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Abstract: There is an increasing number of Ambient Intelligence (AmI) systems that are 

time-sensitive and resource-aware. From healthcare to building and even home/office 

automation, it is now common to find systems combining interactive and sensing 

multimedia traffic with relatively simple sensors and actuators (door locks, presence 

detectors, RFIDs, HVAC, information panels, etc.). Many of these are today known as 

Cyber-Physical Systems (CPS). Quite frequently, these systems must be capable of  

(1) prioritizing different traffic flows (process data, alarms, non-critical data, etc.),  

(2) synchronizing actions in several distributed devices and, to certain degree, (3) easing 

resource management (e.g., detecting faulty nodes, managing battery levels, handling 

overloads, etc.). This work presents FTT-MA, a high-level middleware architecture aimed 

at easing the design, deployment and operation of such AmI systems. FTT-MA ensures 

that both functional and non-functional aspects of the applications are met even during 

reconfiguration stages. The paper also proposes a methodology, together with a design 

tool, to create this kind of systems. Finally, a sample case study is presented that illustrates 

the use of the middleware and the methodology proposed in the paper. 
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1. Introduction  

Ambient Intelligence (AmI) systems are found in a broad number of domains. Typically, they target 

smart homes, assisted living, health care systems, shops and business or leisure activities [1]. 

However, they may also be found in other domains with tighter timing, safety, security or robustness 

requirements such as transportation systems [2], manufacturing [3] or video security systems [4]. 

AmI systems involve different operations such as perceiving the state of the environment via 

several sensors, executing reasoning algorithms to process the sensors data and acting upon the 

environment using different kinds of controllers. In addition, these operations must be carried out in an 

adaptive and ubiquitous way [5]. AmI applications rely heavily on communications to coordinate 

different operations and devices. Even though the use of distribution middleware solutions such as 

CORBA, ICE, OSGi, OMG DDS or Web Services has been successfully adopted in AmI systems to 

reduce the distribution complexity [6], most of these middleware technologies are not specifically 

designed to cope with AmI-specific requirements, such as representing high level abstractions or 

reconfiguring the applications dynamically. In this scenario the definition of higher level middleware 

architectures that go beyond the mere resolution of the distribution issues by integrating abstractions to 

represent system resources, e.g., CPU, network, memory and battery, as well as policies that 

implement efficient and dynamic resource management algorithms may become a valuable asset for 

the developers of AmI applications. 

This is especially true for AmI applications with timing requirements or with additional resource-

related non-functional requirements, e.g., limited resource capacities and resource usage costs, since a 

broader number of requirements must be met, beyond their functionality, related to latencies, 

synchronization of distributed operations, Quality-of-Service (QoS) levels, management of physical 

resources, etc. Currently, most of the middleware architectures used in AmI applications do not 

consider such issues, particularly the combination of support to on-line adaptation and reconfiguration, 

with timing guarantees that are enforced throughout adaptation/ reconfiguration phases. 

Addressing such limitations, this paper presents the Flexible Time-Triggered Middleware Architecture 

(FTT-MA), going beyond previous works on particular aspects of the architecture [7–10] and 

providing a broader and integrated view. In addition, this paper presents the methodology associated to 

using FTT-MA and a sample case study to illustrate how the proposed methodology and middleware 

architecture can be used to design and develop time-sensitive, resource-aware AmI systems.  

FTT-MA is a middleware infrastructure aimed at AmI systems that require: (1) the timely execution 

of their activities and (2) the flexibility to adapt dynamically according to resource-oriented policies 

(e.g., load balancing or battery management) or reconfigure at run-time according to changes in the 

system composition (e.g., joining/leaving nodes or services). It is a time-triggered middleware 

architecture and, as such, it allows developers to focus on the functionality of the applications 

separately from synchronization (triggering) and resource management (adaptation) issues. Among 
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time-triggered architectures, this one has the unique feature of supporting reconfiguration / adaptation 

of the applications at run-time since the scheduling of the time-triggered components is carried out 

online. Thus, changes in system requirements or composition can be readily accounted for. To the best 

of our knowledge, this feature is not currently supported by any other time-triggered middleware 

architecture, which are based on static cyclic schedules. 

Moreover, FTT-MA also extends the previous works on FTT protocols since it takes a broader view 

of the system, integrating a variety of resources that are orchestrated together, as opposed to such 

protocols that focused only on the network resource, e.g., FTT-CAN [11] or FTT-SE [12]. 

The flexibility of FTT-MA also extends to the fact that it inherently supports heterogeneous 

components exchanging heterogeneous data types, such as sensor and control data, video streams and 

alarm messages, but it also supports the management of replication, scheduling the execution of a set 

of replicated tasks while optimizing the use of the distributed system resources in order to adapt to 

changes in the functionality at run-time and cope with transient faults. An implementation prototype of 

FTT-MA that uses CORBA as distribution middleware is available as open source at [13]; however the 

same principles could be easily adapted without loss of generality to other distribution technologies, 

such as ICE or OSGi. 

The rest of the paper is structured as follows: Section 2 describes some related work; Section 3 

covers the design of FTT-MA; Section 4 describes the methodology used for developing applications 

with FTT-MA; Section 5 describes an example implementation of the proposed middleware that uses 

CORBA as distribution middleware, the so-called FTT-CORBA, and it proposes a use case application 

that eases the understanding and the usage of FTT-MA; finally, Section 6 draws the conclusions and 

presents some future work. 

2. Related Work 

There are several middleware architectures that address AmI specific requirements. A discussion 

about the main requirements that middleware technologies must fulfill to adequately support the 

development of AmI systems can be found in [6]. This work also analyses the use of most popular 

distribution middleware technologies such as CORBA, ICE and Web Services in this field. 

