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Abstract:  In the field of Global Navigation Satellite System (GNSS) attitude 

determination, the constraints usually play a critical role in resolving the unknown 

ambiguities quickly and correctly. Many constraints such as the baseline length, the 

geometry of multi-baselines and the horizontal attitude angles have been used extensively 

to improve the performance of ambiguity resolution. In the GNSS/Inertial Navigation 

System (INS) integrated attitude determination systems using low grade Inertial 

Measurement Unit (IMU), the initial heading parameters of the vehicle are usually worked 

out by the GNSS subsystem instead of by the IMU sensors independently. However, when 

a rotation occurs, the angle at which vehicle has turned within a short time span can be 

measured accurately by the IMU. This measurement will  be treated as a constraint, namely the 

rate-gyro-integral constraint, which can aid the GNSS ambiguity resolution. We will  use 

this constraint to filter the candidates in the ambiguity search stage. The ambiguity search 

space shrinks significantly with this constraint imposed during the rotation, thus it is 

helpful to speeding up the initialization of attitude parameters under dynamic 

circumstances. This paper will  only study the applications of this new constraint to land 

vehicles. The impacts of measurement errors on the effect of this new constraint will  be 

assessed for different grades of IMU and current average precision level of GNSS 
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receivers. Simulations and experiments in urban areas have demonstrated the validity and 

efficacy of the new constraint in aiding GNSS attitude determinations. 

Keywords: ambiguity search space; GNSS attitude determination; rate-gyro-integral 

constraint; land vehicle application 

 

1. Introduction  

Ambiguity resolution is a core technique in GNSS relative positioning and attitude determination. 

There is no essential difference between the two applications in terms of this technique. Unlike the 

relative positioning, however, the distances between antennas are constant and short in attitude 

determination, generally ranging from a few meters to dozens of meters. Therefore, more constraints 

exist in attitude determination and the double-difference (DD) carrier phase measurement is more 

precise than relative positioning. These constraints have become very important for ambiguity 

resolution in attitude determination. 

There exist many constraints applied to ambiguity resolution. The baseline length is a readily 

available and widely used constraint. The ambiguity search space can be reduced from 3D to 2D by 

using this constraint [1]. The elevations measured by a tilt  meter were used for aiding ambiguity 

resolution in a single baseline orientation determination system [2]. The correct ambiguity combination 

can be fast fixed with the two constraints under static condition [3]. Otherwise, both the baseline 

length and trigonometric function constraints can be used to shrink an expanded searching ellipsoidal 

space to a proper size, which maintains the true integer ambiguity [4]. In the multi-baselines cases, the 

ambiguity search space can be further reduced to 1-D by geometrical constraint [5]. Then a recursive 

ambiguity search algorithm using both the length and geometrical constraints was proposed [6]. The 

latest contribution, namely the Weighted Constrained Least-squares AMBiguity  De-correlation 

Adjustment (WC-LAMBDA)  method, was proposed based on integrating the nonlinear baseline 

constraint into the ambiguity objective function of LAMBDA  method. This method dose full  justice to 

the given information of the baseline length [7]. IMU measurements usually benefit the ambiguity 

resolution in GNSS/INS attitude determination system. Outlier in the up-component of baseline 

solution can be detected more readily by exploiting the pitch axis angular rate measured by a  

Fiber-Optical-Gyroscope (FOG). A coarse ambiguity resolution was estimated by using the FOG data 

and GNSS observations, and the final ambiguity resolution was obtained from the DD carrier phase 

observation equations together with aid of the coarse resolution [8]. Gyroscope measurements were 

demonstrated to be efficient in improving the robustness of ambiguity resolution under real-time 

dynamic conditions [9]. 

