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Abstract: In modern supply chain management systems, Radio Frequency IDentification 

(RFID) technology has become an indispensable sensor technology and massive RFID data 

sets are expected to become commonplace. More and more space and time are needed to 

store and process such huge amounts of RFID data, and there is an increasing realization 

that the existing approaches cannot satisfy the requirements of RFID data management. In 

this paper, we present a split-path schema-based RFID data storage model. With a data 

separation mechanism, the massive RFID data produced in supply chain management 

systems can be stored and processed more efficiently. Then a tree structure-based path 

splitting approach is proposed to intelligently and automatically split the movement paths of 

products . Furthermore, based on the proposed new storage model, we design the relational 

schema to store the path information and time information of tags, and some typical query 

templates and SQL statements are defined. Finally, we conduct various experiments to 

measure the effect and performance of our model and demonstrate that it performs 

significantly better than the baseline approach in both the data expression and path-oriented 

RFID data query performance. 

Keywords: RFID technology; data storage model; data compression; data processing; 

split-path schema; supply chain management 
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1. Introduction 

Radio Frequency IDentification (RFID) is a kind of automatic identifying technology that allows 

objects, places or persons to be automatically identified at a distance without a direct line-of-sight, 

using an electromagnetic challenge/response exchange [1,2]. RFID has played a significant role in 

minimizing process costs for firms with a high value information service. With the development of 

low-cost passive RFID tags and vigorous RFID standardization efforts, RFID technology has become 

an indispensable technology in modern supply chain management [1]. The use of RFID in the supply 

chain management process has contributed a lot to the aspects of accuracy, information visibility and 

improved customer service, and supported various cost reduction factors ranging from inventory 

management to information and labor cost [3]. Although RFID system can provide plenty of data 

essential to controlling and understanding business processes, applications like supply chain 

management or real-time tracking may generate such a huge volume of information that it cannot be 

handled by traditional approaches [4]. More and more space and time are needed to store and process 

such huge amounts of RFID data. For example, it is predicted that only one company, such as 

WalMart, will generate over 7 terabytes of operational RFID data per day if it operates RFID on the 

item level [5]. Therefore, the storage and processing of RFID data is therefore widely considered as a 

principal challenge and has been an important research topic [6,7]. 

How can companies store and process the enormous volume of data that an RFID application will 

generate is a great challenge. In this paper, we present a split-path based RFID data storage model. We 

found that the database will have mass redundant data if we store the path of each tag independently. 

Therefore, the corresponding solution is proposed for the purpose of reducing the redundancy in RFID 

database. All the whole paths of tags have been split into two sections, and then a cluster analysis for 

the tags with the same path section information, including the locations and time, will be done.  

We also propose the corresponding approach and algorithm for splitting the whole path. Further, we 

design a new relational schema to store the path information and the time information for tags. The 

contributions of this study are as follows:  

(1) Split-path based RFID data storage model. There is data redundancy in the RFID technology 

based supply chain management system, and there are a lot of tags with different information 

for the whole path but the same path information for some path sections. In the proposed 

model, the whole path will be split into two sections, and then be stored separately to reduce 

the system data redundancy.  

(2) Tree structure based path splitting approach. In the supply chain, products usually have two 

processes successively, concentration and distribution. For this reason, there will be some 

positions with very high in-degree and out-degree in the supply chain. We propose a tree 

structure based path splitting approach, and the whole paths can be split intelligently and 

automatically. The large product distribution center is often the root node of the tree structure.  

(3) New relational schema for RFID data storage. Based on the proposed new storage model, we 

redesign the relational schema to store the path information and time information of tags.  

(4) Query translation. For the changes of storage model and relational schema, the original query 

templates have to change accordingly. Some new typical query templates are defined, and we 

also devise the corresponding SQL statements of these queries. 
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The rest of this paper is organized as follows: we discuss the related work in Section 2. Section 3 

introduces the split-path based RFID data storage model and the tree structure based path  

splitting algorithm. In Section 4, we describe the new relational schema for RFID data storage in an 

RDBMS. An empirical evaluation of our solution is reported in Section 5 while our conclusions are 

presented in Section 6. 

