) 

( , ) ( 1, 1)G x y G x y    (7) 

( , ) ( , 1)G x y G x y   (8) 

( , ) ( , 1)G x y G x y   (9) 

( , ) ( 1, 1)G x y G x y    (10) 

3.4. Dual-Threshold Detection 

Finally, our dual-threshold detection implementation is based on the verification mechanism 

proposed by Mondal et al. [44]. The higher threshold value (HTV) and the lower threshold value (LTV) 

are selected to track the remaining candidate pixels that have not been suppressed. Verifications were 

implemented against the candidate pixels by selected HTV and LTV, respectively. The candidate pixel 

is then chosen as an edge feature pixel, one situation is that its gradient value is greater than HTV, and 

another situation is that its gradient value is between the LTV and HTV, but it is connected to an edge 

pixel directly. In the other cases, the pixel will be declared as a non-edge pixel. Both of LTV and HTV 

can be calculated empirically by experiments. In our design, HTV is set to 90, and LTV is set to 20 to 

obtain continuous and detailed edges. 

4. Multi-Level Pipelined PHT Based Straight Line Parameter Estimation and Decision 

4.1. Overview of HT 

HT is a well-known and effective method for straight line detection in digital images. This 

transform converts the binary edge feature image from Cartesian coordinates ( , )x y  into parameter 

coordinates ( , )  . Equation (11) is used to define a straight line in HT parameter space by parameters 

ρ and θ. According to the coordinate correspondence, each point on the straight line in the Cartesian 

coordinate corresponds to a curve in the parameter space. Meanwhile, all the points on same straight 

line must correspond to a curve cluster intersected at same point ( , )   in the parameter space as 

Figure 9 shows. 

Figure 9. HT representation (a) cartesian coordinate; (b) parameter coordinate. 
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Through accumulating the intersection points, we can find the specific parameter ( , )   with peak 

information with respect to the candidate straight line. It is clear that trigonometric function and 

multiplication are the main calculations in the HT expression, and the computational complexity is 

depending on the number of edge feature pixels and the precise definition of angles: 

cos sinx y     (11) 

4.2. Spatial Angle-Level Parallel PHT Algorithm Derivation 

Most HT implementations in FPGA platform depend on increasing the processing frequency for 

low-definition and still images pre-stored in off-chip memory. The sin and cos calculated values are 

stored in inner ROM LUTs. For every edge point, it is needed to traverse the whole LUTs to calculate 

specific  , and accumulate to the corresponding counter. Whereas in our vision system, the captured 

video resolution is 1,300 × 1,024, so the range of   is (–804, 804), and the range of   is ( / 2 , / 2 ) 

as Equation (12) shows. In order to realize real-time computation, it is not allowed to pre-store any 

edge image information. In this calculation manner, if the minimal step of   is 1°, there are 360 times 

of the multiplication operation and 180 times of the addition operation, just for one edge point. This 

calculation style is resource and time consuming: 

cos sin
2 2

x y
 

         (12) 

In this paper, refering to [42], we derivate spatial angle-level optimized parallel HT calculation 

form for real-time and high-definition video sequence demands. Instead of acting towards increasing 

calculating frequency that causes great power consumption, this new PHT algorithm adapts to the 

FPGA hardware architecture as an associated optimization. Considering the trigonometric conversion 

relations, Equation (12) can be divided into two related parts, as Equation (13) shows. Where a  and 

b  represent the value of   when  0, / 2   and  / 2,0   , respectively: 

cos sin 0
2

cos sin 0
2

a

b

x y

x y


   


   







   

      (13) 

Now, we further define / 2    , then the part of  / 2, 0    can be expressed as: 

' ' ' ' 'cos( ) sin( ) sin cos 0
2 2 2

b x y x y
  

              (14) 

After the definition as Equation (14), the two parts of   can be modified into the same angle range 

in Hough parameter space as shown in Equation (15).   can be calculated in parallel in two opposite 

parts and the calculated angle range of   is cut to half: 

' ' '

cos sin 0
2

sin cos 0
2

a

b

x y

x y


   


   







   

   
 (15) 
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On the assumption that the minimal step of   is  , and the location of edge point is  ,x y . In 

Equation (15), the value of   is digitized to 0, ,2 ,..., ,..., / 2i      . We then derive the equation in 

accordance with the discrete values.  