Platform rotations can produce more information used in ambiguity resolution. This idea was 

proposed by [10] originally. It utilizes both baseline length constraint and differential vector estimations 

for ambiguity resolution. Following this idea, [11] conducted a comprehensive research on the GNSS 

attitude determination technique. And inspired by the idea of antenna swap method, [12] proposed an 

ambiguity resolution method based on rotational motions. However, the model of this method is too 

idealistic to implement. On the basis of Tuôs research, another method based on two-degree-of-freedom 
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rotational motions was carried out by [13]. But the validity of ambiguity resolution is disturbed by the 

complex rotating mechanism and inaccurate rotation angle measurements in practice. The characteristics 

of the single-difference carrier phase variations between adjacent epochs were studied by [14], under 

the rotation conditions. They designed a single-difference ambiguity fix ing method under the condition 

that the rotating axis was fixed. The influence of actual measurement errors on ambiguity resolution 

was discussed as well. In the recent years, the platform motions were utilized to enhance the  

anti-cycle-slip capability of ambiguity resolution, and the methods basing on this fact were demonstrated 

to be especially efficient in land vehicle attitude determination [15,16]. 

In this paper, a new constraint is proposed for the ambiguity resolution in GNSS attitude determination 

applications. For land vehicle applications, the baseline approximately lies in the plane of local level 

during a rotational motion [17]. Thus the relative rotation angle measurements provided by IMU are 

used to aid ambiguity resolution. As shown below, this constraint does not require high accuracies of 

IMU sensors, especially for the accuracy of gyroscope.  

The rest part of this paper is organized as follows: Section 2 summarizes the basic principle and 

mathematic model for the rate-gyro-integral constraint. Section 3 presents a specific implementation 

method and its geometric analysis. Section 4 discusses on the error factors of the proposed implementation 

method. Section 5 gives some simulation results. Section 6 shows the results of processing actual field 

data. Section 7 concludes this paper and gives some suggests for future research. 

2. Basic Principle and Mathematical Model 

The rotational motions of vehicle can be measured by gyroscopes that are part of the IMU. In this 

section, our work is to find the proper mathematical models for explicating how this measurement 

improves the efficiency of ambiguity search. 

2.1. Inertial Baseline Vector Solution 

It is assumed that an IMU is attached to the vehicle with two GNSS antennas. The b-frame has its 

origin at the IMU reference point. The longitudinal axis of the vehicle is the X axis of the b-frame and 

the transvers axis of the vehicle is the Y axis of the b-frame. The Z axis obeys right-handed rule and 

points downwards. The baseline vector 
()b

a  is the 3D vector between the carrier phase centers of the 

two antennas, with three known constants being its coordinates in the b-frame. The origin of the  

n-frame (North, East, Down) is consistent with that of the b-frame. If  n

bC  denotes the transformation 

matrix from the b-frame to the n-frame, which is also the pattern to represent vehicle attitude in our 

case, then 
()() ()()

0 0

n bn

ba t C t a=  is obtained, where 
()n

a  is the baseline vector in the n-frame and 0t  is 

the starting time of rotation. 

Updating n

bC  is primarily  implemented through integrating the outputs of the IMU. Starting from 

()0
n

bC t , the strapdown mechanization can independently derive the attitude solution at each update 

moment of the IMU outputs. Without regard to the measurement errors, the so-called inertial baseline 

vector solution is given by 
()() ()()

0,
n bn

k b k ka t C t a t t= >, kt  denotes any update moment after rotation 

begins. Then the inner product of 
()()0
n

a t  and 
()()n

ka t  can be written as: 

()() ()() () () () () () ()
0 0 0

T Tn n b b b bT n n T

k k b b k kS a t a t a C t C t A a a A a= Ö = Ö =  (1)  



Sensors 2013, 13 7982 

 

 

where kA  is the inertial attitude update matrix, it mainly depends on the integral of gyroscope outputs 

in the interval of [ ]0, kt t , thus kS  is a function of kA . Equation (1) shows that ()0
n

bC t  has no effect on 

kS . By applying the definition of inner product, we can write an equivalent form of Equation (1) as: 

()() ()() () ()
0cos

n n b bT

k k k kS a t a t e A ea= Ö =  (2)  

where ()b
e  is the unit vector of ()b

a  and ka  represents the angle between ()()0
n

a t  and ()()n

ka t . 

2.2. GNSS Baseline Vector Solution 

The GNSS DD carrier phase observation equations are formulated as follows [12]: 

()

[ ]2 1 1 1

1 ,

n

T

n

T
i i i

n i

Ga K

G G G G G

K k k k N bfl f

+

=

= - -

è ø= =ÐD +ÐD +ÐDê ú

 (3)  

where iG  is the unit vector in the line of sight (LOS) and heading to satellite i. ifÐD  and iNÐD  

denote the DD carrier phase observation and integer ambiguity, respectively. ibfÐD  denotes the 

observable noise. 

