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Abstract: In this paper, a reflective photonic crystal fiber (PCF) sensor probe for 

temperature measurement has been demonstrated both theoretically and experimentally. 

The performance of the device depends on the intensity modulation of the optical signal by 

liquid mixtures infiltrated into the air holes of commercial LMA-8 PCFs. The effective 

mode field area and the confinement loss of the probe are both proved highly  

temperature-dependent based on the finite element method (FEM). The experimental 

results show that the reflected power exhibits a linear response with a temperature 

sensitivity of about 1 dB/°C. The sensor probe presents a tunable temperature sensitive 

range due to the concentration of the mixture components. Further research illustrates that 

with appropriate mixtures of liquids, the probe could be developed as a cryogenic 

temperature sensor. The temperature sensitivity is about 0.75 dB/°C. Such a configuration 

is promising for a portable, low-power and all-in-fiber device for temperature or refractive 

index monitoring in chemical or biosensing applications.  
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1. Introduction 

Recently, optical fiber sensors have become more and more attractive due to their miniaturization, 

electromagnetic immunity, chemically inertness, network compatibility, and the aptitude for remote or 

in situ measurements [1,2]. The appearance of photonic crystal fibers (PCFs) is a breakthrough in fiber 

optic technology, leading to unprecedented properties that overcome many limitations [3,4]. In contrast 

with traditional optical fibers, PCFs are made of single material and have several geometric parameters 

that can be manipulated for larger flexibility of design. With the modulation of the size and location of the 

cladding air holes, the characteristics of PCFs, such as mode shape, transmission spectrum, nonlinearity, 

dispersion and birefringence, could be tunable to manage the anticipated values [5–7]. Additionally, the 

existence of air holes provides the possibility to insert functional materials, the refractive index of which 

is dependent on external physical fields [8]. This enables further dynamic modification of the waveguide 

properties and provides perspectives for various all-in-fiber tunable or sensing devices [9,10].  

A wide variety of fiber-optic-based temperature sensing schemes have been proposed and reported 

to date [11,12]. However, these traditional configurations present a number of disadvantages such as 

high coupling losses, costly integration, limited mechanical reliability, and difficulties in mass 

production. Some all-in-fiber configurations have reported to overcome the drawbacks mentioned 

above. Han et al. demonstrated an ultrasensitive PCF temperature sensor with a sensitivity of  

13.1 nm/°C by introducing the avoided-crossing effect in a bent-controlled fluid-filled photonic 

bandgap fiber [13]. Qian et al. investigated a compact temperature sensor based on a fiber loop mirror 

combined with an alcohol-filled high-birefringence PCF. The interference spectrum of the resonant 

dips presented a temperature sensitivity of 6.6 nm/°C [14]. Some Fiber-Bragg-Gratings-based sensors 

have been reported as well. ORMOCER-coated FBGs have been investigated at cryogenic temperature  

(50–300 K) with a linear temperature shift of the Bragg wavelength of 2.4 pm/°C [15]. Another metal 

recoated FBG sensor which is insensitive to magnetic field and provides a sensitivity of about  

15 pm shift/°C is demonstrated in [16]. Compared with the wavelength-modulated counterpart  

in [13–16], the intensity-modulated configuration only requires a laser diode source associated with an 

optical power meter for signal interrogation. Expensive and high precision apparatus such as the 

broadband amplified spontaneous emission (ASE) fiber source associated with high-resolution optical 

spectrum analyzers (OSAs) are not necessary. An intensity-modulated scheme with an ethanol-infiltrated 

PCF has been demonstrated in [17]. The sensitivity of transmitted power is experimentally determined 

to be 0.315 dB/°C for a 10 cm long PCF. However, as a transmission-type sensor, the optical source 

and the power meter are on the discrete sides of the PCF, which is not convenient in the practical 

measurement of ambient temperature. Both ends of the PCF need to be fusion spliced to single mode 

fiber, leading to higher fusion splicing loss and higher complexity of the system. Additionally, this 

sensor operated with a single liquid at room temperature and the detection range is not tunable for 

further practical applications. 
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In this paper, the operation of a reflective temperature sensor probe based on an intensity modulated 

solid core PCF has been demonstrated. The active region is a 1cm liquid mixture-infiltrated section of 

a commercial LMA-8 PCF. The optical source and the power meter lie on the same side of the PCF 

and the probe can be extended into the aimed environment under harsh conditions. The reflected power 

of the infiltrated PCF shows a linear response to temperature with a sensitivity of about 1 dB/°C. 

