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Abstract: Underwater vision is one of the dominant senses and has shown great prospects 

in ocean investigations. In this paper, a hierarchical Independent Component Analysis 

(ICA) framework has been established to explore and understand the functional roles of the 

higher order statistical structures towards the visual stimulus in the underwater artificial 

vision system. The model is inspired by characteristics such as the modality, the 

redundancy reduction, the sparseness and the independence in the early human vision 

system, which seems to respectively capture the Gabor-like basis functions, the shape 

contours or the complicated textures in the multiple layer implementations. The simulation 

results have shown good performance in the effectiveness and the consistence of the 

approach proposed for the underwater images collected by autonomous underwater 

vehicles (AUVs). 

Keywords: ocean investigations; AUV; early human vision system; ICA; underwater 

vision model 

 

1. Introduction 

The 21st century is the Era of the “Ocean”. There has been a growing trend towards the deployment 

of the ocean blueprint all over the World. Ocean investigations, an emerging direction to explore the 

underwater environment conditions and changes, discover the inherent nature of the movement, 

behaviors and activities for marine life, and describe the physical, chemical, and biological factors on 
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the sea bed and ocean surface, have shown great prospects in oceanography, fisheries, geophysics, 

biology, and other marine related surveys and applications [1–4]. 

Vision is one of the dominant senses in ocean investigations. Traditional studies mainly focus on 

the on-site observations periodically conducted by marine scientists, which is not only time 

consuming, requiring human concentration, but also make it difficult to obtain a global analysis. 

Consequently, the use of underwater vision systems, either tethered to a vessel or shore-based facility, 

or deployed by remotely operated vehicles (ROVs) and autonomous underwater vehicles (AUVs), has 

increased rapidly over the last decade [5–9].  

Humans possess such good visual capabilities since childhood. In the human vision system, visual 

information passes through the various processing layers along the visual pathway, such as the retina, 

the lateral geniculate nucleus (LGN), the primary visual cortex (V1), the prestriate cortex (V2), and 

beyond [10]. With a simple glance, humans are easily able to remember and judge specific objects 

despite phenomena like occlusion, illumination problems, deformations or viewpoint changes. 

However, it is difficult to develop the fascinating human visual abilities in a computer vision system, 

due to the following obstacles: (1) all sorts of occurrences of variation coming from optical, spatial, 

and temporal factors; (2) the intelligent visual strategies and procedures that can exhibit and simulate 

human-like behaviors and performances. Hereby, one central topic for ocean investigations is to 

establish and facilitate a human visual simulation mechanism appropriate for understanding the 

underwater environment, on a basis of a proper intelligent vision system that can reasonably capture 

the characteristics of underwater objects from diverse perspectives. 

Dating back to the first approaches to human vision simulation models, one of the popular theories 

about the functional role of visual perception, the efficient coding theory, hypothesizes that the early 

visual perception processing serves to capture the statistical structure of the visual stimulus by 

removing the redundancy in the visual outputs [11]. Therefore, some linear implementations of 

efficient encoding, such as the Independent Component Analysis (ICA) [12], have been used to 

explain the very first layers of the visual information processing system in the cerebral cortex and learn 

visual features exhibiting the receptive field properties of V1 simple cells [12,13].  

The general framework of ICA was originated in the early 1980s as a seminal work for blind source 

separation studies [14–17]. Jutten and Hérault first proposed an adaptive algorithm in a simple 

feedback architecture based on a neuromimetic approach to solve such a problem [14,15]. 

Furthermore, Comon introduced the concept of ICA and put forward the cost functions of the mutual 

information minimization between the sensors [16]. In parallel, unsupervised learning rules have been 

proposed to maximize the mutual information based on information theory by Linsker, Becker and 

Hinton, etc., closely related to the redundancy reduction principle for the efficient encoding in the 

human visual neurons [11,18]. The hypothesis that each neuron should encode features that are 

statistically independent from others has been explored for the early visual processing by Attik. Nadal 

and Parga showed that in the low-noise case, the maximum of the mutual information between the 

input and output of a neural processor implied that the output distribution was factorial. Roth and 

Baram, Bell and Sejnowski independently derived stochastic gradient learning rules [19,20]. Their 

adaptive methods are more plausible from a neural processing perspective than the cumulant-based 

cost functions. Amari proposed to replace the steepest descent gradient algorithm by the natural gradient, 
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and provided the better calculation and convergence coefficient recursion formula in the orthogonal 

coordinate [21,22]. Hyvarinen put forward the fast fixed point independent component analysis 

algorithm by a statistical analysis of the maximum nongaussianity framework that has shown excellent 

performance with less calculation and speedy convergence [23–25]. Shan developed the Recursive ICA 

(RICA) to capture nonlinear statistical structures of the visual inputs for the natural images since there is 

in fact still significant statistical dependency between the variance of the ICA outputs [26], and then 

carried out recognition tasks by the sparse coding learned from the natural images [27,28]. Several 

extensions of the linear ICA algorithm have been proposed to reduce such residual nonlinear 

redundancy, with an explicit or implicit aim of explaining higher perceptual layers [29–32].  