Four satellites with minimum Geometry Dilution of Precision (GDOP) value are selected from all 

visible satellites, and the satellite with the largest elevation is chosen as the ñreferenceò satellite, the 

other three satellites are recognized as the ñmaster satellitesò. Thus there are three independent DD 

carrier phase measurement equations in Equation (3). For the altitude of GPS satellite is about  

20,200 km above the sea level and the displacement of land vehicle is limited within a short time,  

G  can be approximately viewed as a constant matrix. If  the integer ambiguity vector is known, 

Equation (3) will  be solved without observable noise and the so-called GNSS baseline vector solution 

will  be obtained: 

() ( )

[ ]

1

1 2 3 ,

n T T

T i i

i

a G G G K

K k k k k Nl f

-
¡=

= =ÐD +ÐD

 (4)  

where G  is nonsingular. In order not to be mistaken for the inertial baseline vector solution, this 

GNSS baseline vector solution is denoted as 
()n

a ¡. Thus, the inner product of the GNSS baseline vector 

solutions at 0t  and kt  can be described as: 

()() ()() () ()1 1

0 0

T Tn n T

k k kS a t a t K t G G K t- -¡ ¡¡ è ø= Ö = ê ú . (5)  

Similarly, the angle between ()()0
n

a t ¡ and ()()n

ka t ¡ is denoted as ka¡. 

Hence, if  the true integer ambiguity combination, which is denoted as NÐD , is substituted into 

Equation (4), the correct GNSS baseline vector solution will  be obtained. However, if  the known 

integer ambiguity vector in Equation (4) is incorrect and the corresponding bias is denoted as mNd , 

this will  deduce incorrect baseline solutions and inner products. With Equations (4) and (5), we obtain: 
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()() ()()

() ()

( ) () ()( )

0

1 1

0

2
1 1 1 1 1

0

Tn n

k m km m

T T

m k m k k

T T

k m k m m

S a t a t

K t N G G K t N S S

S G N G K t G K t G N G N

d d d

d d d d

- -

- - - - -

¡ ¡¡= Ö

¡ ¡è øè ø è ø= + + = +ê ú ê úê ú

¡= + +

 (6)  

where ()()0
n

m
a t ¡ and ()()n

k m
a t ¡ denote the incorrect baseline solutions. 

kSd ¡ and 
k ma¡ denote the bias 

of the inner product and the angle between ()()0
n

m
a t ¡ and ()()n

k m
a t ¡, respectively. 

2.3. Rate-Gyro-Integral Constraint 

For land vehicles, the baseline approximately lies in the local level. Thus, 
ka¡ is very close to the 

angle, which is denoted as q, that vehicle has turned at around an ñequivalent rotation axisò from 0t  to 

kt . For the precision of integral of gyroscope outputs is high enough within a short time span, ka  is 

always close enough to q as well. This can be utilized as a constraint, namely the rate-gyro-integral 

constraint, for filtering the ambiguity candidates in the search space, e.g., one of them is denoted  

as 
mNÐD , deduces a 

,k ma¡ that is far from ka . Figure 1 depicts this new constraint: 

Figure 1. Geometric depiction of the rate-gyro-integral constraint. 

 

In Figure 1, ()n
mad  is a constant vector. It will  directly result in the difference between ka¡ and k ma¡ 

once the rotational motion starts. 

3. Implementation and Geometric Analysis 

An implementation method for the rate-gyro-integral constraint is proposed in this section. By 

comparing the testing objectives with a properly selected threshold, the unacceptable testing objectives 

can be found out and the corresponding candidates are filtered out from the ambiguity search space. 

3.1. Implementation Method 

The mathematical description of a rotational motion usually consists of a rotation axis and a rotation 

angle. The projections of ()()0
n

a t ¡ and ()()n

ka t ¡ on the rotation plane, are denoted as ()()0
n

a t ¡ and 

()()n

ka t ¡, respectively. Herein, it should be noted that ka¡ expresses the angle between 
()()0
n

a t ¡ and 
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()()n

ka t ¡. Similarly, the projections of ()()0
n

m
a t ¡ and ()()n

k m
a t ¡  are denoted as ()()0

n

m
a t ¡  and 

()()n

k m
a t ¡, respectively, and the angle between them is expressed as 

k ma¡.  