Additionally, with proper mixtures of temperature-sensitive liquids, this sensor probe presents a 

tunable detection range and could be developed for ultralow temperature measurement, the sensitivity 

of which is 0.75 dB/°C. The device provides useful properties such as compactness, simple design, and 

easy fabrication with high measurement accuracy.  

2. Numerical Simulation and Theoretical Analysis  

The numerically simulated PCF is commercially available LMA-8 fiber [18], with a core diameter 

of ~8.5 μm and a lateral size of ~125 μm, surrounded by seven rings of air holes arranged in  

a triangular lattice. The inter-hole distance and the diameter of the air holes are Λ = 5.6 μm and  

D = 2.7 μm, respectively. The cross section of the LMA-8 PCF is shown in Figure 1. 

Figure 1. The image of LMA-8 cross section from field emission scanning  

electron microscopy. 

 

Liquids such as ethanol, toluene and chloroform present high temperature-dependent optical 

sensitivity. PCFs infiltrated with these materials are susceptible to external temperature variations. The 

refractive index of the background material SiO2 is calculated according to the Sellmeier  

equation [19]. In the liquids, the temperature behavior of the refractive index is assumed as a linear  

approximate expression: 

T
dT

dn
nTn  0)( . (1)  

Here, n0 denotes the refractive index given by the Sellmeier equation. ΔT is the difference between 

the absolute temperature T and the temperature T0 at which the Sellmeier coefficients are given. The 

thermo-optical coefficients dn/dT amount to ‒5.273 × 10
−4

/°C for toluene, ‒6.328 × 10
−4

/°C for 

chloroform and ‒3.940 × 10
−4

/°C for ethanol [20,21]. Furthermore, they are assumed independent of 
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the incident wavelength and temperature. Compared with the liquids above, the thermo-optical 

coefficient of SiO2 (~10
−6

/°C) is not taken into consideration. The Lorentz-Lorenz equation is used for 

the refractive index of the liquid mixtures [22]: 
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Here, n, n1, and n2 denote the refractive index of the solution and the constituents, respectively. ϕ1 

and ϕ2 are the volume fractions of the constituents and ϕ2 can be replaced by (1 − ϕ1). 

From the simulated modes, the effective mode area Aeff is calculated by [23]: 
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where E(x,y) represents the two-dimensional electric field distribution of the mode. Additionally, the 

confinement loss (dB/m), arising from the imaginary part of the effective complex refractive index neff, 

is given as [17]: 

10 0( / ) 20log Im( ) 8.686 Im( )eff effCL dB m e n k     . (4)  

Mixtures of chloroform and ethanol with a volume ratio of 9:1 have been infiltrated into the 

cladding air holes of LMA-8 PCFs. Light is still guided by total internal reflection (TIR) as the 

mixtures present lower refractive index than the fiber core. The distribution of the fundamental mode, 

the effective mode area Aeff, and the confinement loss have been simulated based on the full-vector 

finite element commercial software packages COMSOL Multiphysics combined with the anisotropic 

Perfectly Matched Layer (PML). Figure 2 illustrates the patterns of fundamental mode in 0 °C and  

20 °C. As seen from the figure, fundamental mode distribution, corresponding to the penetration of the 

mode field into cladding, obviously decreases with the increase of temperature, which proves that the 

device is sensitive to the ambient temperature. 

Figure 2. The simulated distributions of LMA-8 PCF fundamental modes with the volume 

ratio of chloroform and ethanol as 9:1, (a) at 0 °C, (b) at 20 °C. 