In this paper, we try to further explore the functional roles of the early underwater artificial vision 

model by means of the multi-layer ICA framework. The rest of the paper is organized as follows: in 

Section 2, the general ocean investigations will be briefly introduced, including the established 

computer vision systems, the underwater imaging models and a novel image enhancement approach 

for our work. In Section 3, the basics of the early human vision system and the ICA algorithm will be 

outlined. In Section 4, our underwater artificial vision model with the hierarchical ICA architecture is 

developed in detail. In Section 5, the simulation is given in support of the developed scheme. Section 6 

presents the conclusions. 

2. Human Vision System 

2.1. Basic Vision Structure 

Vision plays one of the most important roles and constitutes the basic sensory capability in the brain 

functionality [10]. Vision begins with an organ that is sensitive to light. At the front of the eye is a 

transparent refracting surface (the cornea) and at the back lies a layer of neural tissue (the retina) with 

light-sensitive elements (the photoreceptors). In between, there is a variable aperture (the pupil) and 

behind that a second refracting element (the lens). The lens affords the possibility of changing the focal 

length or power (accommodation) to adjust for the distance to an object of interest.  

The eye’s output fibers that form the optic nerve eventually project to a relay nucleus in the brain 

where the different types of visual information are passed along for their initial processing in the 

primary visual cortex (V1). Numerous properties of the visual image are transmitted separately, and in 

parallel, to the primary visual cortex where certain basic features are now extracted. As the information 

leaves the primary visual cortex, this parallel organization of visual information is maintained, but now 

each type of information is sent to a different, largely independent higher cortical center. Thus, the 

visual system at this level has not only a parallel but also a modular organization.  

Conscious perception of a visual scene with all of the various properties reintegrated occurs later at 

higher levels of the visual system. At this stage, the various components of the scene, each with their 

attendant characteristics, are recognized and understood. A complete interpretation of the visual world 

involves not only identifying different objects and their spatial relationship to each other but also their 

significance. This demonstrates that visual perception is, by and large, not hard-wired and illustrates 

the inherent flexibility of the visual system. Recognition of the object of interest occurs in areas of the 

inferotemporal cortex (PIT and AIT). A motor response originates in the prefrontal cortex (PFC) and is 
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then transmitted via the premotor cortex (PMC) to the primary motor cortex (MC), which produces the 

response in skeletal muscles via the spinal cord. 

2.2. Typical Vision Characteristics 

In the human vision system, when the visual stimulus travel from the retina in the eye to the lateral 

geniculate nucleus (LGN) and then via the primary visual cortex (V1) on to higher visual centers (V2, 

V4, etc.), there are a number of typical characteristics among the visual perception processing layers:  

Modality. Different parts of the brain share similar anatomical structures and it is likely that they are 

also working under similar computational principles. For example, fMRI studies have shown that 

removal of one sensory modality leads to neural reorganization of the remaining modalities [33], 

suggesting that the same principles must be at work across modalities. One of the intriguing 

consequences of this modular arrangement is that, if a person suffers localized damage to the brain, 

involving one of the higher visual centers, the deficit can be very specific in nature. 

Redundancy Reduction. It has long been found that the functional role of some visual perception 

processing serves to capture the statistical structure of the visual stimulus so that appropriate action 

decisions can be made to maximize the chance of survival. Barlow provided the insight that the 

statistical structure is measured by the redundancy of the stimuli and that completely independent 

stimuli cannot be distinguished from random noise. One possible way for the neural system to describe 

the statistical structure is to remove the redundancy in the visual outputs, which refers to the efficient 

coding theory or the redundancy reduction principle.  

Sparseness. The neurons in V1 take each input from a number of geniculate neurons, and any 

individual neuron can only see a small portion of the image that the eyes are viewing. This small 

region is the receptive field and can be characterized as being localized, oriented, and bandpass [34]. 

Olshausen and Field [35,36] have indicated that the neural networks in the human vision system could 

perform sparse coding of the learnt features qualitatively similar to the receptive fields of simple cells 

in V1, which searches the succinct representations of the visual stimulus.  

Independence. Given only the unlabeled input properties of the visual image with virtually no prior 

knowledge on the signals, the neurons in V1 can learn certain basic features that capture the 

independent higher-level features in parallel. The basis functions can be learned to resemble the 

receptive fields of the neurons in the visual cortex and model the basic cortical processing of visual 

and auditory information with the linear efficient encoding [35–37].  