Assuming that the rotation angle can be measured by the IMU sensors, thus it is easy to verify that 

k kq a a¡= = , in which q and ka  denote the rotation angle and its IMU measurement, respectively. At 

this point, the testing objective, which is expressed as 
, ,k m k ma a q¡D = -, is defined. Then a threshold 

denoted as 
threshold
aD  is selected properly for the implementation method. 

At the ambiguity search stage, if  a candidate mNÐD  deduces a 
,k maD  that satisfies 

,k m threshold
a aD > D , thus the testing objective is verified to be unacceptable and 

mNÐD  will  be filtered 

out from the search space. Figure 2 delineates the projection vectors and the angles on the rotation plane. 

Figure 2. Projection vectors and angles on the rotation plane. 

 

Assuming that the baseline vector rotates a whole round, thus, in Figure 2, q and 
,k ma ¡ lie inside 

the interval of [0°,360°], and the other notations will  be illustrated later. 

3.2. Geometric Analysis 

In Figure 2, the baseline vector lies in the rotation plane all the time and turns 360° around a fixed 

rotation axis clockwise. The baseline length is considered as a constant L . The rotational angular rate 

is assumed to be a constant value 360 m (°/s)( , ,m k m k² Íᴚ+
). A planar Cartesian coordinate, namely 

the p-frame, is defined on the rotation plane. The X-axis of the p-frame is consistent with the baseline 

vector at 0t , and the Y-axis of the p-frame vertically points to the right of X-axis. q ranges from 0° to 

360°. The difference between projections of the true baseline vector and an incorrect baseline vector 

solution is denoted as 
()n
mad . For an incorrect ambiguity candidate deducing it, together with  

Equation (4), it is verified that 
()n
mad  is a constant vector and its length is denoted as Ld . By some 

simple algebraic operations, the analytic formula for calculating the testing objective is given by (the 

detailed derivation can be found in the Appendix): 
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 (7)  

where 0a  represents the angle between ()n
mad  and the X-axis of the p-frame; 

0,mq ¡ denotes the angle 

between ()()0
n

m
a t ¡ and the X-axis of the p-frame; tan 2

ī1
 (û) is defined as follows: 

( )

( )

( )

1

1

1

1

tan , 0, 0

2, 0, 0

tan , 0
tan 2

3 2, 0, 0

2 tan , 0, 0

0, 0, 0

y x x y

x y

y x xy

x x y

y x x y

x y

p

p

p

p

-

-

-

-

ë > >
î

= >î
î + <îå õ
=ìæ ö

= <ç ÷î
î + > <
î
î > =í

 (8)  

Taking the derivative of the right side of Equation (7) with q and then making the result equal to 

zero, we can obtain: 

( )0cos
L

L

d
q a- =- . (9)  

During the whole rotation procedure, there are two qs satisfy Equation (9). Substituting them into 

Equation (7), two peak values of 
,k maD  will  be attained at 1kt  and 2kt  respectively. Then, just denote 

the larger one of the abstract values of the two peak values as: 

{ }1, 2,max ,MAX

m k m k ma a aD = D D . (10)  

Finally, the explicit expression of MAX

maD  can be given by: 

( )

( )

( )

1

0,

01

0,

0

cos 2

sin
tan 2

1 cos

MAX

m m

m

L L

L L

L L

a d p q

a d
q

a d

-

-

¡D = - -

å õ
¡= æ öæ ö+ç ÷

 (11)  

According to Equation (11), it is a naive thought that MAX

maD represent the fullest potential of the 

implementation method to identify the incorrect candidate mNÐD . 

In brief, there are two important elements of the implementation method for the rate-gyro-integral 

constraint. One is to generate a set of testing objectives for each candidate, the other is to select a 

proper threshold. For the former, it is necessary to investigate two aspects, the distribution range and 

. 