When 0  ，Equation (15) can be expressed as: 

 0

0

a

b

x
y





 
 

(16) 

Next, when   , Equation (15) can be expressed as: 

 1 0 0

01 0

cos sin cos ( )
sin cos cos ( )

a a b

ab b

tg
tg

x y
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and so on; when  1i   , the new PHT calculation can be indicated as follows: 
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(18) 

Obviously, if we traverse all the possible discrete values of  , the current calculation result  

is related to the last one. With further approximation, if 61/ 2tg   , then   = 0.8952° and  

cos   = 0.9999 ≈ 1, so Equation (18) can be further approximated to Equation (19). This approximate 

expression can be calculated in parallel and just include basic addition and shift operations: 

( 1) 6

( 1) 6

1

2
1

2

aia i bi

aib i bi

  

  











  

      
(19) 

4.3. Multi-Level Pipelined PHT Architecture Based Straight Line Parameter Estimation 

Through Equation (19), we successfully convert traditional multiplication and trigonometric 

function operations in HT algorithm into addition and shift operations, which is adaptive to the parallel 

calculation structure in FPGA circuit. If   = 0.8952°, the steps of   is equal to 101. For each edge 

pixel, our parallel HT needs to do 101 times the calculation in the range of  0, / 2   for straight line 

parameter estimation, which greatly improves calculation accuracy. Meanwhile, the improvement of 

calculation accuracy brings substantial computational load increase and more effective computing structure 

is needed. According to the relationship between two consecutive calculations in Equation (19), 

associated with spatial angle-level parallelism, a novel multi-level pipelined PHT calculation architecture 

is proposed as in Figure 10, to improve computational efficiency.  

In this multi-level pipelined PHT architecture, the straight line parameters can be calculated through 

101 pipeline units ( 0,1,...,100n  ) for one edge pixel, and every pipeline unit represents an angle 

stepper calculation. All of these calculation units are subject to pipelined computing, and the output  

of any unit is served as input parameter to the next pipeline unit. The advantage of thus pipeline 

structure is that the calculation of 101 pairs of ( , )   for one edge pixel can be completed in just one 

clock cycle. 
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Figure 10. Multi-level pipelined PHT architecture. 
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For each pipeline unit, the hardware architecture in FPGA needs two registers, two 6-bit shifts, one 

adder, and one subtractor. The initial inputs  0a
X   and  0b

Y   of this pipelined calculation architecture 

are the location of the corresponding edge pixel. Each unit has two accumulators RAM_a(i) and 

RAM_b(i) for parameter accumulating. For the i-th calculation unit, the calculated value of ai  is 

treated as the corresponding memory address in RAM_a(i), and the value in this address plus one. For 

bi , a similar operation is taken. In two accumulators, the accumulating address just need the value of 

  without  , because to every unit and corresponding accumulator RAM_a(i) and RAM_b(i), the 

corresponding value of   is identified by *i   or ( * / 2)i     previously. 

4.4. Parallel Pipeline Units Based Maximum Searching Scheme 

After parameter estimation for all of the candidate edge pixels in one image with multi-level 

pipelined PHT architecture, RAM_a(i) and RAM_b(i) will contain all the candidate accumulating 

results. Current work is to find the peak accumulating information in these two inner RAMs for all of 

intersection points, and this peak corresponds to the candidate longest straight line. To RAM_a(i) or 