The authors have found in the literature several works that survey existing high-level middleware 

architectures aimed at providing appropriate software infrastructures for these systems. Most of them, 

such as [14–17], are built on top of different distribution middleware technologies like CORBA, OSGi, 

ICE or Web Services. In some cases they address generic domain applications, but in others, they are 

aimed at specific domains like Ambient Assisted Living [18]. Frequently, they provide abstractions to 

transparently manage the relevant resources in the physical and virtual spaces, orchestrating the 

various computational components into a rich, adaptable, flexible and open way. The architectures 

presented in [16,19] offer high level abstractions for specific domains that hide complexities such as 

distribution and context awareness. In particular, the work in [19] proposes a formal context model 

based on four ontologies: users, devices, environment and services. Other works take in consideration 

the special needs of the underlying network technology; for example, the work in [20] compares the 

characteristics of several special purpose middleware architectures that execute on top of wireless 

sensor networks (WSNs). 



Sensors 2013, 13 6232 

 

Other issues must be considered, such as the development and deployment of AmI systems  

as well as higher-level functionalities. In particular, the work in [21] proposes a software framework 

that facilitates the development and deployment of AmI scenarios. The work in [22] proposes a  

service-oriented middleware architecture aimed at allowing service reconfiguration and dynamic 

integration in ubiquitous systems. This middleware allows building systems that provide the desired 

functionality by distributing type information of runnable services and interconnecting them as needed.  

In the domain of control and real-time systems an expression that is gaining wider acceptance is 

Cyber-physical Systems (CPS). This expression groups several disciplines, mainly real-time systems, 

network communications and control systems. Basically, CPS integrate embedded computers that 

control physical processes in different domains, some of which overlap with typical AmI applications 

such as intelligent buildings, healthcare, transportation systems and factory automation among  

many others [23,24]. 

Some authors have provided solutions to cope with the management of timing properties in 

distributed systems and the use of their infrastructure/resources through classic control theory [25–27] 

or genetic algorithms [28], focusing on the monitoring and control of certain non-functional properties. 

Other authors introduced adaptable architectures, typically with flexible mechanisms governed by 

complex admission control algorithms, to carry out dynamic reconfigurations at run-time [29]. Also, 

other works focus on the timing synchronization of the applications, by means of time-triggered 

middleware architectures, but with a limited degree of flexibility [30–32]. 

Finally, a large number of middleware architectures provide their users, i.e., the designers and 

developers of the applications, with associated methodologies and tools to foster their adoption  

(e.g., [33,34]). Many of these tools are based on the Model-Driven Engineering (MDE) paradigm. In those 

cases where the architectures offer predictable behavior, it is possible to further extend these tools with 

simulation engines that enable the early validation of the application designs [35,36]. Similarly, for 

architectures including application management interfaces, it is easy to integrate the management function 

in user tools specifically designed for application monitoring purposes at run-time [37,38]. 

In conclusion, to the best of our knowledge, most middleware architectures for AmI systems do not 

consider timing, including synchronization, and resource-aware issues, implying reconfiguration and 

adaptation, in an integrated way. Event-triggered architectures address relative timing issues and are 

inherently flexible. On the other hand, time-triggered architectures focus on time synchronization at 

the cost of flexibility. In spite of the decades-long discussion thread between these two paradigms, we 

believe, as in [39], that time synchronization is an enabler mechanism for high performance, 

confidence and easiness of development in distributed systems. However, flexibility is not less 

relevant, since its lack may lead to systems that are difficult to repurpose and deploy in new settings, 

and creating even simple applications typically requires intensive development, adaptation, 

deployment and management work by experts in a particular infrastructure [40]. Flexibility at run-time 

is also essential to support resource-management techniques. 

This work is inspired by the Flexible Time-Triggered (FTT) paradigm [11,41] and provides a novel 

time-triggered middleware architecture that offers implicit global synchronization in a flexible setting, 

providing a holistic solution for the implementation of time-sensitive, resource-aware AmI applications.  
  



Sensors 2013, 13 6233 

 

3. Architecture Description 

Previous works on the FTT paradigm initially applied it to control communications, only, directly at 

the data link layer on top of Ethernet and CAN networks for hard real-time systems. Later, the 

paradigm was extended to also control tasks in the end nodes, either directly [12,42] or integrated in 

larger frameworks [43,44]. FTT-MA extends this paradigm applying it on top of different distribution 

middleware architectures, such as CORBA, ICE, OSGi or Web Services, to orchestrate in time the 

application activities.  

FTT-MA aims at applications that are mostly periodic, even though aperiodic operations can be 

included, too. More specifically, FTT-MA: (1) ensures the time synchronization of the operations in 

distributed applications, (2) allows the coexistence of different distributed applications over the same 

infrastructure (devices and network), (3) manages the communications by using several priority levels 

and (4) monitors and manages the physical resources (e.g., CPU, memory, battery and network) 

available in a distributed system. Finally, FTT-MA also (5) provides flexibility to carry out changes of 

the applications at run-time and (6) eases the implementation of fault-tolerant applications by 

managing replicated services and devices. 

According to the FTT paradigm, time in FTT-MA is an infinite sequence of fixed duration time 

slots called Elementary Cycles (EC). The EC parameter defines the time granularity in the distributed 

system. Therefore, the EC must be selected carefully at design time taking into account the timing 

requirements of the applications to be executed since it cannot be adjusted on-line. A short EC will 

provide a fine temporal granularity and facilitate the adjustment of the timing parameters during 

reconfiguration/adaptation phases. On the other hand, a longer EC will incur in a lower associated 

overhead. Note that there is signalling traffic sent every EC and the percentage of the EC effectively 

available for data exchange is smaller for shorter EC durations. These overheads are platform-dependent 

and practical prototypes have been built with EC durations ranging from few to tens of milliseconds. 

Applications in FTT-MA are composed of a sequence of ordered tasks, whose order is defined by a 

directed graph (see Figure 1). Each task (i.e., each node in the graph) is defined in FTT-MA as the 

minimum executable entity used to compose applications. Tasks are generally considered ubiquitous 

and can be deployed in any node of the system and, furthermore, the same task could be replicated in 

several nodes in order to improve fault tolerance.  