. 
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density of the testing objectives on the rotation process. For the latter, the success rate and shrinking 

efficiency are analyzed under different conditions of measurement scenarios and threshold settings.  

4. Error  Analysis 

Contributors to the inaccuracy of testing objective involve the IMU measurement errors, especially 

those associated with angle rate, GNSS carrier phase measurement errors and the actual rotational  

axis offsets.  

The angle rate measurement errors are largely responsible for the inaccuracy of testing objective by 

IMU measurement effects. In the strapdown mechanization, the measurement model of angle rate with 

respect to the n-frame can be expressed as [18]: 

,b b b b b b b

nb nb nb nb ib ie enw w dw dw dw dw dw= + = - -. (12)  

Note that the second formula in Equation (12) is the error model, in which the error term associated 

with gyroscope is denoted as b

ibdw, and one of its routine options is given by [18]: 

b

ib b wdw= + (13)  

where b and w  are the bias and noise of gyroscope measurement, respectively. 

Since the attitude of vehicle is unknown, b

iedw can be simplified as b

iew- . Similarly, if  translational 

motion of vehicle occurs, b

endw will  be simplified as b

enw- . Such that from 0t  to kt , a rotational angle 

measurement, denoted as q, can be derived by the strapdown mechanization. The measurement errors 

contained in q are primarily driven by b

nbdw. Thus the effect induced by IMU measurement errors on 

the testing objective can be expressed as: 

() ()
0 0

k kt t
b b

nb nb
t t

d ddq q q w t t w t t= - = -ñ ñ  (14)  

where Ö denotes the norm function. By applying the inequality law, an upper bound of dq  

is obtained: 

dq dq¢  (15)  

with: 

()
0

kt b

nb
t

ddq dw t t=ñ . (16)  

For land vehicle rotational motions, the unit vector of local gravitational vector, which has three 

constant coordinates in the n-frame and is denoted as 
() [ ]0 0 1

Tn
x ¡= , can be treated as an 

observation of actual rotational axis. However, due to high frequency variations of vehicle in practice, 

the actual rotational axis, which is denoted as 
()n

x , always offsets from its assuming observation, thus 

an error model is constructed for 
()n

x  as follows: 

() [ ]sin sin sin cos cos
Tn

x z h z h z= -  (17)  

where z represents the angle between 
()n

x  and 
()n

x ¡, and it follows a normal probability distribution. 

h is the orientation of the projection vector of 
()n

x  with respect to the true north, and it follows a 
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uniform probability distribution in the interval of [ ]0,2p . Using z and h defined above, the actual 

rotational axis of the land vehicle can be modeled in a rather simple manner. 

In short-baseline cases, the dominant errors of DD carrier phase measurements include multipath, 

which can be considered noise-like, and receiver thermal noise [19]. Determine each iNÐD  with the 

true ambiguity resolution, then ()()n

ka t ¡ and ()()n

ka t ¡ can be obtained from Equations (3) and (4), 

respectively. By a minus operation, we have: 

()() ()() ()()

()() ()() ()() ()( )()

()() ()( ) () ()() ()( )()

n n n

k k k

Tn n n n n

k k k

T Tn n n n n n

k k

a t a t a t

a t a t a t x x

a t x x a t x x

d

d d d

d d

¡ ¡ ¡= +

¡ ¡ ¡ ¡= - Ö

¡ ¡- Ö - Ö

 
(18)  

where ()()n

ka td ¡ denotes the stochastic error vector deviating from the true baseline vector resolution. 

The variance covariance matrix of bfÐD  is given by 
b

W
ÐD

. Hence, the errors in ()n
x ¡  

and ()()n

ka t ¡ can induce composite effect on the testing objective. It can be explained by the formula 

as follows: 

()() ()() ()()

()() ()() ()() ()( )()

()() ()( ) () ()() ()( )()

n n n

k k k

Tn n n n n

k k k

T Tn n n n n n

k k

a t a t a t

a t a t a t x x

a t x x a t x x

d

d d d

d d

¡ ¡ ¡= +

¡ ¡ ¡ ¡= - Ö

¡ ¡- Ö - Ö

 
(19)  

Equation (19) is also true to each ambiguity candidate in the search space. With Equations (14) and (19), 

both dq and ()()n

ka td ¡ can expand the misleading impact of the error-included testing objective. It 

implies that the true ambiguity combination NÐD  may be filtered out. Thus the threshold value should 

be chosen appropriately to make sure that NÐD  is always kept in the search space, and the search 

space is shrinking constantly by the rate-gyro-integral constraint imposed. 