2.3. The Basics of ICA 

ICA was initially proposed to solve the blind source separation (BSS) problem, i.e., given only the 

sensor observations that are unknown mixtures of a set of underlying sources, the task is to separate 

the mixed signals and recover the original independent sources [14–17]. Neither the mixing process 

nor the distribution of sources is known in advance during the process. ICA algorithms have been 

further applied to explain the functional roles of the first stage of cortical visual processing, i.e., the V1 

simple cells. The redundancy reduction principle forms the foundation of ICA algorithms.  

The basic ICA model can be denoted as a linear superposition of the basis functions in a Bayesian 

framework [38]:  
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 (1)

where the observed input vector  represents the image patch in a d-

dimensional space,  align corresponds to the independent feature representation 

of the original image patch  in a q-dimensional space, ε is additive Gaussian noise, the input image 

patch  is assumed to be a linear mixture of underlying signals s with the additive Gaussian noise ε, 

and A refers to a d × q matrix of the basis functions denoting the dictionary of elementary features that 

generate the observations x. Generally speaking, there are two assumptions imposed on the underlying 

features s in the ICA algorithms. First, the underlying features are statistically independent, i.e., 

, which integrates the efficient encoding theory into the ICA. Second, the marginal 

distribution of the features  follow the sparse distributions, i.e., a specific low entropy code 

where the probability distribution of each feature’s activity is unimodal and peaked around zero. The 

sparseness is desirable because: (1) it allows the neural system to easily assign actions to the 

corresponding inputs, (2) it save metabolic cost, (3) many real-world signals do follow the sparse 

distribution [39]. Therefore the goal of the ICA is to find the basis function matrix A so that the 

underlying feature values s can be statistically independent over an ensemble of the images and bear 

the sparse structure.  

In the implementation, both the objective function and the optimization algorithm will play the key 

roles in the ICA generative model. The statistical property of the ICA such as the robustness and the 

consistency depends much on the choice of the objective function, and the nature of the ICA such as 

the convergence speed and stability depends a lot on the optimization algorithm. A general formulation 

for the ICA criterion is based on the concept of the mutual information:  

 (2)

where I refers to the mutual information among the independent component ,  is 

the probability density function of s,  corresponds to the Gaussian distribution with the same 

covariance matrix as s, H and  are respectively the differential entropy of s and the Gaussian 

random variable, J is the negentropy with the KL divergence that is normalized to have the appealing 

invariant property for the linear transformations. Here to minimize the mutual information I of the 

transformed components s is in fact the maximization of the negentropy J. The farther away from the 

Gaussian distribution the independent component s is, the less the mutual information I is, and the 

more the negentropy J is. The objective function of the ICA is hereby to maximize the negentropy. 

3. Ocean Investigations 

3.1. Underwater Vision Systems 

In the ocean investigations, underwater observations can provide real time information about the 

specific underwater environments. At the same time, they are relatively benign, resulting in limited 
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damage of the habitat, making them particularly suitable for monitoring sensitive objects and areas or 

threatened and endangered species. 

The establishment of the underwater information collection over time depends on a vision system 

providing insight of the ocean investigations with great reliability, accuracy and the cost reduction, 

which highlights a need to balancing the video quality and the physical limitations (range, resolution, 

frame rate and compression) while maximizing the memory capacity and battery power. Recently, the 

autonomous and remote vision system has become a predominant tool due to the continuous 

navigation and sampling it offers to achieve simultaneous observations over large areas. 

In this context, the C-Ranger AUV system with a number of sensors on board is used here as the 

basis of our underwater vision system. The C-Ranger is an open-frame AUV with the sizes of  

1.6 m × 1.3 m × 1.1 m (length, width and height), as shown in Figure 1.  

Figure 1. (a) C-Ranger is in deployment. (b) The coordinate system of C-Ranger platform. 

(a) (b) 

The AUV has good maneuverability due to its five DOFs, including surge, heave, roll, pitch, and 

yaw. The thrust system of this platform consists of five propeller thrusters, where two thrusters 

paralleling to the bow direction are installed on the abdomen to provide horizontal thrust for mainly 

controlling the surge and yaw, while the other three thrusters are employed to provide vertical thrust to 

control the heave, roll, and pitch, two of which are installed on both sides of the bow, and the 

remaining one is installed on the rear of the vehicle. The upper hull of the C-Ranger is the instrument 

compartment housing sensors, two industrial computers, communication module, internal monitoring 

module and other equipment, while the lower hull is the power and thrust system composed of  

lithium-ion batteries, power management module, motor-driver module, etc. The maximum speed of 

the C-Ranger is 3 knots, and it can operate for up to 8 h when fully charged (tested at a speed of one 

knot). The C-Ranger AUV is designed for neutral buoyancy and the maximum depth is 300 m below 

the sea surface. The sensors installed on the C-Ranger AUV can be basically divided into two groups: 

the internal and the external. Internal sensors include digital compass, gyro, attitude and heading 

reference system (AHRS) and pressure sensor. External sensors include mechanical scanning sonar, 