 

(a) 
 

(b) 
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The confinement loss and the effective mode area of the device have been illustrated in Figure 3 as 

functions of temperature. They are highly temperature-sensitive in the region from 0 to 20 °C. Larger 

effective mode area at lower temperature corresponds to more penetration of the evanescent wave into 

the cladding, leading to larger confinement loss of the device. As the temperature increases from  

0 to 20 °C, the refractive index of the liquid-filled cladding gradually decreases by dn/dT ~ 10
−4

/°C 

according to Equation (1). The larger contrast of the refractive indices between the core and cladding 

results in more effective waveguide confinement, resulting in obvious decrease of the confinement loss 

(from 262 to 2.65 dB/m) and the effective mode area mode field (from 640 to 130 μm
2
). As the 

temperature rises up to 20 °C, the fundamental mode field is well confined in the core and both 

parameters above present constant in the higher temperature region. 

Figure 3. The confinement loss and effective mode area as functions of temperature. 

 

3. Experimental Results and Discussion 

Figure 4 shows the experimental scheme of the PCF-based sensor probe. The active region is a  

1 cm commercial LMA-8 PCF liquid-infiltrated (chloroform and ethanol) simply by capillary action 

during several tens of minutes. The liquid-filled PCF is spliced to standard single-mode fibers (SMF) 

with a splicing loss of 1 dB. The other end is coated with Ag film through the common silver mirror 

reaction. The PCF is then placed into the temperature controller in the V-groove of an aluminum slab 

to avoid bending effects. The signal light from a tunable semiconductor laser source (Agilent 8164A) 

at the wavelength of 1,550 nm is coupled into the active region through a fiber circulator. The reflected 

power from the Ag film is then coupled to a digital power meter (LX Light Wave). The intensity signal 

is detected from 0 to 50 °C to investigate the temperature dependence. In order to avoid the influence 

of the light source fluctuation, the average values from 10 repeated measurements at each temperature 

are used in the practical experiment. 
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Figure 4. Scheme of the experimental setup for the LMA-8 PCF sensor probe. 

 

Figure 5(a) shows both the theoretical confinement loss and the experimental total loss for the PCF 

sensor probe as a function of temperature with the volume ratio of chloroform and ethanol set at 9:1. 

The attenuation of the device decreases from 34.2 to 13.5 dB within the temperature transition range of  

15 °C (from 0 to 15 °C). The simulation results and the experimental measurements present a good 

qualitative agreement in general. It should be noted that the total loss comprises not only confinement 

loss but also intrinsic loss, splicing loss, and the imperfect reflection from Ag film, so it is about  

15–20 dB higher than the theoretical confinement loss. The slight discrepancies arise from the 

instabilities of liquid fluctuation, the uneven heating of temperature controller and the influence of 

external environment. The linear fitting curves of the experiment total loss have been plotted in  

Figure 5(b) at 0.5 °C intervals. There is an approximate direct proportion relationship and the linear 

fitting expression is given as: 

TLoss 024.15506.311  . (5)  

The sensitivity corresponding to the slope is 1.024 dB/°C with the standard error 0.04686 from 5 to 

15 °C. The R-squared value estimated with linear regression fits is 0.95973.  

Figure 5. Theoretical and experimental loss (a) and linear fitting curves of the 

experimental loss (b) as functions of temperature with the volume ratio of chloroform and 

ethanol as 9:1.  

 

(a) 

 

(b) 
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Figure 6. Theoretical and experimental loss (a) and linear fitting curves of the 

experimental loss (b) as functions of temperature with pure chloroform.  

 

(a) 

 

(b) 

The similar simulated and experimental results have been shown in Figure 6(a), while the linear 

fitting curve have been plotted in Figure 6(b) with pure chloroform filled into the air holes. The 

attenuation decreases from 32.3 to 12.5 dB within the temperature from 10 to 25 °C. The linear fitting 

expression is given in the temperature sensitive range from 15 to 25 °C: 

TLoss 98217.028428.402  . (6)  

The sensitivity corresponding to the slope is 0.98217 dB/°C with the standard error 0.05401 and the 

R-squared value is 0.94281. It is worth noting that the temperature transition region in Figure 5 and 

Figure 6 is just the linear response range. According to Figure 3, the device presents higher sensitivity 

in lower temperature range. With appropriate standardization of the measurement results, it is possible 

to obtain the quantitative functional relationship between the loss characteristic and temperature in a 

broader temperature range. 