5. Simulations 

Basing on the implementation method and the models constructed for various measurement errors, 

some simulations are conducted. For simplicity, the measurement errors of IMU and GNSS receivers, 

plus the actual rotational axis offsets are addressed as the 1st, 2nd and 3rd type measurement error, 

respectively. For different simulation scenarios, the results were assessed on two aspects, i.e., the 

success rate and the shrinking efficiency. The simulation experiments are carried out by means of the 

basic steps as follows: 

Step 1: 
() [ ]3 0 0

Tb
a =  and ()0

n

bC t I=  are chosen, respectively, and the updating frequency of 

GNSS measurements is chosen as 1 Hz; 

Step 2: with the actual locations and GPS constellation imposed, select a reference satellite and 

three master satellites, then compute iG  with Equation (3); 

.

 

 .  
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Step 3: set the parameters for rotation axis ()n
x , the complete rotational angle q, and angle velocity 

vector () ()0 0
Tb

nbw t w t=è øê ú, respectively, then compute ()()n

ka t  from: 

()()
(){ ( )

() }()()
2

0sin 1 cos
n nn nx x

ka t I W W a tq qè ø è ø= - + - Ö
ê ú ê ú

. (20)  

with [13]: 

()

() [ ] ()
0

3 2

3 1

2 1

1 2 3

0

0

0

,

n

k

x

tTn b

nb
t

n n

W n n

n n

x n n n dq w t t

-è ø
é ù
= -
é ù
é ù-ê ú

= =ñ

 (21)  

Step 4: with the selected satellites in Step 2 imposed, generate the true ambiguity vector NÐD   

(3-D) and a set of DD carrier phase observations for each kt , then construct an initial ambiguity search 

space  whose center is fixed at NÐD  and the search radius is defined as a random variable with a 

standard deviation of 5 cycles; 

Step 5:for each candidate lies inside ᴚ at kt , compute the corresponding testing objective 
,k maD ; 

Step 6: test all the 
,k maD s for each kt , filter out the candidates which satisfy | aD k,m| a> D threshold 

from ᴚ. 

In Step 2, the actual GNSS data was collected on 11 June 2011, at N 29.5650°, E 106.2197°. From 

the satellites in view, the satellite with maximal elevation is chosen as the reference satellite, then three 

master satellites are selected based on the minimal GDOP principle. In Step 4, the parameter of search 

radius, i.e., 5 cycles, is decided by ñcurrentò average accuracy level of DD code measurement [19]. 

In the first simulation experiment, except for the 1st type measurement error, both the 2nd and 3rd 

type measurement errors are considered. z has a normal distribution ( )20,3N  and the standard 

deviation associated with DD carrier phase is 0.05 cycle. If  () 0 0 10
T

b

nb sw t è ø=ê ú and 1 Hz GNSS 

update frequency are chosen, total 18 GNSS updates will  be generated for a 180° rotation procedure. 

Five different thresholds, i.e., 0.1°,  0.5°,  1°,  3° and 5°,  are selected. For each possible combination of 

thresholds and error types, the simulation is repeated 10,000 times. The success rate is defined as the 

percentage of occurrences that the steady search space contains the true ambiguity combination.  

Table 1 shows the success rates vary with function of the threshold values. 

Table 1. Success rates with the 2nd or 3rd type measurement error considered individually. 