RAM_b(i), through the multi-value comparators, it is easy to find the maximum for FPGA implementation 

respectively. The maximum search results in RAM_a(i) are the three parameters: the accumulating 

maximum value aiMAX , the address of the accumulating maximum value (max)aiADD , and the step 

number of the accumulating maximum value (max)aiSTEP . There is a similar operation to RAM_b(i) to 

get the corresponding three parameters. In the follow-up straight line parameter computation module, a 

two-value comparator is used to determine the final maximum between (max)aiADD  and (max)biADD  in 

both RAM_a(i) and RAM_b(i). Referring to the initial HT definition, we can obtain the specific 

parameter ( , )   for this detection procedure, where   equals the final maximum address (max)ADD  

in RAM_a(i) or RAM_b(i), and   equals the step number of the final maximum (max)STEP multiplied 

by   if the maximum is in RAM_a(i), or multiplied by   and subtract / 2  if the maximum is in 

RAM_b(i). The block diagram of parallel pipeline units based maximum search scheme is shown in 

Figure 11. Obviously, this parallel searching scheme in HT parameter space further improves the  

real-time performance of this detection architecture. 
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Figure 11. Block diagram of the maximum search scheme for parallel pipeline units. 
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4.5. The Integral Multi-Level Pipelined PHT Based Straight Line Detection Algorithm 

The integral multi-level pipelined PHT based straight line detection algorithm is shown in Figure 12. 

The arrows indicate the direction of data flow and clock control. We can get the edge image by the 

resource-optimized edge detection module as described in Section 3. Every candidate edge pixels are 

computed by multi-level parallel pipeline units and the parameters of real straight line can be 

determined in parameter calculation circuit in the PHT module. In order to draw a red indicating line 

on the display image to show the location and direction of detected line, we use the CORDIC processing 

unit in the FPGA to effectively calculate the value of sin and cos for straight line identification. 

Figure 12. Integral PHT algorithm diagram. 
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5. Evaluation 

In this section, we propose this embedded vision system based on a FPGA evaluation platform. We 

evaluate the performance of the FPGA-based straight line detection with throughput, maximum error, 

memory access bandwidth, and computational time. In addition, we also present qualitative and 

quantitative experimental results for the accuracy and robustness of our proposed algorithm. 

5.1. Embedded Vision System Based on FPGA 

The proposed architecture has been evaluated on ALTERA DE2-115 platform with Cyclone IV 

EP4CE115F29 FPGA and QuartusII version 10.0 synthesis tool, with the maximum operation 

frequency of 200 MHz, as Figure 13 shows. This embedded straight line detection vision system can 

process digital video of 1,024 × 768 resolution cropped from the high-definition LVDS video signal 

with 1,300 × 1,024 resolution captured by ALTERA DE2-115 evaluation platform through an 

expansion board CLR_HSMC and CameraLink protocol. This hardware implementation takes 0.24 μs 

to calculate the edge feature for one pixel and 15.59 ms on the average to compute straight line slope 

and intercept parameters for one frame, which ensure real-time performance. Finally, the results are 

displayed with a VGA interface of 1,024 × 768 resolution. 

Figure 13. FPGA based embedded straight line detection vision system. 
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5.2. Performance of FPGA Architecture Implementation 

5.2.1. Performance Comparison among Different Approaches 

In our hardware architecture and implementation, the fraction part F is represented in 15 bits. In the 

definition in Chen et al. [40], the maximum error of   introduced by incremental computation is 

calculated by (W + H) × 2
−(F + 1)

, where W is the width and H is the height of the processed image. 

Besides, the throughput per cycle is defined as the average number of computed   values per cycle, 

and the throughput is defined as millions of   values per second. Table 1 presents the performance 

comparison among different approaches with different processing resolutions. 
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Table 1. Performance comparison among different approaches. 

 Maximum 

Error of   

Throughput 

per Cycle 

Maximum 

Frequency 

Throughput 

(M/s) 

Processing 

Resolution 

Zhou et al. [33] 0.177 2 384 MHz 768 256 × 256 

Mayasandra et al. [35] 0.125 1/9 500 MHz 56 256 × 256 

Chern et al. [36] 0.125 1 387 MHz 387 512 × 480 

Chen et al. [40] 0.012 16 333 MHz 5,328 512 × 512 

Proposed method 0.027 101 200 MHz 20,200 1,024 × 768 

If the fractional part is 15, the maximum error from Chen et al. [40] is 0.012, and the maximum 

error of our proposed architecture is 0.027. Because our multi-level pipelined architecture can calculate 

