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Abstract: The re-identification problem has been commonly accomplished using
appearance features based on salient points and color information. In this paper, we focus
on the possibilities that simple geometric features obtained from depth images captured
with RGB-D cameras may offer for the task, particularly working under severe illumination
conditions. The results achieved for different sets of simple geometric features extracted in
a top-view setup seem to provide useful descriptors for the re-identification task, which can
be integrated in an ambient intelligent environment as part of a sensor network.
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1. Introduction

There has been an enormous development in camera-based systems in the last fifteen years. The
management of the resulting large amount of acquired data justifies the development of automatic
techniques to leverage the human operator monitoring overload, i.e., the surveillance system costs.
Another emerging application context where this kind of technology is playing an important role is
in ambient intelligence scenarios. In this field, information from multiple networked sensors is fused
into the system to assist in monitoring and decision-making tasks, including medical applications [1]
and 3D semantic modeling [2].
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Current human monitoring applications focus on non-overlapping camera networks to perform
behavior analysis and automatic event detection. Thus, people detection and tracking approaches
are required abilities to be applied in this context aiming at developing automatic visual surveillance
systems [3].

The general computer vision re-identification problem refers to determining whether a person of
interest has been previously observed by the system [4–6]. Recent literature about the problem of
re-identification is mostly focused on appearance-based models. Among the appearance cues used for
this problem, interest points, structural information and color have deserved researchers attention, so
far [5,7,8]. Those works prove that 2D visual descriptors extracted from RGB images are a valid data
source to solve, at least partially, the problem. In this sense, facial and clothing appearance information
have already been used to re-identify individuals in photo collections and TV video [9]. However,
the face pattern presents low resolution in most surveillance scenarios. Clothing descriptors alone are
certainly weak, but can help to locate people with similar appearance within a limited period of time,
which may be later confirmed by a human. Indeed, human beings employ external features, such as body
contours, hair, clothes, etc., to complement person description and improve identification, particularly in
low resolution images [10].

The recent appearance of the Kinect sensor provides additional and affordable rough depth
information coupled with visual images, offering sufficient accuracy and resolution for indoor
applications [11]. Due to this fact, this sensor has already been successfully applied to detect individuals
and estimate their body pose [12,13]. As stated by Harville [14], depth devices: (1) are almost insensitive
to shadows and illumination changes; (2) provide additional 3D shape information; (3) include occlusion
data; (4) add new types of features to the feature space; and (5) add a disambiguating dimension.

Those advantages have led to the integration of RGB-D sensors for re-identification
purposes [15–18]. In [15], a previous camera calibration step is needed to build height maps,
which allow the system to define body prints. Each body print summarizes the color appearance at
different heights. A more recent implementation [17] makes use of a cylindrical representation. A
signature is extracted from the skeleton in [16], computing geometric features that may be related
to soft-biometrics. Satta et al. [18] proposed a multi-camera system for re-identification based on
joint relative positions extracted from the skeleton provided by the Kinect SDK. They also developed
a demonstrator that is able to process images from a pair of Kinect sensors providing frontal and
back views.

Not one of those works has considered re-identification from a zenithal camera. Most of them extract
features observing the whole body in optimal illumination conditions and mainly use the depth cue
to ease the segmentation module. However, different authors state the implicit advantage of using
depth information to reduce certain ambiguous situations. In this sense, the use of stereo pair based
approaches [19] has been proposed to take advantage of the depth information, reducing the inherent
illumination problems. Certainly, their performance is still affected by bad or changing illumination
conditions, as the correspondence map is based on visual information.

Top view cameras have already been used in surveillance applications [20], avoiding, in many cases,
the need of an accurate calibration step. The top view configuration has the advantage of being privacy
preserving, because the face is never recorded by the camera. However, depth information provides new
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features that are easy to extract. They lack the distinctiveness to identify an individual uniquely, but
provide some evidence that can be used to support or discard a given hypothesis. In the experimental
setup, the objective is not to identify precisely any identity, but to assist human operators in locating
similar individual(s), as assumed by the re-identification literature.