Doppler Velocity Log (DVL), altimeter, CCD camera and GPS. An external video monitoring device 

with high resolution and sensitivity, the Kongsberg Maritime OE14-376 Light Ring Color Camera, has 

been installed in the C-Ranger AUV for the composite recording missions, providing a 43.5° diagonal 

angle of view in water and supporting a water depth of 3,000 m.  
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3.2. Underwater Imaging Model 

Underwater images are essentially characterized by poor visibility, which result from the specific 

properties of light in water, such as the limited range, non uniform lighting, low contrast, diminished 

colors, blur imaging and so on. Moreover, owing to the complexity of the marine environment, the 

optical properties can often be modified, so the underwater images may present large temporal and 

spatial variations. The Jaffe-McGlamery model is well-known in the analysis of the underwater image 

formation [40–42], with the following basic assumptions: 

Linear Superposition of Irradiance. The underwater imaging propagation process at a specific point 

can be decomposed into three additive linear components: 

 (3)

where Et, Ed, Ef, Eb are respectively the total irradiance, the direct component, the forward-scattered 

component and the backscattering. The direct component is the light reflected by the object surface 

and entered the camera without scattering. The forward scattering is the amount of the randomly 

deviated light reflected by the object on its way to the camera, which enters the camera after scattered 

at a small angle and causes blurring of the image features. The backscattering is a significant fraction 

of the light reflected not by the object but still entered the camera due to the suspended particles in 

transmission, which causes undesirable differences of contrast and masks the details of the scene, 

though visibility may indeed be augmented with artificial lighting. 

Attenuation Modeling for Medium Light Interaction. The light intensity in the Jaffe-McGlamery 

model is an exponential decay with distance: 

 (4)

where i is the wavelength of light, d is the distance traveling in a liquid, Li(d) is the light intensity of 

wavelength i, L0,i is the light intensity of wavelength i at the light source, and ci is the attenuation 

coefficient at wavelength i, respectively. The attenuation usually leads to a hazy and poorly contrasted 

image background. 

Besides, the Macroscopic floating particles (marine snow), can also be considered as unwanted 

signals. When considering the magnitude, backscattering and marine snow are the greatest degradation 

factors, forward scattering comes second and the attenuation follows closely. 

3.3. Image Quality Enhancement 

Due to a great many impacts on the underwater image quality mentioned above, image enhancement is 

one of the key issues to optimize our understanding. In this paper, we present a generic parameter-free 

enhancement method to make a total abstraction of the image formation process, reduce underwater 

perturbations, and correct the contrast disparities caused by the attenuation and backscattering, without 

the prior knowledge of the depth, the distance and the water quality.  

The color space model of the image is first converted into the YCbCr space to concentrate only on 

the luminance channel which corresponds to the intensity component. The homomorphic filtering is 

adopted to correct non uniform illumination, enhance contrasts and sharpen the edges at the same time. 

t d f bE E E E  

0,( ) exp( )i i iL d L c d 
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Wavelet decomposition is further introduced to the homomorphic filtering for image denoising. The 

wavelet base is nearly symmetric orthogonal with a bivariate shrinkage exploiting interscale dependency.  

The underwater image is first represented as the product of the illumination and the reflectance: 

 (5)

where I(x,y) is the collected image, i(x,y) is the illumination multiplicative factor, and r(x,y) is the 

reflectance function. When taking the logarithm of the image: 

 (6)

the Fourier transform of the log-image becomes: 

 (7)

where Fi(u,v), Fr(u,v) are respectively the Fourier transform of ln i(x,y) and ln r(x,y). 
One kind of high-pass filter  that merges the property of wavelet decomposition is 

introduced here to decrease the contribution of low frequencies and amplifies the contribution of mid 

and high frequencies, sharpening the object edge in the image: 

 (8)

where  is the level of the wavelet decomposition,  is the stopping coefficient,  and  are 

respectively the horizontal and vertical weights,  is a constant between the two parameters  and , 

which is introduced to control the filter function sharpening. The inverse transform is then taken to 

come back to the spatial domain: 

 (9)

Taking the exponent to  will obtain the filtered image I’(x,y): 

 (10)

where i’(x,y), r’(x,y) are respectively the illumination and the reflectance. 

4. Early Artificial Vision Model 

4.1. General Vision Model 

The idea of the early artificial vision model here is that we try to apply one hierarchical ICA 

architecture into the underwater images for ocean investigations so that the existing residual nonlinear 

dependency problem can be modeled and transformed into an easier modular solution with multiple 

layers. Since the linear ICA algorithms have been so successful in explaining the very first layer of 

perceptual information processing in the cerebral cortex, it seems reasonable to hypothesize that the 

higher layers might also be explained by a linear ICA model.  
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Figure 2. The flow chart of our approach. 

 

The common feature hypothesis will be first taken to extract the basis function in common form of 

the universal images patches for the underwater vision model. Some sensory input constraints are 

imposed and the recursive application will be derived by the generative model of ICA in each layer. 