The physical mechanism of the phenomenon above lies in the manipulation of the core mode by the 

tunable refractive index of the material infused into the air holes. In Figure 5(a) and Figure 6(a), the 

refractive index of the material is close to that of SiO2 in the low temperature region, resulting in 

dramatic loss and attenuation for the propagating mode. With the increase of temperature, the 

refractive index of liquid-filled cladding gradually decreases and is much lower than that of SiO2, the 

mode is effective confined in the fiber core and only a small percentage of the optical field penetrates 

into the cladding. In this case, the mode propagates through the fiber with minimal loss. 

As for the tunable temperature operation adjustment, the high temperature-sensitive range 

corresponds to the refractive index of the cladding mixture liquids in the numerical interval from 1.430 

to 1.437. For different proportions of solutions, these values could be achieved in different temperature 

ranges, even in extremely harsh environments for industrial applications. 
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Figure 7. The experimental total loss and linear-fitting curve as functions of temperature in 

the ultralow range with a 3:7 volume ratio of toluene and ethanol. 

 

As seen from the reference [20,21], the melting points of toluene and ethanol are ‒94.99 °C and 

‒114.1 °C, which indicate the detection limits of the device. It is believable that with an appropriate 

mixture of the two liquids, the sensor could be designed to operate at cryogenic temperatures. To 

achieve the ultralow temperature condition, the scheme of the experimental setup has been improved 

with liquid nitrogen for cryogenic cooling. The active region of the probe is attached to the platinum 

resistance thermometer sensor (STTH Pt100) for temperature monitoring. The experimental total loss 

and the linear fitting curve have been plotted in the Figure 7 with a 3:7 mixture of toluene and ethanol. 

The linear fitting expressions are given as follows: 

TLoss 7466.036671.333  . (7)  

The R-squared value estimated with linear regression fits is 0.97122 and the slope of the curve, 

corresponding to the temperature sensitivity, is 0.7466 with the standard error 0.02871. Comparing 

Equation (7) with Equations (5) and (6), the sensitivity of the probe at cryogenic temperature, 

corresponding to the slope, is lower than that at room temperature. This is because the thermo-optical 

coefficient of ethanol is lower than that of toluene and chloroform according to references [20,21], and 

in this case, the volume fraction of ethanol is higher than in the room temperature case, reducing the 

temperature sensitivity of the mixture. That is the physical mechanism of the sensitivity difference 

between the ultralow and room temperature conditions. Such a device could be developed as an  

intensity-modulated thermo-optic sensor probe with a tunable temperature sensitive range, especially 

under harsh conditions.  

In practical applications, the interrogation is carried out with commercial available optical fibers 

and components. The fabrication of the device is simple since it only involves cleaving and splicing. 

The system needs just once fusion splicing for less couple loss compared with the transmission-type 

scheme. Furthermore, the intensity-modulated configuration only requires a laser diode source 

associated with an optical power meter. The signal light passes twice through the active region due to 
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the reflection by the silver film at the end of the PCF. This doubles the effective interaction between 

the light and the tunable materials, leading to higher temperature sensitivity.  

4. Conclusions  

In conclusion, the intensity-modulated all-in-fiber temperature sensor probe has been demonstrated 

both theoretically and experimentally. The probe, based on the thermo-optical tunability of  

liquid-infiltrated LMA-8 PCF, presents a linear response with a sensitivity of ~1d B/°C. With an 

appropriate mixture of liquids, the sensor could be designed to operate in a desired measurable 

temperature range. A cryogenic temperature sensor probe has been researched experimentally as well. 

Such a configuration could be explored for an all-in-fiber sensor probe for temperature or refractive 

index monitoring with the merits of simple structure, compact configuration and easy demodulation in 

chemical or biosensing applications. 
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