101   values per cycle, the throughput per cycle of our proposed implementation is much higher than 

the other four approaches. Furthermore, our PHT architecture could achieve great higher throughput of 

20,200 compared to other approaches with the cost of a large amount of on-chip memory consumption, 

although the maximum frequency of our architecture is lower than other approaches. Obviously, 

enhancing the throughput of hardware architecture is much more important than other requirements in 

real-time vision applications [40]. In addition, with respect to processing target, still images with  

low-definition are used in the other four methods whereas our proposed algorithm can deal with 

highest definition resolution video sequences without any off-chip memory consumption. 

5.2.2. Memory and Bandwidth 

As a PE-based resource-efficient FPGA architecture, the approach in [40] can greatly reduce the 

required memory bandwidth and on-chip memory bits, depending on pixel-level optimization. In that 

method, the voting results are temporarily stored in the on-chip memories and then be transferred to 

the off-chip memory after completing one angle computation of all the edge feature pixels. In [40], the 

required memory access bandwidth is calculated by Equation (20), where K  = 180 is the number of 

angles, DataWide  = 9 is the vote memory address width, and the processing image resolution is  

512 × 512. In addition, the off-chip memory used in [40] includes the binary feature image store part 

(2,097,152 bits) and vote memory data transfer store part (1,172,880 bits) of 180 angles at least.  

In our proposed multi-level pipelined PHT architecture based on spatial angle-level optimization, 

after clock delay, it can calculate 101 angles per cycle for one edge feature pixel and get the straight 

line parameters through peak value search for current pixel. So, in our proposed architecture, the 

memory address width is 16, and the required memory access bandwidth usage is much larger than [40] 

as Table 2 shows, because of the higher processing image resolution (1,024 × 768) and higher angle 

accuracy (   = 0.8952°). Accordingly, our proposed FPGA architecture does not require any off-chip 

memory to cache image or accumulated results, but this advantage is built on the basis of the consumption 

of a large number of on-chip memories: 

2 2 * *BandWidth W H K DataWidth   (20) 
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Table 2. Memory and bandwidth comparison results. 

 Processing Image 

Resolution 

Off-Chip 

Memory Bits 

On-Chip 

Memory Bits 

Memory 

Bandwidth (bits) 

Chen et al. [40] 512 × 512 3,270,032 223,360 1,172,880 

Proposed 1024 × 768 0 3,052,544 2,674,480 

5.2.3. Calculation Time 

Table 3 shows the calculation time comparison between our proposed architecture and other three 

methods on different platforms.  

Table 3. Calculation time comparison. 

Algorithm and Platform Execution Time Processing Image Resolution 

LSM of Ji et al. [3] on FPGA 15.57 ms 1,024 × 768 

Chen et al. [40] on FPGA 2.07–3.61ms 512 × 512 

Proposed Method on FPGA 15.59 ms 1,024 × 768 

Direct HT Computation on PC 

(a-1) 0.93 s 1,024 × 768 

(a-2) 1.26 s 1,024 × 768 

(a-3) 1.62 s 1,024 × 768 

(a-4) 1.45 s 1,024 × 768 

In Chen et al. [40], one binary feature image is pre-stored in the off-chip memory for run-length 

encoding and PE-based HT computation can reduce the execution time to 2.07–3.61 ms for  

512 × 512 image resolution without the edge detection procedure. In our proposed PHT architecture, 

the processing target is real-time video with 1,024 × 768 processed resolution, and it executes the PHT 

algorithm on edge pixels sequentially. The execution time of straight line detection in our proposed 

architecture is 15.59 ms on average, which includes the parameter computation time of 0.02 ms. In 

Table 3, (a-1) to (a-4) refer to the experimental testing images in Figure 16 and direct HT computation 

on PC needs more than one second to process an image with MATLAB simulation tools. It is clearly 

that if taking into account the resolution factor and edge pixel number factor of the processed image, 

our execution time is similar to [40], and all of the methods implemented on FPGA can ensure  

real-time processing. 