The flow chart of our approach is shown in Figure 2, where the left part represents the learning process 

of the important parameters extracted from the universal images, and the right part is referred as the 

test process for the underwater images. Before formally simulating the basis function from the 

universal images, some preprocessing has been first done, such as dividing the images into patches, 

whitening, and the dimensionality reduction. The information that provides no interesting structure 

will be discarded and the activation function will be taken to make sure that the marginal distribution 

obeys the input requirements for the next layer. A number of common visual features can then be 
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extracted from randomly collected universal images, the embedding basis function in each layer will 

be further adopted for the underwater images.  

4.2. Common Feature Hypothesis 

In the human vision system, it is found that the low-level visual layers, such as retina, LGN and V1, 

are shared components that process all the visual information we perceive. These layers develop and 

mature gradually since childhood, and provide the basis with common features from the scenes 

encountered for all the visual tasks in life.  

Therefore, the concept of the common feature hypothesis suggests that all visual stimuli share 

characteristics in common such that the knowledge from one set of visual stimuli can be applied to a 

completely different one. So here we try to extract those common visual features which is essential  

for underwater vision from a set of the universal images, e.g., the natural images, and provide the 
information for ICA in the next step. Let there be  images taken under the sea, , 

where  denotes the th underwater image. Suppose that the number of the natural images is N, 

, there must be some inherent common visual features  that can be extracted both in 

the natural images and the underwater images: 

 (11)

where f denotes the attribution extraction function, Fnature and Fsea are respectively the typical features 

obtained from the output of the function f by the natural images and underwater images, and  

represents those knowledge that are shared by the different sources of the visual stimuli.  

4.3. Artificial Vision Model with ICA 

Pre-whitening. Suppose the size of each input image is , the images are first transformed by 

a pre-whitening filter and then normalized to follow a Gaussian function with the zero mean vector and 

the unit variance [36]. It is believed that a surprising fact in the human vision system is that there exists 

the marginal distribution regularization process and the sensory inputs are whitened in the retina and 

the LGN before the transmission to V1 [12,18,23]. The performance of the early artificial vision model 

depends much on the form of the input data. If the observed data strongly deviate from our assumption, 

the results could be errant no matter how much effort we put into the model parameter estimation. 

Besides the functional role of removing the second-order pairwise redundancy as the natural images 
obey the  power law in the frequency domain [43], pre-whitening might also serve as formatting 

the sensory input for the cortex so that the basis function could cover a broad range of spatial 

frequencies. The steps of the pre-whitening process are as follows. To avoid the boundary effects, 

before dividing the natural images into all the possible image patches, we will first cut a number of 

pixels  off the boundary and change the th input image into a D-dimensional  
vector ID with . Afterwards, we divide each input image ID into all the  

possible image patches in a range of  size. The sample set  with  image 

patches then takes on a  matrix, . Figure 3 shows examples of the  
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pre-whitening process, which regulates the marginal distribution of the original images to follow a 

generalized-Gaussian-like distribution.  

Figure 3. The distribution of the pixel values before and after pre-whitening 

transformation. (a) Original image and distribution. (b) Pre-whitened image and distribution. 

  

 
(a)  (b)  

Whitening. We first convert  to the centered matrix  by substracting the mean vector matrix of 

. The covariance matrix of  can then be calculated and represented as , where 

 refers to the diagonal matrix of the eigenvalues,  denotes 

the eigenmatrix composed of the eigenvectors. After adjusting  in a descending order and arranging 

the corresponding eigenvectors, the Principal Component Analysis (PCA) approach is adopted here to 

select the first th eigenvectors and form the whitening matrix  in a  size with , 

where  turns to be a  matrix and  a  matrix. The centered sample matrix  will then 

be further whitened by , where the whitened sample matrix  is in a  size. After 

whitening, all the components of the whitened matrix  are uncorrelated to each other and the 

variance of each component turns into 1, which is more convenient to the ICA processing. 

Rising dimensionality. After the ICA operation with , we get the independent component 
representation  in a  size. In order to reconstruct the original images, the dimensionality of  

need to be the same as it is in the sample set , so here the dimensionality of  is further increased 

into a  size by whitening again with . The whitened independent component representation 

 is also fit for the requirements of the inputs for the multiple layer ICA architecture.  

Nonlinearity. A further development to convert the direct ICA output 

 

into a standard distribution 

for the input of the next layer will be derived here in a nonlinear way. In fact, the outputs of those 

classical ICA algorithms which resemble the receptive fields of the simple visual cells on the natural 

images typically follow the symmetric and sparse marginal prior [12,23,27]. Motivated by that, the 

ICA filter response can be well approximated by a generalized Gaussian distribution.  