Once we have argued the use of the top view configuration, we carry out a brief analysis to establish
the proper camera location; see Figure 1. Since the angle of the vertical field of view of the Kinect is
43◦, the maximum vertical length of the monitored area, r, at a height, h, can be computed according to
the following expression:

r = 2 · tan

(
43◦

2

)
(H − h) (1)

If we consider an average person height of h = 1.75m, fixing the position of the Kinect to H = 3m

above the floor yields to r = 0.98m. For a normal walking speed of 1.4m/s, the Kinect is able to capture
an average of 18 frames (considering a capture rate of 25 fps) of each person traversing the surveilled
space. This number of frames must be enough to model an individual.

Figure 1. Kinect setup geometry.

In this paper, we extend the preliminary study presented in [21]. Our aim is to use soft biometric
features based on simple geometric features extracted from zenithal views provided by RGB-D sensors.
We skip the use of the appearance information provided by the RGB cue and focus on the depth data. We
claim that current consumer depth cameras can contribute to improve the identity descriptor information
for the re-identification task, constituting a valuable sensor node for networked multisensor systems.

2. Detection

As described above, the aim of this paper is to study the possibilities of re-identifying individuals in
RGB-D images acquired from a top view setup installed in an entrance door. To reduce illumination
artifacts, individuals are detected and modeled based exclusively on the depth cue, using the individual
trajectory information to build his/her model.



Sensors 2013, 13 8225

2.1. Background Modeling

Background subtraction is a common technique used to detect objects in surveillance systems. This
technique requires a robust background model to be reliable. The solution is particularly simplified
if the camera and lighting conditions are fixed, but the model must be robust enough to handle
illumination changes. Different approaches to background modeling have been proposed, due to its
inherent complexity. However, in our scenario, the use of depth information simplifies the segmentation
step [14], as illumination artifacts are avoided or minimized. Additionally, since we consider the top
view setup, walking people are clearly salient in the acquired depth images; see Figure 2(b).

Figure 2. (a) RGBimage, (b) depth image and (c) corresponding foreground mask obtained.

(a) (b) (c)

We have adopted the background subtraction method proposed by Zivkovic and van der Heijden [22].
According to their approach, a pixel-level background model is built from a Gaussian mixture model
(GMM) defined as:

p(~x|XT , bg) ≈
C∑

m=1

π̂mN (~x; ~̂µm, σ̂
2
mI) (2)

where T is the time window used to estimate the background/foreground model, XT = {x(t), . . . , x(t−T )}
is the training set (initial frames), ~̂µ1, . . . , ~̂µC are the mean estimations, σ̂1, . . . , σ̂C are the variance
estimations and I is the identity matrix. For each component in Equation (2), its weight is given by π̂m,
so if they are sorted in descending order, the number of components C is obtained as:

C = arg min
b

(∑
m=1

bπ̂m > (1− df )

)
(3)

where df controls the amount of the data that can belong to foreground objects without influencing the
background model. Indeed, the number of components in the GMM is not fixed as in other GMM based
methods [23].
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Observing that depth images are less sensitive to shadows and illumination changes, we
experimentally determined a value df = 0.2. The reason for this is that the background model computed
for the depth imagery will be much more stable than for RGB images. Given the background model in
Equation (2), a pixel belongs to the foreground if the Mahalanobis distance from the pixel value to some
component is less than three standard deviations. Otherwise, a new component centered in the pixel is
generated. Figure 2 shows the background subtraction results for some sample frames along with their
corresponding color and depth images. An advantage of this background subtraction approach is that it
does not rely on any height threshold, so it can even fairly detect kids and people sitting in a chair, as
can be seen in Figure 3.

Figure 3. (a) RGB image; (b) corresponding foreground mask of short people.

(a) (b)

Thus, according to Equation (2), a depth image pixel, depth(i, j), is classified as foreground using
the following formula that makes use of a threshold, cthr (minimum person height):

fg(i, j) =

{
depth(i, j) if p(depth(i, j)|bg) < ctrh

0 otherwise
(4)

2.2. Tracking

Tracking-by-detection approaches have evidenced good performance in different unrestricted
scenarios [24,25]. We have therefore adopted this focus to connect detections in terms of trajectories.