 5° 3° 1° 0.5° 0.1° 

2nd Type 100% 100% 82.46% 5.19% 0% 

3rd Type 100% 99.98% 95.05% 68.18% 1.46% 

In the second one, all the three types of measurement errors are all taken into account. The simulation 

parameters for Equation (13) are selected in accordance with ñcurrentò accuracy levels of  

gyroscopes [18], which are given in Table 2: 

. 
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Table 2. ñCurrentò accuracy levels of gyroscopes. 

 b (°/h)  w(°/ h̰)  

Middle grade 0.1 <0.03 

Tactic grade 1~100 0.03~0.1 

Automotive grade >100 >1 

To make Equation (13) simpler, three stochastic constant biases, whose mean value and standard 

deviation are both consistent with each other, and consist of the three components of b

ibdw. The 

average value is zero but five different standard deviation values ranging from 0.1° to 360° were 

chosen. Moreover, from Table 1 it can be seen that whatever the 2nd or 3rd type error is considered, 

the success rates seem to be acceptable if  the threshold value lies in the interval of [1°,3°]. So [1°,3°]  

was divided into 100 equal parts, and a set of threshold values can be formed by the separate points. 

Keep the other settings unchanged, the simulation is repeated 10,000 times for each possible 

combination of standard-deviation and threshold value. The success rates and shrinking efficiency are 

shown in Figures 3 and 4, respectively.  

Figure 3. Success rate varies with threshold at different accuracy levels of gyroscope. 

 

Figure 4. Shrinking efficiency varies with threshold at different accuracy of gyroscope. 
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Shrinking efficiency herein is explained by the size of steady ambiguity search space, which is 

concluded by averaging and rounding figures obtained from a lot of simulations for the successful 

shrinking procedures. 

In Figure 3, if  the accuracy of gyroscope is high enough, e.g., a tactical grade IMU, the 

measurement errors of gyroscope will  no longer have a dominant effect on the success rate. In this case, 

the 2nd and 3rd types of measurement errors are believed to be much more influential. Figure 4 shows 

that a relative lower threshold can promote the shrinking efficiency. In addition, an interesting 

tendency can be seen from Figure 4. For a fixed threshold value, a relative higher accuracy of 

gyroscope can reduce the shrinking efficiency (larger size of the steady search space). This tendency 

will  become even evident if  the threshold value is higher than 1.6°.  

Figure 5. Testing vehicle is set up: (a) plan view; (b) side view. 

 

6. Land Vehicle Testing 

The GNSS/INS integrated attitude determination system used herein primarily consists of a tactic 

grade FOG-IMU, an array of three GNSS antennas with receivers connected individually and a 

navigation computer. The concerned technical characteristic of the FOG-IMU is the equivalent bias of 

gyroscope denoted as b , which satisfies b  < 4°/h in normal temperature circumstances. The Novatel 

GPS-701 antenna features a steady electrical phase center. The type of receivers is Novatel OEMV-1G, 

with C/A code measurement precision of 6 cm RMS and the carrier phase measurement precision of 

0.75 mm RMS. Three antennas are approximately arranged in a right triangle pattern with 4.634 m 

baseline1 and 1.544 m baseline2, as shown in Figure 5(a). 

The actual field data was collected on 16 April  2008 in the Chong Qing urban area, China. The GPS 

measurements were available at a rate of 1 Hz and the output rate of IMU was 200 Hz. After a 
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successful static initialization, the vehicle was driven into the dense urban area where it followed the 

trajectory shown in Figure 6 for about 5 min. It can be seen that there were five evident curves on the 

test route. These curves were denoted as B, C, D, E and F sequentially. Then five data sections  

were extracted from these curves, and Sections B and D were abandoned due to quite poor GPS 

satellite visibility. 

Figure 6. Testing trajectory. 

 

Each data section selected is processed following the scheme shown in Figure 7. This scheme is 

essentially coincident with the simulation steps mentioned in the former section, and it is required that 

at least four satellites should be tracked uninterruptedly by all the three receivers during collecting the 

data section.  

Figure 7. Scheme for actual field data processing. 

 

The initial ambiguity search space (3D) is determined by an float ambiguity estimation vector 

denoted as { }1 2 3

Ĕ Ĕ Ĕ ĔN N N NÐD = ÐD ÐD ÐD, whose components are computed by using the DD code 
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and carrier phase measurements, and a search radius of five cycles is selected. Thus the initial search 

space  contains 1,331 candidates. As the measurement precision of Novatel OEMV-1G is  

6 cm RMS in terms of C/A code, a ñ5 cyclesò search radius is adequate. To judge that whether the 

shrinking procedure of the search space  is successful or not, the true ambiguity combination is 

obtained in advance by means of backward processing for the integrated navigation attitude results and 

associated measurements. 