Assuming that the direct ICA output  obeys the following probability density function (pdf): 
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where 
 
is a scale parameter and  is a shape parameter and denotes the gamma function, 

 [44]. The overall nonlinear transformation function will then be: 

 (13)

where g is the coordinate-wise nonlinear activation function that formats the marginal distribution to 
Gaussian, 

 

represents the cumulative density function of the standard normal distribution and  is 

the incomplete gamma function, . Here three consecutive steps are involved to 

transform the ICA output 

 

into such a normally distributed random variable : (1) Discard the signs 

of the ICA feature that provide no interesting structure in the vision model. It has been argued that the 

signs of the ICA filter outputs do not carry any redundancy among the dimensions and some 

algorithms have implicitly or explicitly discarded the signs [29–32]. We take place of the ICA filter 

output 

 

by the new random variable 

 

so that 

 

could bear the following pdf:  

 (14)

(2) Transform 

 

to a uniform distribution by its own fitted cumulative distribution function (cdf), 

, . For each dimension  of , the empirical cdf of the absolute value 

 will be first estimated by calculating the histogram of  in the range of the bins between  

and  and the size of each bin is . (3) Transform 

 

to a Gaussian distribution by applying the 

inverse cdf, .  

In this way, the activation function discards the signs of the ICA filter outputs and converts the 

marginal distributions to the Gaussian distributions, so that the feature extracted from the previous 

layer can further feed into the next layer as the new inputs.  

Hierarchical architecture. A collection of the individual ICA filter units will be organized into a 

hierarchical model. The model is motivated by the idea that higher layers of the visual pathway, such 

as V2, might work under similar computational principles as the V1 [27,28]. The underlying is to 

generate multiple versions of ICA features at different levels, which when combined, will probably 

provide more stable predictions. Hence, we try to facilitate such a hierarchical ICA architecture at 

multiple levels on top of the first layer ICA outputs to capture the nonlinear statistical structures of the 

visual inputs that cannot be obtained by a single layer of linear ICA. The first layer of the ICA learning 

starts with an intelligent guess of the initial parameters, by feeding the model with a set of original 

input image patches , so as to memorize the basic linear inherent nature reflected from the ICA 

directly. After the first layer of ICA filter, the sensory input set  will be represented by the ICA 
feature set . In order to better achieve the nonlinear statistical structures, the 

coordinate-wise nonlinear activation functions will be applied to transform each dimension of the first 
layer ICA output  to the second layer ICA input , so that the input of the next layer could 

satisfy the constraints imposed by the efficient encoding model. The statistical structures among 

dimensions of  are then extracted by the next layer of linear ICA. The hierarchical model with more 

layers can be established to have a further understanding and improve the interpretation towards the 
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early visual input from diverse perspectives. We will first take the above hierarchical ICA model into 

natural images to extract the generic common visual features, and then make use of the basis functions 

for the underwater images. One hierarchical ICA architecture is shown as Figure 4. 

Figure 4. The hierarchical ICA architecture. (a) Image patch vectors; (b) Activation maps. 

 

4.4. Algorithms 

In our paper, the optimization criterion in the ICA is based on the negative entropy concept. One 

fast algorithm is taken here with the nonlinear activation function applied into the multilayer ICA 

architecture, which first selects an initial point and then replaces the original selection by updating the 

multiple independent components in the iterative process, and gradually achieves the convergence into 

a fixed point. The pseudo-codes of the steps are as follows:  

 

 

Algorithm 1 

(a)Image patch vectors 

 
 
 
 
 

ix        ii  Asx              i
x        ii

  A sx            i
x        ii

  A sx  

(b) Activation maps 
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1. Input all the image patches in the sample set  with the pre-whitening steps and initialize the basis function matrix  

2. Calculate the mean vector 

 

from the input image patches,  

Construct the  mean matrix for the sample set ,  

Apart from the mean matrix and get the centered sample matrix ,  

3. Get a  covariance matrix,  with the diagonal matrix of the eigenvalues 

 
and the eigenmatrix .  

Adjust  in a descending order and get the corresponding eigenvector  by the arrangement of the eigenvalue 

 

Apply the PCA projection and select the first th eigenvectors to form the whitening matrix  in a  size, 

, where  turns to be a  matrix and  a  matrix.  

4. Whiten the centered sample matrix  with  in a  size. 

5. Take the Fast-ICA algorithm and get the orthogonal matrix  in a size, , where 

the basis function  is a  matrix and the th element 
 
in  is a -dimensional vector.  

Compute the ICA feature coefficient matrix  in a size.  

6. Reconstruct the approximation of the original image sample set  with .  

7. Whiten again by Step 3 and get the  whitened matrix  by .  

8. Discard the signs of the output  in this layer and take the nonlinear activation function  to form the input 

sample set  for the next layer, .  

9. Repeat the above process to achieve the recursive multiple layer ICA architecture. 

The steps of the fast fixed-point ICA algorithm are as follows.  

Algorithm 2 

1. Input the whitened sample matrix  and set the maximum number of iteration for every orthogonal component as 

.  