Each task is parameterized with its timing requirements, e.g., deadline and offset. FTT-MA uses 

this information to generate the task activation triggers as shown in Figure 1. Tasks, i.e., the functional 

entities of the applications, must not be confused with task instances (or just instances for simplicity), 

which are the implementations of their functionality deployed in a particular device. Timing 

parameters, depicted in Figure 2, such as period and offset must be defined at application level. Offsets 

are used to decouple applications, e.g., two applications with the same period that should not execute 

simultaneously, and they are very important when a reconfiguration occurs, as it enables the 

architecture to correctly order the activation of each task. Offsets must always be referred to another 

application. Aperiodic tasks, common in AmI systems, are introduced using the “activations” 

parameter, which defines how many times an application must execute. This information is provided 

by an integer number which defines the number of activations. A negative value is understood as a 
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fully periodic application. It is important to remark that every parameter related to time in FTT-MA is 

always defined in terms of the EC, as shown in the figure. 

Figure 1. (a) Example application graph and time execution diagram including several 

sequential tasks; (b) Example graphs and execution diagram of applications including data 

exchange and inter-application decoupling. 

 

Figure 2. FTT-MA application graphs model in UML 

 

FTT-MA is designed to operate on top of LANs capable of doing physical multicast, such as 

Ethernet or IEEE802.11. Actually, it uses multicast messages to activate the tasks instances in the 

devices of the distributed system, emulating a software bus. Furthermore, FTT-MA provides a 

particular service, the so-called FTT-Event Channel, to decouple task activations and data messages 

produced by the tasks. This service avoids collisions in the software bus at run-time and ensures 

synchronism when a shared communication medium is used to connect the distributed system nodes 

such as IEEE802.11.  

The architecture has been designed as a set of services that collaborate among them (see Figure 3). 

Some services are centralized, i.e., there exists a single instance in the architecture at run-time, 

whereas other services are distributed over every participant node, which are mostly embedded 

computers. As depicted in the figure, all centralized services are typically implemented as a single 
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executable: the so-called Orchestrator. Similarly, all services executed at the distributed devices are 

locally grouped in the so-called Clerk which is another executable. 

Figure 3. FTT-MA architecture. 

 

The proposed architecture is composed of three layers: (1) the System Management Layer which 

elaborates on-line the execution plan that the FTT Dispatcher enforces, (2) the FTT Layer which 

triggers the operations of the distributed system and manages the access to the data distribution 

channel, and (3) the Application Services Layer which implements the services that provide the 

functionality of the system, e.g., as CORBA methods. 

3.1. System Management Layer 

This layer executes the centralized services devoted to the management of the distributed system 

and the interaction with the users. More specifically, the services included in this layer are: (1) the 

Application Management Service (AppMan), (2) the System Monitoring Service (SysMon) and (3) the 

Scheduling Service (SchedSer). 

AppMan provides an interface to allow loading and unloading applications at runtime,  

modifying the parameters of a running application and monitoring the status of both applications and 

distributed nodes. 

Whenever the AppMan receives a request, the model of the loaded applications is updated,  

and the new specifications are delivered to SchedSer. AppMan can also execute an admission control 

test to analyze how the change would affect the behavior of the applications and authorize or reject it 
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in order to avoid unstable or overload situations. The use of the admission control module is optional 

and the algorithms it executes depend on the working policies selected for a specific system.  

Section 3.5 discusses briefly some simple admission control policies that have been implemented in 

the current prototype. 

SysMon is responsible for gathering information related to the status of the distributed system 

nodes. More specifically, this service collects two kinds of data: (1) related to the deployment of the 

system, i.e., in which distributed nodes the task instances are deployed, and (2) related to the physical 

status of the node, in terms of CPU consumption, available memory and battery level. This information 

is provided to the scheduling service SchedSer for the generation of the tasks activation table that the 

Dispatcher will enforce. SysMon is also capable of detecting inoperative nodes in the distributed 

system, generating alarms that trigger a rescheduling of the tasks activation table. 

Finally, as referred above, SchedSer is responsible for generating the tasks activation table that 

executes the distributed applications. The SchedSer is triggered when there is a modification in the 

applications or the SysMon detects any event, e.g., a device has a low battery level. In both cases, the 

scheduling process is performed in two phases: (1) allocation and (2) prioritization. As outcome of the 

rescheduling process, SchedSer generates a new table defining in which moment each task instance 

has to be activated and its priority level. This table will be used by the Dispatcher at the underlying 

FTT layer to synchronize the activation of the distributed task instances. Tasks period adjustment is 

used to enforce an upper bound on the activations table. 

Since some tasks may be replicated in more than one device during the allocation phase, SchedSer 

selects which task instances to activate from all instances available that provide the same functionality 

in a specific system. This process is performed automatically according to an allocation policy selected 

by the user, e.g., using the node with the highest battery level, keeping a balanced battery level at all 

nodes or selecting the available node with the highest processing capacity. In FTT-MA, the allocation 

policy has been designed as a pluggable component, allowing users to select from several alternatives 

according to the requirements of their system and applications. This is also an extensible approach that 

eases the implementation of new allocation policies that optimize the usage of the system resources in 

specific situations. 

After allocation, the prioritization phase assigns to every task a priority level at the executing node. 

Similarly to the allocation policy, the prioritization policy is also a pluggable element, i.e., the user  

can select a policy from a list or even develop new prioritization policy algorithms and plug them  

into FTT-MA. 

3.2. FTT Layer 

The FTT layer is responsible for synchronizing the distributed tasks instances and the applications, 

managing not only the activation of the tasks instances themselves, but also the data exchange among 

them. This layer is located between the centralized management services and the services located at the 

distributed nodes. The FTT layer is comprised of four services, two centralized services located at the 

Orchestrator: the Event Channel and the Dispatcher, and two services replicated in each distributed 

node: the Federated Event Channel and the Activator. The services in this layer use the multicast 

software bus. 



Sensors 2013, 13 6237 

 

The Dispatcher, along with the Activators, is responsible for triggering the tasks of the distributed 

system in a synchronous way enforcing the task activation table provided by SchedSer. This table 

indicates the Dispatcher (1) the time lapse until the next activation of each task instance, (2) the 

priority associated to that instance in the distributed node, (3) the execution period and (4) the 

remaining number of activations, if applicable. This table is used by the Dispatcher until SchedSer 

generates a new table upon modifications in the functionality or an event is detected by SysMon.  