6.1. Feasibility Test 

In this subsection, the feasibility of the rate-gyro-integral constraint in actual applications is tested 

with data section C, E and F. During the collecting period of data section F, the vehicle was driven 

along a turntable road shown in Figure 8. As can be noted, the ends of this section were respectively 

connected with a viaduct and an underground passage of the viaduct. Hence, over this region, the 

vehicle featured tilt  attitude (roll and pitch) with the level of several degrees, see Figure 9. The 

estimation method for z comes from [12]. Data section F includes a total of 23 GPS epochs, which 

are expressed on the turntable road by red blocks in Figure 8. From Figure 10, it can be seen that the 

orientations of vehicle, which were provided by the integrated attitude determination system, varied 

continuously clockwise. Moreover, totally 6 GPS satellites were tracked continuously by all the three 

receivers over this region. 

Figure 8. Turntable road and locations of 23 GPS epochs for data section F. 

 

Figure 9. zs for data section F. 
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Figure 10. Vehicle orientations for data section F. 

 

When the threshold value is chosen to be 0.5°,  1° and 3°, respectively, the first group of results of 

feasibility test can be obtained by processing data section F and given by Figure 11. 

Figure 11. The first group of results of feasibility test (data section F). 

 

Figure 11 shows three successful shrinking procedures of . The size of steady search space are  

2 and 30 for the cases of aD threshold=1° and aD threshold =3°, respectively. If  aD threshold =0.5° is  

chosen, for data section F, the true ambiguity combination will  be locked only by using the  

rate-gyro-integral constraint. 

Data section C was collected on a crossroad (Figure 12(b)) with eight GPS epochs included and  

seven common visual satellites tracked. The vehicle turned at about 80° counter-clockwise over this 

region. Data section E was collected on a T-junction (Figure 12(a)) with the turning angle reaching up 

to 100°,  and the numbers of GPS epochs and common visual satellites were 9 and 6, respectively. Each 

of the two curves has a turning angle much less than that of data section F, but they are more common 

than turntables in urban. The locations of GPS epochs for both data section C and E are noted by red 

blocks in Figure 12(a,b). With the data sections C and E processed, the second and third groups of the 

results for the feasibility test are given by Figures 13 and 14, respectively. 
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Figure 12. (a) T-junction and locations of 9 GPS epochs; (b) Crossroad and locations of  

8 GPS epochs.  

 

Figure 13. The second group of the results for the feasibility test (data section C). 

 

Figure 14. The third group of the results for the feasibility test (data section E). 

 

From Figures 13 and 14, it is known that for the crossroads and T-junctions, the most common 

types of curves in urban areas, both the success rate and shrinking efficiency can be guaranteed by 

adequate common visual satellites. Although the true ambiguity combination cannot be fixed in either 

C or E case, the method of rate-gyro-integral constraint is shown to be an efficient way of shrinking 

the size of the search space ᴚ to acceptable levels in practice. 

The three groups of results demonstrate that if  adequate common visual satellites are available, as 

well as the turning angle is large enough, the rate-gyro-integral constraint is practicable in land 

navigation applications. 
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6.2. Characteristics Test 

In this subsection, some characteristics of the rate-gyro-integral constraint will  be carried out by use 

of data section F. It is not difficult  to know that in those successful shrinking procedures, lower 

threshold value can promote the shrinking efficiency. To verify this characteristic in practical cases, 

two zooms to Figure 11 are presented in Figures 15 and 16. 

Figure 15. Size of ᴚ contracts to less than 100 for each 
threshold
aD . 

 

Figure 16. Size of the search space  obtains a steady status for each . 

 

In both Figures 15 and 16, it is noted that the turning angle of vehicle at each epoch is used as the 

argument, instead of the GPS second in Figure 11. According to Equation (11), a major contributor to 

weakening the performance of rate-gyro-integral constraint is increasing the length of baseline. By 

now, only baseline1 has been considered in processing actual field data sections. By use of the same 

processing scheme and data sections, the results of baseline2 are presented here for a comparison 

purpose. Figure 17 shows the shrinking processes of the search space  when both Baseline1 and 

Baseline2 were considered. 