Figures 2(c) and 3(b) depict the segmentation results for different sample images based on the depth
information. Large connected components in the foreground image are associated to blobs. Given the
foreground image, fg, for frame, L, the set of v valid blobs is BL =

{
bL1 , b

L
2 , ..., b

L
v

}
. Those blobs

are matched with those detected in the previous frame, BL−1 =
{
bL−11 , bL−12 , ..., bL−1mL−1

}
, by means
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of an overlap test. Given a blob, bLp , in the current frame, we locate the previous frame blob with
larger overlap:

mbLp = arg max
k=1,...,mL−1

(
bLp ∩ bL−1k

)
(5)

This test is valid in this scenario, because with people walking at normal pace, the overlap of blobs is
high enough between consecutive frames. Indeed, blob tracking is simplified in this top view scenario,
as occlusions are hardly ever present.

A new trajectory hypothesis is triggered each time a blob appears in the scene and no suitable
matching with the previous frame is found; see the algorithm outline in Figure 4. A trajectory is then
defined as a list of blobs matched and related in consecutive frames, Tl = {bt1, bt2, ..., btl}, where the
first trajectory blob is defined as bt1 and btl, the last one. Short trajectories and those containing blobs
that are too small are considered noise.

Figure 4. Tracking algorithm summarizing the trajectory management.

B0 = ∅
l = 0

for each frame fi do
Bi = blobs in frame fi
for each blob bji ∈ Bi do

if bji ∩ bki−1 = ∅ ∀k then
l = l + 1

Create new trajectory Tl
Add bji to Tl

else
Tp trajectory of blob bki−1
Add bji to Tp

end if
end for

end for

3. Trajectory Modeling

As defined above, given a foreground image, fg, the set of v valid blobs it contains is
B = {b1, b2, ..., bv}. In the case that a blob, bp, corresponds to a walking human, generally the closest
blob pointing to the camera (lowest gray value), lies on the head; see different examples in Figure 2(b).
Thus, for a given blob, its minimum is defined as:

bpmin
= min(depth(i, j);∀fg(i, j) ∈ bp) (6)
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The closest point location and value are useful cues in depth images to split the blob into two
parts corresponding to the head and non-head areas by a simple in-range operation similarly to
Englebienne et al. [20]:

headp(i, j) =

{
fg(i, j) ∈ bp ∧ bpmin

≤ depth(i, j) ≤ bpmin
× thrhead

0 otherwise

noheadp(i, j) =

{
fg(i, j) ∈ bp ∧ depth(i, j) > bpmin

× thrhead
0 otherwise

(7)

The value of thrhead is set to 1.1 according to the ideal proportions of the human body, where the head
is approximately 1/8 of the body height. This process of head/no-head split is done whenever the blob
container is not too close to the image border. In those situations, the head may be partially or totally out
of the field of view, and the process may lead to erroneous calculations, as the highest blob point does
not necessarily correspond to the head. Therefore, in situations, such as the one reflected in the third row
of Figure 5, it is preferred to avoid the use of this heuristic.

Figure 5. Samples of (a) blob, (b) head and (c) no-head areas automatically extracted.

(a) (b) (c)

This salient object detection operation applied to the sample input depth image presented in the first
row of Figure 2 produces the blobs and sub-blobs shown, respectively, in the first two rows of Figure 5(b)
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and 5(c). As mentioned above, if a blob touches the image border, the head/no-head split is not applied,
as it is shown in the third row of Figure 5. In that case, the whole blob is considered no-head or torso.

An estimation of the individual volume can be obtained using the depth of the scenario floor. To
estimate the floor depth, depthfloor, we assume that most of the visible area corresponds to the reference
floor, i.e., a plane surface. The mean depth image, depth, is calculated as the average of the k first depth
images (assuming that no individual is present) as:

depth(i, j) =

∑k
L=1 depth

(L(i, j)

k
(8)

where depth(L(i, j) is the pixel, (i, j), of the L− th depth image from the sequence.
On the resulting depth, we calculate the mean pixel value to estimate the floor depth, depthfloor,

which is useful to compute the volumetric descriptors:

depthfloor =

∑height
i=1

∑width
j=1 depth(i, j)

width× height
(9)

Figure 6(a) depicts the trajectory of a 3D virtual volume built by means of the successive combination
of its tracked blobs.