The Dispatcher executes periodically every EC. During each EC the Dispatcher reduces the timer 

(in EC units) for the next activation of each task instance in one unit. If this timer reaches 0, the 

dispatcher selects that instance for activation in the current EC. Should the task need to be executed 

again, the Dispatcher will update the timer for the next activation using the period (in EC units) 

associated to the application that task is part of. 

After selecting the task instances that must be activated, the Dispatcher sends a multicast message 

to all the Activators in the distributed system with their identifiers and priority values. Activators, 

which are executed at the distributed nodes, receive these messages and check whether the identifiers 

in the activation message match any of the task instances deployed in their respective node. In such 

case, the activator executes the task instance at the designated priority level. 

Most frequently, distributed tasks need to share data among them in order to fulfill their 

functionality, for example, a sensor that acquires data sends this information to a controller. In  

CPU-bound applications, i.e., those in which the time spent communicating is much less than 

computing, it is generally acceptable to disregard communications. This is a valid assumption in many 

applications that use high speed communication links, like in switched Ethernet, to transfer small 

amounts of data generated at relatively low rates. However, when the communication time is relevant 

(e.g., in multimedia systems) or when a shared network is used (e.g., IEEE802.11), data messages may 

collide with activation messages, degrading the synchrony of the whole system. The Event Channel 

along with the Federated Event Channels of the FTT layer provide a solution to this problem by 

decoupling activation and data messages through time separation, as depicted by Topic 1 exchanged 

among T5 and T6 in Figure 1(b). 

Messages in the Event Channel are sent using a bottom-up approach. In other words, when a task 

instance has data to share, it sends a data token to the Federated Event Channel, which is executed 

locally. To identify different kinds of data tokens, each data token must refer to a topic identifier. The 

Federated Event Channel holds all data messages that need to be sent. Similarly, if a task instance 

wants to receive a message, it subscribes to a topic ID in the Federated Event Channel, specifying the 

kind of data tokens it is expecting to receive.  

Since the Event Channel and the Dispatcher are centralized in the Orchestrator, they share the same 

clock. Thus, the Event Channel may place data messages in the interval between two consecutive 

activation messages avoiding collisions that may affect synchronization. In order to schedule the 

transmissions, the Event Channel first polls the Federated Event Channels at the distributed nodes for 

data tokens in their output queues. After polling, the Event Channel orders the messages according to 

the priority of the different topics. Finally, the Event Channel commands the Federated Event 

Channels to send their data tokens, using reliable multicast messages [45]. The number of EC between 

two consecutive polling processes is called the polling period, which is a configurable parameter in 

FTT-MA. It is important to note that the FTT-Event Service allows dealing with different levels of 



Sensors 2013, 13 6238 

 

criticality, since priorities may be assigned to the topics and it is the Orchestrator who decides 

according to its priority the order in which topics will be sent. 

Also, the Event Channel calculates the remaining time until the next activation message and sends it 

to the Federated Event Channel along with the command to start sending a message. If the Federated 

Event Channel is able to send the full message before time expires, it notifies the Event Channel, who 

will select which is the next message to send. Otherwise, the Federated Event Channel notifies of the 

failure to the Event Channel, and the unsent part of the message (unsent packets) is kept in standby 

until the next EC (see Figure 4). 

Figure 4. Event channel protocol. 

 

The FTT layer is the most important layer of the architecture, providing determinism, as it enables 

not only the timely and synchronous execution of distributed applications, but also the synchronous 

distribution of data tokens among tasks, following a fixed priority policy.  

3.3. Application Services Layer 

The instances of the tasks that compose the distributed applications are located at the Application 

Services Layer. Each task instance is an implementation of a task deployed at a particular distributed 

node. The technology used to implement task instances must provide mechanisms to ensure that the 

Activators can execute them and modify their priority according to the requirements. 

Ev. Channel Scheduling

Polling

Tranmission
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3.4. Architecture Intrinsic Applications 

FTT-MA allows the execution of special applications that provide specific services to the 

architecture, the so-called Architecture Intrinsic Applications. These applications, similar to  

the services and daemons executed in operating systems, share the execution environment at the 

distributed nodes with the applications loaded by the users. Consequently their execution must also be 

scheduled. However, these applications execute specific task instances implemented directly at the 

Activators and are activated by means of reserved task identifiers.  

The current version of FTT-MA defines two Architecture Intrinsic Applications: monitoring and 

time synchronization. The monitoring application orders the Activator to gather the current status of 

the physical resources at the distributed nodes, i.e., CPU consumption, available memory and battery 

level, in order to send it to SysMon. This information is sent using the federated event channel. 

The time synchronization application is used to synchronize the clocks of all the distributed nodes. 

This application sets the time of the clocks of all the distributed nodes to the time of the central clock 

executed at the Orchestrator. 

3.5. Admission Control 

It has already been mentioned that FTT-MA offers an optional admission control mechanism to 

prevent that changes in the requirements lead to an invalid execution of the system, e.g., violating QoS 

parameters of the applications such as bandwidth or deadlines. This module is part of the application 

management service that interacts with the users and can be turned on or off as desired.  

The admission control module takes advantage of the centralization of SysMon to access the status 

information of the distributed nodes. It uses this information to analyze the stability of the system with 

the new configuration in terms of schedulability, and availability of memory and bandwidth. The 

admission algorithms are based on a mathematical model, such as that described in detail in [7]. Since 

SysMon is capable of tracking down changes in CPU usage and memory, the algorithm computes the 

current computational load and memory used at every node and anticipates whether introducing a new 

application will surpass the thresholds defined for every node. Regarding network resources, the 

admission control algorithm proposed in [7] applies to distributed systems that use the Event Channel 

over a shared communication network, only. 

3.6. Implementation Requirements 

The implementation of FTT-MA imposes three main requirements on the underlying technology: 

(1) task encapsulation, (2) availability of fixed priority scheduling mechanisms at the distributed nodes 

and (3) availability of reliable multicast communications. 

Task encapsulation is required to treat task instances as individually executable entities. 