5.2.4. Synthesis Result on Target FPGA 

Table 4 shows the synthesis summary of our proposed FPGA architecture resource consumption. 

From this compiled report, it is clear that the logic element (LE) utilization includes combinational LE 

with no register (13.72%), combinational LE with a register (10.38%), and sequential LE (1.61%). The 

total LE used in this implementation is 29,431, and accounts for 25.71%, but it consumes a lot of 

FPGA inner on-chip memory bits as the parallel pipeline units in PHT. Therefore, 377 M9Ks (True 

dual-port RAM blocks with 9 K bits of memory) and many block memory bits (3,052,544 bits) are 

used to construct large amounts of parameter accumulators in pipeline units. Due to numerous 

variables definition and middle data buffer, the dedicated logic registers utilization is 11.73%. The 

logic array in FPGA consists of logic array block (LAB), with 10 LEs in each LAB. Every LE is a 
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small logic unit for user logic functions implementation. The usage of embedded multiplier elements is 

very small, and many multiplications are converted into additions and shift operations because of our 

angle-level parallel PHT algorithm derivation. In addition, one phase-locked loops (PLL) is used for 

the high frequency clock generation. 

Table 4. FPGA implementation resource consumption. 

Resource Categories Used Available Utilization 

Combinational LE with no register 15,704 114,480 13.72% 

Sequential LE 1,839 114,480 1.61% 

Combinational LE with a register 11,888 114,480 10.38% 

Dedicated logic registers 13,727 117,053 11.73% 

LABs 2,589 7,155 36.18% 

M9Ks 377 432 87.27% 

Block memory bits 3,052,544 3,981,312 76.67% 

Embedded Multiplier 9-bit elements 8 532 1.50% 

PLLs 1 4 25.00% 

From the work of Fowers et al. [31], FPGA can implement the acceleration of up to 11× compared 

to GPU, and FPGA is the most energy-efficient architecture with one and two orders of magnitude 

lower energy than the same implementation in GPU and CPU for the same image processing task. 

Table 5 is the power consumption report of our proposed straight line detection circuit. The total 

thermal power dissipation is 640.89 mW, and the core dynamic thermal power dissipation accounts for 

the most part (64.73%). Additionally, the I/O thermal dissipation consumes more power than core 

static thermal dissipation obviously. 

Table 5. FPGA implementation power consumption. 

Power Summary Power Consumption 

Total thermal power dissipation 640.89 mW 

Core dynamic thermal power dissipation 414.83 mW 

Core static thermal power dissipation 105.40 mW 

I/O thermal power dissipation 120.66 mW 

5.3. Qualitative Experimental Results for Resource-Optimized Canny Edge Detection 

Figures 14 and 15 compare the qualitative experimental results between classical Canny [12] and 

our proposed resource-optimized Canny with enhanced non-maximum suppression conditions. 

Obviously, the proposed modified Canny edge detection method can obtain more continuous and sharp 

edges, and the false edges are significantly reduced in some cases. In the circle image detection results, 

the edge image obtained by classical Canny is discontinuous; and in the article image results, taking the 

words “Key” and “passages” for example, some edge information obtained by classical Canny is lost, but 

in modified Canny case, most of the characters and the corresponding edge information are retained. And 

the tested frames shown in Figures 14–16 are generated by ourselves. 
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Figure 14. (a) Circle image; (b) Result of [12]; (c) Result of proposed canny.  

(a) (b) (c)
 

Figure 15. (a) Article image; (b) Result of [12]; (c) Result of proposed canny. 

(a) (b) (c)
 

Figure 16. The experimental comparisons of LSM and PHT method: (a-1)–(a-4) are the 

original images; (b-1)–(b-4) are the results of LSM of Ji et al. [3]; (c-1)–(c-4) are the result 

of the proposed PHT.  