Figure 6. (a) 3D trajectory virtual volume; (b) area (blob and sub-blobs) related features (in
pixels) extracted during a blob tracked trajectory (frames 105–120).

(a)
(b)

After describing the blob subparts and the rough estimation of the scene floor depth, a set of features
is defined. A vector of features, vbL

p , is computed for each blob, p, in the current frame, L, including the
blob area, areaLp , the projected volume, volLp , the center of the blob, cxLp , cy

L
p , its highest point location,

pxLp , py
L
p , and height, bLpmin

. Area and projected volume features are also included for head and torso,
if available.

vbL
p =

{
areaLp , vol

L
p , cx

L
p , cy

L
p , px

L
p , py

L
p , b

L
pmin

, headAreaLp , headV ol
L
p , torsoArea

L
p , torsoV ol

L
p

}
(10)

The blob tracking described in the previous section creates trajectories in time; observing the blob
descriptors presented in Equation (10), they may change over time. See, for example, the area-related
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features shown in Figure 6(b) for a given trajectory. Observe that the head area is not always greater
than zero; indeed, its value is zero at the beginning and at the end of the trajectory. This effect is due to
the fact that when a person enters or leaves the scene, he/she is not completely inside the field of view.
Indeed, the head and non-head split is only performed when the blob is completely inside the field of
view, i.e., its blob container does not “touch” the image border. To describe a trajectory, we will consider
only the trajectory features computed for those frames where the head/non-head split is done; we call
them the trajectory middle life.

A trajectory that corresponds to an individual can be characterized by a set of features extracted from
the evolution of the blob features in time. Observing that during the trajectory middle life, when the
head area is not zero, the trajectory features present a fairly constant behavior, we make use only of the
average value of each blob feature during the trajectory middle life.

We have selected for characterization purposes the following simple and fast to compute trajectory
features from Equation (10):

• Blob height: given by the closest to the camera blob point, which corresponds to bpmin
in

Equation (6).
• Blob areas: the blob and sub-blobs areas (head and non-head, if obtained) computed from the

regions extracted according to Equation (7).
• Blob projected volume: the blob and sub-blobs (head and non-head, if obtained) are projected to

the floor. For a blob, bp, containing npixels pixels, its blob projected volume is computed adding
the height value of each blob pixel and subtracting the floor height, depthfloor, multiplied by the
number of blob pixels, i.e., volumebp =

(∑fg(i,j)∈bp depth(i, j)
)
− npixels ∗ depthfloor

• Blob speed: the mean speed in terms of pixels per second is added to the trajectory descriptor.

Thus, given a trajectory, TA, we define the set, BTA
= {bp ∈ TA}, as the blobs that make up the

trajectory middle life of TA. From BTA
, the feature vector, XA is:

XA = (b̄A, areaA, headAreaA, torsoAreaA, volA, headV olA, torsoV olA, speedA) (11)

where

b̄A =
1

nA

∑
bp∈BTA

bpmin
(12)

areaA =
1

nA

∑
bp∈BTA

areap (13)

headAreaA =
1

nA

∑
bp∈BTA

headAreap (14)

torsoAreaA =
1

nA

∑
bp∈BTA

torsoAreap (15)

volA =
1

nA

∑
bp∈BTA

volp (16)

(17)
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headV olA =
1

nA

∑
bp∈BTA

headV olp (18)

torsoV olA =
1

nA

∑
bp∈BTA

torsoV olp (19)

speedA =
1

nA

∑
bp∈BTA

|cp − cp−1|
|timep − timep−1|

(20)

being nA the cardinality of BTA
, timep the time of blob, bp, and timeb−1 the time of the previous blob to

bp in trajectory, TA. Previously, features are normalized to the range [0,1] in order to avoid bias toward
features with higher ranges.