Encapsulation is a common characteristic in object-oriented languages, such as Java, C++ or C#, as 

well as in object-oriented, component-oriented, or service-oriented middleware architectures, such as 

CORBA, ICE or Web Services. 

Fixed priority schedulers are needed at the distributed nodes whenever the FTT-MA prioritization 

module is used. This module may use several policies to assign each task instance in an application a 
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specific priority level according to its timing requirements. These priority levels are sent to the 

Activators, who should execute the task instance at the priority level provided by SchedSer. This is not 

a restrictive requirement, since fixed priority schedulers are available in most operating systems as 

well as in many virtual machine engines, such as Java. 

Finally, communications inside FTT-MA have been designed following the software bus paradigm, 

where remote nodes are capable of receiving the commands from the network master with small jitter 

values. This kind of communications requires the support for physical multicasting in the network. 

Moreover, it is important to prevent messages from being lost; thus, the reliable multicast protocol [45] 

has been selected as communication protocol inside FTT-MA. 

4. Development and Deployment of FTT-MA Applications 

This section briefly presents a methodology aimed at fully exploiting the capabilities of the 

presented architecture. This methodology, which eases the development and deployment of FTT-MA 

systems, is supported by a tool developed by the authors, the so-called FTT-Modeler [8]. 

As depicted in Figure 5, the proposed methodology is split into five phases: (1) application 

partitioning into tasks, (2) task instances deployment, (3) configuration of FTT-MA parameters,  

(4) simulation and early validation of the design, and (5) implementation and runtime monitoring.  

FTT-Modeler supports the five phases of the proposed methodology and automates some stages by 

means of Model Driven Engineering (MDE) techniques. 

Figure 5. Methodology for application development and deployment. 

 

The first phase of the methodology consists in partitioning the functionality of each application into 

individually executable entities exploring inherent concurrency. The criterion to guide the partitioning 

process may vary depending on the applications; nevertheless, it is possible to identify a set of golden 

rules that may guide the designer. For example, if a part of an application is physically linked to the 

hardware, e.g., acquiring data from a sensor, that part should become a task. Similarly, if a specific 
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functionality can be parallelized to improve performance that functionality should also become a task. 

The same is also valid for critical functionality that can be replicated in the system to improve fault 

tolerance. Finally, a functionality that is used several times by one or many applications should also 

become an individual task, as this will improve the maintainability of the system.  

Once tasks have been extracted, applications are weaved together by establishing the precedence 

relationships between tasks, messages and their timing properties, i.e., application periods, offsets, 

deadlines, etc. The result of this phase is a set of acyclic directed graphs that define the distributed 

applications of the distributed system, similar to those shown in Figure 1. The FTT-Modeler tool 

provides a specific editor for the creation of these graphs developed using MDE techniques. A 

screenshot of the tool is shown in Figure 6.  

Figure 6. Screenshot of the FTT-Modeler tool. 

 

The second phase of the methodology is devoted to the deployment of the distributed system. In 

FTT-MA, this refers to the allocation of the task instances to the nodes of the distributed system. In 

this process it is important to consider the dependencies that some tasks have with respect to specific 

nodes, e.g., a sensing task must be deployed in a node with a particular sensor or hardware. 

Furthermore, tasks intended to be executed in parallel or as back-up instances should be deployed in 

different nodes. 

The third phase aims at selecting the configuration parameters of the middleware architecture, 

namely, the EC, the polling period and the allocation and prioritization policies to use. The selection of 

these parameters varies according to the applications; for example, an EC value of 40 ms could be well 

suited to support a video application that shows a video stream to the users with a rate of 25 frames per 

second. However, if a 5 ms feedback control application is to be supported together with the referred 

video stream then an EC of 5 ms should be used. In practice, the EC should be set to the largest value 

that allows expressing periods and offsets of interest to the system as integer multiples of such value. 
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The FTT-Modeler tool also provides an editor for the creation of deployment models, including the 

parameterization of the FTT-MA architecture.  

FTT-MA has been designed to be deterministic as typical time-triggered architectures. As a 

consequence, it is possible to simulate its behavior once the application and deployment models are 

ready. This is the focus of the fourth phase being devoted to the simulation and early validation of the 

designed applications. The simulation engine implemented in FTT-Modeler allows designers to obtain 

information from the designs and foresee how the distributed system will behave at runtime with  

good accuracy. 

Once the initial design has been validated, task instances must be implemented and deployed on the 

nodes according to the plan. Typically, the implementation of a task instance will involve some 

structural code that can be easily converted to a template and automatically generated, e.g., creating a 

new CORBA object or a new Java class extending Thread. Since the FTT-Modeler tool has been 

implemented using MDE techniques, it enables the generation of the structural code of a task instance 

as well as start-up scripts using model-to-text transformations. Currently, FTT-Modeler is capable of 

generating the skeleton for task instances compatible with a specific implementation of FTT-MA that 

uses CORBA as distribution middleware, called FTT-CORBA (see Section 6). The behavior of the 

distributed system can be monitored using the interface provided by AppMan, in the system 

management layer. 

5. FTT-MA Implementation and Use Case 

5.1. FTT-CORBA 

Currently, there is an FTT-MA implementation available, known as FTT-CORBA [13], capable of 

activating tasks wrapped as CORBA objects, but the same principles could be adapted to be used 

within other distribution middleware specifications, such as ICE, OSGi or even OPC, without loss of 

generality. CORBA has been selected for being an open standard and for presenting some support to 

real-time applications. Furthermore, despite its maturity, CORBA is still considered a valid technology 

in the AmI domain [2,6,16]. 

In order to validate the proposed middleware architecture, the authors implemented FTT-MA using 

CORBA/CORBA-RT as underlying technology, the so-called FTT-CORBA [9]. It has been built on 

top of ACE and TAO [46]. TAO is an open source CORBA ORB that has a very good performance on 

devices with limited resources, and the ACE library provides a good abstraction layer that fosters the 

portability of the implementation to many operating systems. The selected technology fulfills the three 

requirements imposed on the technology in Section 3.6. Namely: (1) CORBA enables the 

encapsulation of tasks as CORBA methods, (2) using the CORBA real-time extensions the execution 

priority of a task can be selected remotely, and (3) the ACE library implements the UDP reliable 

multicast protocol.  