(a-1) (b-1) (c-1)

(a-2) (b-2) (c-2)

(a-3) (b-3) (c-3)

(a-4) (b-4) (c-4)
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5.4. Qualitative Experimental Results for Straight Line Detection 

Figure 16 shows the qualitative experimental results comparison of LSM [3] and the proposed PHT 

method on FPGA platform. The first column is the original image, the second column is the result of 

LSM, and the third column is the result of our proposed PHT. In the first experiment as pictures (a-1) 

to (c-1), the original image is very simple, so LSM and PHT both can detect the straight line accurately 

as the red lines show. However, in the second, third, and fourth experiments, the LSM fails to detect 

the location of straight line in images, but the proposed PHT method obtains the exact straight line 

object. In these three images, the backgrounds are complex and have many other interference shapes. 

LSM is very sensitive to the background of testing images, but our proposed PHT method is robust and 

accurate because of the associated optimization of spatial angle-level PHT software algorithm and 

multi-level pipelined PHT hardware accelerating architecture. 

5.5. Quantitative Experimental Results for Straight Line Detection 

From the above qualitative experimental results, our proposed PHT algorithm can detect single 

straight line in complex background correctly. In this subsection, we present quantitative experimental 

results to show the accuracy and robustness of this algorithm and hardware architecture. In Figure 17, 

six hand-generated testing straight lines are given with the angles of –30°, –60°, 0°, 30°, 60°, and 90°. 

To every testing sample, 10 times measurements were carried out in the implemented embedded vision 

system, and the deviations of detected angles are expressed in Figure 18. These curves show that the 

results of this algorithm are robust. This proposed architecture has considerable stability and satisfies 

the accuracy requirement of embedded vision applications. 

Figure 17. Accuracy and robustness testing samples.  

 

In this experiment, we defined the average testing deviation rate of every angle situation (
i

ATD ) as 

in Equation (21) shown, where N is the measurement numbers, and 
i

TD  is the tested deviation. The 

maximum and minimum deviations of every angle situation are defined as 
i

MXTD  and 
i

MNTD , 

respectively. In addition, Equation (22) defines the average testing deviation ( ATD ) of all the measured 

angles and M is the testing sorts. Finally, Table 6 shows the quantitative experimental results of straight 

line detection angle deviation. It is clear that the average testing deviation is 1.236% and this result 

already has great application value in embedded vision systems: 
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Figure 18. The deviations of tested angles. (a) deviation of –60° angle line; (b) deviation 

of –30° angle line; (c) deviation of 90° angle line; (d) deviation of 60° angle line; (e) deviation 

of 30° angle line; (f) deviation of 0° angle line. 

 

Table 6. Quantitative experimental results for straight line detection angle deviation. 

 –60° –30° 90° 60° 30° 0° 

iATD  0.753% 0.854% 1.016% 1.492% 1.508% 1.791% 

iMXTD  0.764% 3.056% 1.528% 2.948% 1.530% 2.984% 

iMNTD
 0.728% 0.072% 0.461% 0.036% 1.456% 0.995% 

ATD  1.236% 
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6. Conclusions 

In this paper, we have presented a novel PHT algorithm and its FPGA implementation architecture 

for real-time straight line detection in high-definition video sequences. To obtain fewer but accurate 

candidate edge pixels, we enhance the non-maximum suppression conditions by a resource-optimized 

Canny edge detection algorithm. For real-time straight line detection purpose on high-definition video 

sequences, a novel spatial angle-level PHT algorithm and the corresponding multi-level pipelined PHT 

hardware architecture are proposed. This gives us an advantage over existing methods which rely on 

increasing processor frequency.  

The proposed algorithm and architecture have been evaluated on the ALTERA DE2-115 evaluation 

platform with a Cyclone IV EP4CE115F29 FPGA. Quantitative results, including throughput, 

maximum error, memory access bandwidth, and computational time, on 1,024 × 768 resolution videos are 

presented and compared with four representative algorithms on different hardware platforms. Due to 

the PHT software algorithm and its implemented architecture associated optimization, we are not 

limited just to estimate straight line parameters fast and accurately in high-definition video sequences. 

This robust and effective embedded vision system has potential applications in various pattern 

recognition tasks based on high-definition images. Future work consists of exploring spatial and 

temporal parallelism in the sequence of frames to further reduce computational load.  
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