The matching of feature vectors, XA and XB, corresponding to the query subject and one subject
in the gallery set, respectively, is computed as the minimum Euclidean distance between XA and XB,
d(XA,XB):

d(XA,XB) = min
XB∈gallery set

{‖XA −XB‖2} (21)

4. Results

To test the selected features for re-identification, we have collected data using a camera located in
the upper frame of a door entrance. The resulting continuous videos have been manually annotated
to get the ground truth. Below, we will describe the results for two experimental configurations: (1)
SequenceA, containing around 14, 200 frames; and (2) SequenceB with 6, 000 frames. Both sequences
have no restrictions imposed to the number of individuals (they respectively have around 20 and 10

different identities, all of them Caucasians and in the age range 20 − 45) simultaneously present in the
field of view, their speed, clothing, etc.

4.1. Trajectory Statistics

We have automatically removed those trajectories of individuals not completely visible during the
crossing action. We define as the crossing action each time a individual crosses the monitored area under
the camera. The total number of trajectories analyzed in the experiments was 211 for SequenceA and
54 for SequenceB. Figure 7 shows the central frame of some trajectories that the method tagged as valid
from all the trajectories extracted in SequenceA. The reader may observe that there are different crossing
configurations and illumination conditions.

Histogram-based representations of the some trajectory features in SequenceA are presented in
Figure 8. As mentioned in Section 3, each trajectory feature is computed as the mean of the values
observed during the trajectory middle life, i.e., when the blob could be divided into head and non-head
sub-blobs. Figure 8(a,b) suggest that area and volume information are not coupled. Indeed, two blobs
with the same area may project different volumes due to the height difference of the individuals to which
the blobs corresponds to.
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Figure 7. Examples of central frames of some trajectories detected as valid from SequenceA.

Figure 8. Normalized projection of (a) the area features; (b) the volume features; and (c)
the speed and height features for the analyzed trajectories.

(a) (b)

(c)
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4.2. Re-Identification

For re-identification evaluation, we have first analyzed the longest sequence, i.e., SequenceA. In this
sequence, each trajectory is compared with the rest in a single-shot approach. This means that we
have performed an experiment considering that the training set is composed by the features of a single
trajectory, while the test set contains the remaining ones. Thus, the experiment is repeated 211 times for
each proposed trajectory representation. Different feature vectors have been used to describe a trajectory:

• AH: only the area (head and torso) and height features of Equation (10) are used.
• AHV: the area (head and torso), height and volume (head and torso) features of Equation (10)

are employed.
• AHVS: the area (head and torso), height, volume (head and torso) and speed features of

Equation (10) are employed.

For each re-identification, the decision threshold defines if the re-identification is correct or not
attending to the distance. The performance evaluation is done using recall, accuracy and precision.
The receiver operating characteristic (ROC) curve is computed for the nearest neighbor (NN) classifier,
considering different decision threshold values. The summarized results are depicted in Figure 9.

As expected, raising the decision threshold increases the recall or true positive rate (TPR), but reduces,
almost simultaneously, the accuracy. The use of more features to describe the trajectory seems to improve
the recognition rates. Nevertheless, the inclusion of the speed feature (AHV S variant) does not introduce
any discriminant information; indeed, the performance decreases. Certainly, if an individual modifies his
speed in different observations, the descriptor is not valid to re-identify him/her. However, as described
below, speed can be used for detecting unexpected situations.

The results for SequenceA indicate that, apparently, a set of simple features provides useful
information to re-identify individuals. We can conclude that even using such a set of naive and weak
descriptors, the individual re-identification performances are promising. Focusing, for instance, on
Figure 9(c), if the decision threshold is set to 0.05, the precision is close to 50% and the recall to 64%.
Observe that no appearance-based descriptor has been used in the experiments.