The FTT-CORBA implementation is comprised of two executables: the Orchestrator and the  

Clerk, which implement the centralized and decentralized services of the FTT-MA architecture 

respectively. In addition to the decentralized services, the Clerk also implements the connection with 

the task instances. 
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The external interfaces of both Orchestrator and Clerk have been implemented as standard CORBA 

methods (e.g., the Application Management Service interface), while interfaces between internal 

services have been implemented using shared data structures. CORBA requires that a client that 

invokes a method knows in advance the stubs of the method, for that reason during start-up Clerks 

have to create the links to the task instances deployed at their distributed node by using the CORBA 

DII (Dynamic Invocation Interface), which requires the name of the CORBA object containing the 

task instance, the name of the CORBA method where the task instance is implemented and any 

parameters that should be provided to the method. All this information is loaded into the Clerks using 

configuration files generated by the FTT-Modeler tool. 

It is important to note that FTT-MA allows combining several technologies to activate the tasks of 

the distributed system by means of Clerks that use different technologies (e.g., a Clerk could activate 

CORBA objects whereas another could activate an OPC component or even an ICE object). 

Furthermore, the selected implementation technology impacts the performance of the architecture 

itself. As for FTT-CORBA, the authors have measured the performance of the middleware in terms of 

task activation jitter for periodic tasks and communication latencies. The results of the laboratory  

tests [10] demonstrated that FTT-CORBA introduced small jitter in the system (~600 s) and that it 

succeeded in reducing the average latencies of high priority communication messages. 

5.2. Case Study: A Train Monitoring System 

This subsection presents a simple synthetic case study aimed at showing the capabilities of  

FTT-MA. It does not only illustrate how the FTT-MA middleware works, but also the methodology 

users should follow in order to develop applications on top of FTT-MA. 

The proposed case study uses FTT-MA as backbone for the implementation of an information 

monitoring system in trains. The TCN standard [47] divides hierarchically train communications at 

two different levels: vehicle and train. At the vehicle level, the Multifunction Vehicle Bus (MVB) 

provides the communication infrastructure for low level hard real-time control processes that take 

place inside the vehicles. Most of these processes are related to the dynamics of the vehicle, such as 

braking or suspension, and are time-critical. Also, TCN defines a higher level, the train bus level 

known as Wire Train Bus (WTB), which interconnects all vehicles and enables the interaction for less 

time critical control processes (e.g., related to ambient information such as door sensors, smoke 

sensors, video applications, etc.). With regard to the communication technologies, although field buses 

are preferred at vehicle level, switched Ethernet is becoming increasingly popular for the 

implementation of train level TCN communications [48]. 

This case study illustrates how FTT-MA may be used as middleware for building train wide 

applications. It focuses on the six objectives previously mentioned in this article, namely: (1) time 

synchronization of the operations in a distributed system, (2) graceful coexistence of several 

distributed applications over the same infrastructure (network and devices), (3) coexistence of different 

kinds of communication traffic (i.e., periodic, aperiodic, synchronous and asynchronous), (4) physical 

resource monitoring and detection of unavailable nodes, (5) reconfiguration of the applications at  

run-time, and (6) implementation of fault-tolerance, parallel computation and resource management 

policies (e.g., load balancing). The proposed case study is also intended to demonstrate the FTT-MA 
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methodology, briefly described in Section 4, by means of a hypothetical application. Thus, each of the 

phases defined in the FTT-MA design and development methodology will be explained in detail. 

The proposed case study system is aimed at logging train status information in a database. As 

shown in Figure 7, every train vehicle includes a local TCN bus (MVB) for hard real-time control 

operations, mainly related to the vehicle dynamics, and a TCN gateway node connected to the WTB. 

In addition to this, each passenger vehicle has been equipped with a video server capable of counting 

the people inside each vehicle, as well as sensors to detect ambient information in the vehicle, e.g., 

smoke and overload detectors. In this context, the data logging application stores periodically the 

status of the TCN vehicle bus sensors, as well as the number of passengers and the status of the smoke 

and overload detectors when alarms occur inside the vehicles. In order to get additional information on 

the behavior of the passengers, the data logging application is able to store video streams coming from 

the video server whenever an alarm of any kind is detected. However, video is not continuously 

recorded in order to reduce the data storage requirements but, instead, the system is required to 

reconfigure itself when any alarm occurs. 

Figure 7. FTT-MA governed TCN bus. 

 

Figure 7 also shows the integration of the FTT-MA entities in the system, namely, a dedicated node 

holding the Orchestrator which is connected to the train bus for the management of the task 

synchronization and the communications of the system; and a Clerk which is deployed along with each 

TCN gateway node at every train vehicle. This TCN gateway has been connected to the soft real-time 

elements of the vehicle; this is, the video server including the people count algorithm and the smoke 

and overload detectors. TCN gateways are connected together via a dedicated Switched Ethernet over 

which FTT-MA emulates a soft real-time bus. 

5.2.1. Phase 1: Application Partitioning 

The proposed case study has been split into several FTT-MA applications and tasks. All FTT-MA 

applications and tasks that comprise the case study; along with their characteristics and time 

parameters are described in Tables 1 and 2. 
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Table 1. Description of the FTT applications of the TCN use case. 

Application Description Period Offset 

Main Log 

Periodically get the status of all the TCN 
vehicle buses and store the information in 

the database. All data gathered by the rest of 
the applications will also be stored. 

100 ms Ref * 

People Count 
Get the result of the people count algorithm 

in a vehicle 
2 min 10 ms 

Process Alarms 
Check if any alarm has been triggered in any 

vehicle and reconfigures the application 
50 ms  

(when active) 
40 ms 

Video 
Get the next set of video frames recorded by 

the video server in a vehicle 
50 ms 10 ms 

* Main Log application is used as reference for offset management. 

Table 2. Description of the tasks of the TCN application. 