2. For  

For  

Judge the condition, as the orthogonal matrix  needs to meet the condition formula  , 

where  is the unit matrix, so each column vector 
 
in  is required to follow 

 
and 

, i.e., the norm  for each iteration .  

Take the following iteration formula , where  

refers to the mathematical expectation and the activation function is .  

Get the orthogonalization for the ingredients by  

Normalize  by  

Continue the iteration until the convergence is achieved. 

End 

End 
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The numerical results of the hierarchical ICA model with the above algorithms are shown layer by 

layer into the images in the next section.  

5. Simulations and Result Analysis 

In our simulation experiments, video recordings were collected by the C-Ranger AUV system with 

an average submergence depth of 2–3 meters. At each observation site, the environmental variables, 

including the ambient water temperature, current speed at the mooring location, the depth and the 

direction, as well as the survey-design variables, such as the AUV cruising speed and direction, the 

navigation and positioning, the altitude above the sea floor, AUV distance from the bottom, were 

recorded simultaneously. The LED lighting (typical lumens: 1,200 in the water, color temperature: 

6000° K) was adopted for illumination when the natural sunlight are insufficient. Mixed with those 

images taken by the divers or underwater photographers together, the image database was formed to 

verify the performance of our proposed model. Figure 5 shows examples of the underwater images 

collected. All the simulation experiments have been run on the same x86_64 Windows machine with at 

least 4 GB of memory and 2+GHz processor. The execution environment is under MATLAB 7.0. 

Figure 5. Sample underwater images.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Some preprocessing was then done to decrease noise or perform feature extraction in advance 

before formally ICA computation. The proposed underwater enhancement method was adopted here to 

get better image quality for the ocean investigations. Figure 6 lists the resulting enhancements for one 

example underwater image by the wavelet filtering, the homomorphic filtering, as well as the  

proposed method.  
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Figure 6. Image quality enhancement. (a) Original image. (b) Wavelet filtering.  

(c) Homomorphic filtering. (d) Image enhancement proposed. 

 
(a) (b) 

  
(c) (d) 

The common feature was first extracted from the natural images by the fast ICA algorithm. Figure 7 

briefly summarizes the hierarchical ICA computation process for one example image. The way to 

extract the independent features, the activation maps, the dimensionality rising, the input image in each 

layer, as well as the corresponding image patches could be clearly seen here. Figure 8 shows the 

activation maps in each layer when the image patches are evenly distributed with M = 512, n = 10,  

p = 16, where the leftmost are the original natural images, the second column is the distribution of the 

pixel values in the whitened images, the third to the rightmost columns are respectively the 

corresponding activation maps from the first to the third layer. Table 1 lists the average running time 

of training one natural image in each layer for the hierarchical ICA architecture. Figure 9 illustrates the 

basis functions retrieved for the first layer, the second layer and the third layer respectively. We further 

tried to investigate what kind of statistical structures each layer is fond of. In particular, the first layer 

seems more activated by seemingly blank background, while another two layers seem to prefer the 

textures of the images.  
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Figure 7. The hierarchical ICA computation process of one example image.  

 

 

 

 

 

 

 

 

(a) Original image

2nd Vision Layer 
 

 

3rd Vision Layer 

 

Activation maps                                                                           Image patch vectors 

(b) Pre-whitened image ix  (e) ICA reconstruction  ii  Asx  

(c) One image patch from ix   

(d) One image patch of the ICA feature is    

(f) Dimensionality rising with T
i is V s  

(g) Input image i
x  (j) ICA reconstruction  ii

  A sx  

(h) One image patch from i
x  

(i) One image patch of the ICA feature i
s    

(k) Dimensionality rising with T
i i
  s V s  

 

(l) Input image i
x  (o) ICA reconstruction  ii

  A sx  

(m) One image patch from i
x   

(n) One image patch from the ICA feature i
s   
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Figure 8. The activation maps for the natural images in each layer. (a) The original image 

and the distribution. (b) ICA responses in the 1st, 2nd, 3rd layer. 
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Table 1. The average training time of the natural images. 

ICA Layer 1st Layer 2nd Layer 3rd Layer 

Running time（s） 131.3344 78.8672 29.7673 

Figure 9. The basis functions. (a) Basis functions in the 1st layer; (b) Basis functions in the 

2nd layer; (c) Basis functions in the 3nd layer. 

(a) (b) 

 
(c) 

The underwater vision model was then initialized with the help of the basis functions extracted from 

the natural images by the fast ICA algorithm in each layer. Figure 10 shows the activation maps per 

layer when M = 512 and p = 16, where the leftmost are the original underwater gray-level images, the 

second column is the distribution of the pixel values in the whitened underwater images, the third to 

the rightmost columns are respectively the corresponding activation maps from the first to the third 

layer for the underwater images. Table 2 lists the average running time of testing one underwater 

image in each layer for the hierarchical ICA architecture. Figure 11 lists the basis functions retrieved 

directly from the underwater images for the first layer and second layer respectively. It is shown that 

the basis functions derived from the natural and underwater images are very similar to each other, so 

we can further make use of the common feature hypothesis for the other experiments in the ocean 

investigations. In this way, the proposed model could achieve good performance effectively in the very 

limited duration. Figure 12 shows the color scale of the activation maps in the Matlab 7.0 visualization, 

where the red color corresponds to the maximum value and the blue color refers to the minimum value. 