To provide a better understanding for the re-identification problem, we include the Cumulative
Matching Characteristic (CMC) curve for both sequences, but only considering approaches AH and
AHV , i.e., eliminating the speed-based feature. The CMC curve provides the probability of finding the
true identity among the first k models. For SequenceA, the CMC curve is shown in Figure 10. The
integration of more features in the model seems to improve the identity discrimination. In SequenceB,
we have imposed the condition to have a similar number of crossings per individual. The total number of
individuals is nine, and the total number of analyzed crossing actions was 54. As depicted in Figure 11,
this sequence presents hard illumination conditions, as there are severe illumination changes. During
the first half of the sequence, the lights are off and then switched on. Indeed, in the first part of the
experiment, appearance-based approaches would not be able to detect, track and model the different
identities, due to the semi-darkness conditions. However, the geometric-based model proposed may
solve those situations to some extent, as is suggested in the CMC curve of this sequence, see Figure 12.
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Figure 9. (a) Recall or true positive rate (TPR); (b) accuracy; (c) precision vs. recall.

(a) (b)

(c)

Figure 10. Cumulative Matching Curve for SequenceA.
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Figure 11. RGB and depth shots exhibiting hard illumination conditions.

Figure 12. Cumulative Matching Curve for SequenceB.

4.3. Unexpected Features Detection

In this subsection, we present the results of exploring the use of the features defined in Equation (10)
to detect unusual objects or behaviors.

In Figure 8(a), we plot the head blob and no-head blob normalized mean area for each trajectory in
the sequence. Our first aim is to detect trajectories associated to blobs whose dimensions correspond
to outliers and unexpected dimensions, a circumstance that could suggest the presence of unexpected
object/behavior in the monitored area. Indeed, the plot indicates the presence of area values quite
different to the mean. Those peaks correspond to situations similar to those presented in Figure 13.
The blob or head blob dimensions are abnormal; therefore, an event can be triggered to assist a potential
human operator. If the system task is devoted to people counting, such situations can evidence the
possible intentionality of someone to hide himself from the automatic surveillance system. During the
experiments, the system was able to detect all trajectories belonging to unusually big blobs (0.5% of the
total). In Figure 13, two examples of unusually big object detections are shown.
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Figure 13. Two samples of selected situations with too large detected heads (left) and blob
(right) size.

Speed is another observable trajectory feature that has no discriminative power according to the above
results in re-identification, but it can alert about abnormal behaviors. Their normalized distribution is
depicted in Figure 8(c). Observing the average trajectory speed, there are some trajectories suggesting
a rather faster or slower behavior. By comparison of a trajectory mean speed value with the overall
average speed, it is possible to label a trajectory as very slow, slow, average, fast or very fast. In an
ambient intelligence scenario for elderly people, an abnormally slow speed can be considered as a cue of
a health problem and trigger an alarm. Figure 14 presents the central frame of those trajectories labeled
as very fast. They correspond to running individuals, as suggested by the present blur. Observing the
shift of blobs during a given interval, it is also possible to detect if someone has stopped or slowed down
in the monitored area for a while. Depth information acquired from the top view is therefore useful to
detect those behaviors. During the experiments, the system was able to detect all trajectories associated
to running individuals (1% of the total analyzed trajectories) and presenting a stop event for more than
10 frames.

Figure 14. Trajectory middle frame of those labeled as very fast.

5. Conclusions

We have made use exclusively of the depth information provided by a consumer RGB-D camera to
detect, track and describe individuals crossing a monitored area. The selected top view configuration
preserves privacy and eases the task, making it simple to extract different trajectory features. Also, this
setup introduces robustness, due to the lack of occlusions among individuals.

No appearance information is collected to model the individuals, just simple geometric descriptors
extracted from the depth image blob. Their discriminative power has provided promising results in the
set of experiments performed under severe changes in illumination, where appearance information, such
as color, cannot be gathered.
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The set of geometric features has been selected attending to its computational cost. This low
computational cost makes the development of standalone systems based on embedded architectures
affordable. An experimental setup has been carried out in an entrance door scenario, where two
sequences summing more than 20, 000 frames and 300 crossing events under illumination changes have
been manually annotated. In both sequences, the proposal has been able to re-identify the individuals
with a fair accuracy.

The system can additionally be integrated as a source of high semantic level information in a
networked ambient intelligence scenario, to provide cues for different problems, such as detecting
abnormal speed and dimension outliers, that can alert of a possible uncontrolled circumstance.
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