Task Description Location Produced Topics Consumed Topics

Get Status 
Get the last measurements from the 

sensors connected to the TCN vehicle bus
All vehicles StatusData - 

Get People 

Count 

Get the result of the people count 

algorithm in a vehicle 

Passenger 

vehicles 
PeopleCount - 

Get Video 

Stream 

Get the next set of video frames recorded 

by the video server in a vehicle 

Passenger 

vehicles 
VideoStream - 

Process Alarms 

Check if any alarm has  

been triggered in any vehicle and 

reconfigures the application 

Locomotive - 
SmokeAlarm 

OverloadAlarm 

Log Data 
Store the status of the trains to  

the database 
Locomotive - 

StatusData 

PeopleCount 

SmokeAlarm 

OverloadAlarm 

VideoStream 

Check Smoke 
Monitor the status of the smoke detector 

and generate an alarm if triggered 

Passenger 

vehicles 
SmokeAlarm - 

Check 

Overload 

Monitor the status of the overload detector 

and generate an alarm if triggered 

Passenger 

vehicles 
OveloadAlarm - 

As shown in Table 1 and Figure 8, the use case has been partitioned into four applications, namely: 

(1) Main Log, (2) People Count, (3) Process Alarms and (4) Video. These applications involve three 

different types of tasks: (1) synchronous periodic tasks (GetStatus, LogData, GetPeopleCount and 

ProcessAlarms), which are continuously activated by FTT-MA, (2) synchronous aperiodic tasks 

(CheckSmoke and CheckOverload), which are activated by FTT-MA, but may not be active 

continuously, and (3) asynchronous tasks (GetVideoStream), which are not activated by FTT-MA, but 

produce data that is managed by the FTT Event Channel.  
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Figure 8. Graphs of the TCN applications. 

 

Application tasks have been organized into four, simple, FTT-MA applications, as depicted in 

Figure 8. In this case, the application graph includes not only the representation of the application, but 

also the data exchanged among the tasks. This graph also shows asynchronous tasks for the sake of 

completeness, in order to facilitate the understanding of the case study. However, these tasks are not 

triggered by FTT-MA, since their activation is not handled by the middleware but they are activated by 

the occurrence of alarms. 

One of the most relevant characteristics of FTT-MA is the capability of synchronizing the 

activation of several tasks at several distributed devices according to a predefined schedule prepared 

by SchedSer. However, when several tasks are triggered simultaneously, the responsibility of handling 

their effective activation is delegated to the operating system at the distributed devices. Nevertheless, 

FTT-MA allows using the application reference offsets as design parameters to de-phase the 

applications activations, adding more real-time control to the distributed system. The correct selection 

of the applications reference offset values, which impose concrete offsets to their tasks according to 

their specified relative offsets, is an important issue in the configuration of FTT-MA systems. 

Whenever application offsets are required, an FTT-MA application must also be selected as time 

reference for the offset definition of the remaining applications. In this case study application, the 

Main Log application was selected as offset reference. Other applications such as Get People Count 

and Process Alarms need to be de-phased from Main Log using offset values of 10 ms and 40 ms, 

respectively. This way the pace of execution triggers will never lead to a concurrent execution of any 

of the tasks in the distributed nodes. Regarding the Video application, the selection of the offset value 

and reference application is even more important, since this application is dynamically 

loaded/removed from the distributed system depending on the alarms detected by the sensors. In this 

case study, the offset value serves not only for de-phasing applications, but also for establishing the 

moment when the Video application should start executing whenever it is loaded. 
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5.2.2. Phase 2: Deployment Planning 

Once distributed applications, along with their composing tasks, have been defined, the next step is 

planning the number of instances of each task to be deployed at every device of the distributed system. 

Different strategies for the deployment of the task instances will lead to different middleware behavior; 

thus, the deployment must be carefully designed. In the proposed case study, tasks are tightly coupled 

to the nodes due to hardware restrictions; however, not all the tasks are intended to behave in the same 

way. As shown in Table 2, the GetStatus task is deployed to all the vehicles, ProcessAlarms and 

LogData are deployed only in the locomotive whereas GetPeopleCount and GetVideoStream are 

deployed only in the passenger vehicles. 

Some tasks, such as GetStatus and GetPeopleCount, are intended to be executed simultaneously in 

all passenger vehicles in parallel. Deployed instances share the same identifier since local Clerks at the 

distributed devices are activated in parallel by the same trigger message. FTT-MA handles these tasks 

as a single instance. On the other hand, instances of the GetVideoStream task, which are also deployed 

in the passenger vehicles, need to be different from each other, since they should be activated 

individually, only if an alarm is detected in the corresponding vehicle. As a result, the Video 

application, along with the associated tasks, will be formed by different applications in the different 

vehicles, loaded and removed from the system independently. 

Finally, tasks not handled by FTT-MA are deployed in the passenger vehicles independently. It is 

important to note that, since their activation is not handled by the middleware their execution is 

expected to be concurrent and asynchronous. 

5.2.3. Phase 3: FTT-MA Parameters Configuration 

FTT-MA provides several parameters that allow the users to fine tune the behavior of the 

distributed applications once deployed. These parameters include the EC, the allocation and 

prioritization policies, and, if applicable, the priorities of the distributed tasks and data topics. 

The EC should be set to a common divisor of all the periods of the different tasks extracted from 

the application requirements. In this case study, considering the time parameters shown in  

Tables 1 and 2 several EC values could be used, e.g., 50, 25 or 10. An EC value of 10 ms was selected 

in order to achieve a good balance between time resolution, computing overhead at the distributed 

nodes and bandwidth overhead at the network. 

Allocation and prioritization policies are used to define how the scheduling service of the FTT-MA 

selects the task instances to execute and how priorities are managed locally at the distributed nodes. 

This is particularly important when several task instances are deployed in more than one node to 

implement fault-tolerance or load balancing protocols. The proposed case study does not include any 

of these requirements; therefore, the default policies are selected, i.e., allocation to the first node 

available, and fixed priority scheduling in the distributed nodes. 