Figure 10. The activation maps for the underwater images in each layer.  

   

   

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5
x 10

4

-3 -2 -1 0 1 2 3
0

2000

4000

6000

8000

10000

12000

14000

16000

18000



Sensors 2013, 13 9123 

 

 

Figure 10. Cont. 
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Figure 10. Cont. 

   

   

   

   

   

   

   

Table 2. The average test time of the underwater images. 

ICA Layer 1st Layer 2nd Layer 3rd Layer 

Running time (s) 18.6875 1.7204 2.1205 
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Figure 11. The basis functions. (a) Basis functions in the 1st layer; (b) Basis functions in 

the 2nd layer; (c) Basis functions in the 3nd layer. 

 

(a) (b) 

 
(c) 

Figure 12. The color scale. 

  

From our underwater artificial vision model, it is shown that the ICA feature outputs in the first 

layer respond to the small local edges of the underwater objects, the second layer outputs are similar to 

the texture boundaries and shape contours, corresponding to the underwater image segmentation that 

could well distinguish the pure and complex background in the larger size of the textures, and the third 

layer outputs possibly have preferences for more detailed and complicated textures in the sea. 

Although we have no initial guess of what kind of statistical structures the second and third layer 

outputs might capture in the past, as is shown in the basis functions, some of the inputs in the second 

layer prefer strong activation within a certain orientation range but have no preference for locations, 

while others have a location preference but welcome activation of the first layer outputs of all 

frequencies and orientations, and some develop a picky appetite for both. The activation map of the 

third layer suggests that they might be tuned for the complicated textures. By accumulation, it will be 

more helpful to produce more clear ICA outputs in higher quality for each layer. The same procedure 

can be repeated and extended to more layers when we have better analysis and understanding in the 

ICA representation developed by the deeply embedded features in our model.  
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Figure 13. The feasibility of the navigation. (a) Original example image and the ICA 

responses; (b) 3D pixel map of the ICA outputs in the 1st, 2nd, 3rd layer; (c) Segmentation 

from the original image and the ICA response in the 2nd layer; (d) Traversable region 

recognition; (e) Navigation comparison. 

  
(a) 

 
(b) 
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Figure 13. Cont. 

(c) 

(d) 

(e) 

Here our ICA architecture was also taken to explore the feasibility of implementing the potential 

underwater visual tasks. Figure 13 is one example of the navigation ability simulation for the ROV or 
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AUV based system. It is shown from the 3D pixel map in Figure 13b that the difference of the ICA 

responses increase largely in the 2nd and 3rd layer, compared to the 1st layer, and we could benefit 

from the performance to evaluate the pure and large area region under the sea and hereby to provide 

the possible navigation information. Figure 13c lists the segmentation results respectively extracted 

from the original image by the region merge and split method as well as those from the ICA output 

with our proposed approach. Figure 13d shows the corresponding traversable region recognition, and 

the safe region is located within the solid line and outside the dotted line. Figure 13e makes a 

comparison with the navigation results in the example underwater image. In average, the proposed 

method could recognize 96.3% of the pure and large region in the sea in our database and provide us a 

good possibility for the navigation. Together with other sensors such as the sonar, we could have a 

more clear picture about the route planning for ocean investigations.  

6. Conclusions 

In this paper, we try to explore an early and elementary underwater artificial vision computational 

model. The basic ICA principle successfully used for the very first layers of visual information 

processing in the cerebral cortex has been extended and developed to explain the mechanism of the 

higher layers in a much complicated undersea environment for ocean investigations. The key idea of 

the model is to transform the high-order residual redundancy to linear dependency that can be easily 

exploited by the traditional ICA algorithm. The hierarchical ICA architecture has been set up with the 

same structure constructed at every level in the framework of our C-Ranger AUV system. As the 

redundancy reduction is dealt with progressively along the multiple layers, the nonlinear statistical 

structures of the underwater images in higher orders will be captured accordingly with a simplicity of 

generalization. The simulation results have shown the effectiveness and the consistence for the 

collected underwater images in our scheme. The first layer produces the Gabor-like basis functions, the 

second layer has some visual outputs with texture boundaries and shape contours, and the third layer 

shows interesting results that seem to have preferences for more complicated textures. The 

performance of the artificial vision model provide the possibility to help with the implementation of 

some potential underwater visual tasks, and an effective visualization understanding need to be further 

done in the future.  
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