Finally at this phase, priorities must be assigned for each task and each data topic. Task priorities 

define how the operating systems execute the tasks in case of concurrent execution. Topic priorities 

define the order in which the FTT Event Channel sends the messages through the network. The 

priorities selected for the tasks in the case study application are shown in Table 3. Table 4 shows how 
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the priorities of the different data topics have been selected, along with the size of each data token and 

the estimated transmission time (calculated for a 100 Mbps Ethernet LAN and EC = 10 ms). 

Table 3. Priority values associated to each task. 

Task Node Priority Level Instances Execution Type 

Get Status All vehicles Medium 1 (repeated in all vehicles) Parallel 

Get People Count Passenger vehicles Low 1 (repeated in all vehicles) Parallel 

Get Video Stream Passenger vehicles Lowest N (one per passenger vehicle) Individual 

Process Alarms Locomotive High 1 Individual 

Log Data Locomotive Low 1 Individual 

Check Smoke Passenger vehicles High N (one per passenger vehicle) Parallel (not managed)

Check Overload Passenger vehicles High N (one per passenger vehicle) Parallel (not managed)

Table 4. Size and priority values associated to each data topic. 

Data  
Topic 

Priority  
Level 

Data Token  
Size (Bytes) 

Transmission 
Time (s) * 

Transmission 
Time (%EC) ** 

StatusData High 3,000 240 2.4 
PeopleCount Medium 2 5.6 0.56 
VideoStream Low 250,000 20,000 200 
SmokeAlarm Highest 1 5.6 0.56 

OverloadAlarm Highest 1 5.6 0.56 

* Time calculated for a 100 Mbps Ethernet LAN; ** Calculated with EC = 10 ms. 

5.2.4. Phase 4: Simulation and Validations 

Before deploying the distributed applications to the train, an early simulation of the behavior of the 

system should be done to prevent errors that could be easily corrected in earlier stages. The simulation 

of distributed applications on top of the FTT-MA middleware can be easily carried out due to the 

unique characteristics of FTT-MA, particularly, using the EC as main time reference. When  

the distributed system involves the dynamic reconfiguration of the system, like in this case study, the 

simulation should also include the events that trigger the reconfiguration so that the final behavior can 

be studied in detail. 

The results of the use case application simulation, including the locomotive vehicle and two 

passenger vehicles, are shown in Figure 9. This diagram describes how the system behaves not only 

during the regular state, but also when an alarm arises and the video streaming application is turned on, 

according to the configuration parameters set in Tables 1–4. As shown in the diagram, the Main Log 

application, comprised of the GetStatus and LogData tasks, executes periodically every 10 EC  

(100 ms). In addition, the diagram shows how the GetStatus task executes in parallel in all the vehicles 

at the same time, because the deployed task instance is the same in all vehicles and, consequently, they 

are activated by the same trigger message. The diagram also shows the effect of the offset values 

defined for the application. In particular, an offset of 1 EC (10 ms) and an offset of 4 EC (40 ms) have 

been assigned to the People Count and Process Alarms applications respectively. 
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Figure 9. Simulation results for a train including a locomotive and two passenger vehicles. 

 

Regarding communications, the diagram depicts the usage of the network, managed by the FTT 

Event Channel. It is important to note that the FTT Event Channel is capable of preempting  

low-priority traffic (video stream, in the example) with high priority traffic (alarms). In the diagram 

the trigger messages sent by the Orchestrator have been omitted for the sake of figure readability; 

however, activation messages are sent at the beginning of every EC, whenever a task must be triggered. 

Finally, the diagram provides some information of the dynamic behavior of the system, showing how 

the Video application (and consequently the GetVideoStream task) is dynamically started/stopped 

when the smoke alarm is turned on/off on vehicle number 2. 

5.2.5. Final Considerations 

This case study has demonstrated how the FTT-MA architecture can be used for the implementation 

of synchronous distributed applications. More specifically, the example has shown how FTT-MA is 

capable of synchronizing applications, enabling its coexistence and preventing collisions. In addition, 

the example described how different kinds of traffic can be defined and managed by the proposed 

middleware, and how different execution policies (i.e., parallel or individual) can be established using 

the deployment strategy and the FTT-MA policies. 

The example could be further refined by adding fault-tolerance to the logging application. To do so 

an extra distributed node could be connected to the WTB and to the database, using a different task 

instance of the LogData task. This way, if a node should become unavailable, FTT-MA would 

automatically switch to the other node, preventing data from being lost.  

6. Conclusions and Future Work 

In this paper the authors have presented a time-triggered middleware architecture suitable for 

ubiquitous applications, the so called FTT-MA. This architecture enables developers to focus on the 
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functionality of the applications separately from other issues such as: (1) meeting temporal constraints, 

i.e., satisfying deadlines, periods, off-sets or synchronizing distributed tasks, (2) using adequately the 

physical resources, i.e., CPU, memory, battery and network, (3) reconfiguring the functionality of the 

system at run-time using resource aware policies. FTT-MA can be implemented on top of any 

distribution middleware platform that fulfills the following requirements: (1) task encapsulation,  

(2) availability of fixed priority scheduling mechanisms at the distributed nodes and (3) availability of 

reliable multicast communications. FTT-MA provides the user with a service-based interface to 

interact with the distributed system at run-time, including mechanisms to load/unload applications, 

monitor the status of the nodes, and modify the configuration parameters of the system. 

The paper also presented a methodology and a tool to help designers and developers of applications 

to fully exploit the capabilities of the presented architecture. Namely, this tool eases the development 

and deployment of FTT-MA applications as well as their operation at run-time. Finally, a use case 

application has been provided to validate FTT-MA and the associated methodology. 

Regarding future work, we will address the fault-tolerance of the Orchestrator, which is currently a 

single point of failure, possibly using a semi-active replication mechanism. Another aspect that we 

wish to address in future work is the development of gateways to allow the connection of legacy 

equipment that is not FTT-MA compliant to an FTT-MA system.Currently, there is an implementation 

of FTT-MA for tasks wrapped as CORBA objects, called FTT-CORBA. This implementation is 

available as open source software at [13]. We also plan to implement FTT-MA over other middleware 

technologies namely DDS, ICE and OPC and we plan to apply the proposed middleware to a variety of 

real application scenarios to further assess the benefits that it brings. 
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