2. Related Work  

With the development of RFID technology, more and more research on RFID data management has 

been done recently, such as RFID data warehousing and duplicate elimination [8–10], RFID data 

querying [7,11–13], RFID data cleaning [14–16], and so on. In this section, we will review the existing 

RFID data compression and processing approaches that are related to our work. 

The special way in which RFID device gets data brings more redundancy to the RFID data sets.  

In recent years, several efforts have been made in the related research field. Mahdin et al. [8] proposed 

a data filtering approach that efficiently detects and removes duplicate readings from RFID data 

streams. However, the approach has its limitation that all filtering process is aimed at the raw data at 

reader level rather than the path records of tags. Gonzalez et al. [9] proposed a movement graph model 

as a compact representation of RFID data sets. It provides a clean and concise representation of large 

RFID data sets. This approach is based on the assumption that the products tend to move and stay 

together and thus can be grouped together based on their locations. However, it is useless for 

warehousing of products with scattered movements, and the path oriented queries is inefficient.  

Bashir et al. [10] propose an energy-efficient in-network RFID data filtering scheme to filter duplicate 

readings in wireless sensor network. In this schema, a clustering mechanism is used to eliminate the 

duplicate data, and cluster heads only need to forward filtered data towards the base station. 

Bai et al. [11] proposed a stream query language to provide comprehensive temporal event 

detection, through temporal operators and extension of sliding-window constructs, and it can support 

the general RFID data processing for a large variety of RFID applications. Park et al. [12] proposed an 

effective technique for indexing RFID continuous queries. This technique can convert a number of 

segments into compressed data and store the result as one object. Furthermore, a transform technique  

is proposed to find a repeated group of segments and convert the group into compressed data.  

Wilfred et al. [13] presented a holistic framework that supports data querying and analysis of raw 

datasets obtained from different RFID collection points managed by supply chains. Lee et al. [7] 

proposed a path encoding schema to process a massive amount of RFID data for supply chain 

management. By using two numbers, the paths that satisfy the conditions can be found easily. 

However, with the increasing of the tag numbers in system, the storage cost of data and the time cost 

of data query will increase rapidly. 

Our work on the RFID data compression and processing makes use of several traditional  

data processing techniques. In this paper, we propose a split-path based RFID data storage model  

that improves on the storage model used in Reference [7] to reduce the storage cost and speed up  

query processing. 
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3. Split-Path Based RFID Data Storage Model 

In the RFID technology based supply chain management system, when the product with RFID tag 

moves through the detection region of the reader, it will be detected by the reader and a record will be 

generated in the form of (tag_id, reader_id, timestamp), where tag_id and reader_id refer to EPCs 

which universally uniquely identify the tagged item and the RFID reader (readers are usually fixed  

at a specific location, so reader_id and the locations LOC in supply chain are in one-to-one 

correspondence), and the timestamp is the time when the reading occurred [17]. In the work of 

Reference [7], the raw RFID data generated in supply chain management have been translated into the 

form of (tag_id, loc, start_time, end_time), which is a set of stay records and has no duplicates. loc is 

the location of the RFID reader which detects the tag; start_time and end_time are the time when the 

tag enters and leaves the location, respectively. Furthermore, path records are constructed to instead of 

raw RFID data in the form of L1[s1, e1]→…→Li[si, ei]→…→Ln[sn, en], where Li is the location where 

the tag is detected, si and ei are the start_time and end_time at the location Li, respectively. 

Figure 1 shows the path graph of an electronics supply chain. The node A, C, D and F mean several 

manufacturers, and node I, J, M and N are the electronics retailers. Other nodes mean middlemen, and 

node O is the biggest electronics distributing center in this supply chain. The path information of 

products in this supply chain for a period is stored in Table 1. We found that the storage cost can be 

significantly reduced if we split the whole path of each product into two sections by the distributing 

center node O and store the information of each path section separately, and the performance of path 

oriented RFID data queries can also be improved. All the path records in Table 1 can be expressed by 

the combination of two path sections in Table 2. For example, the path information of Tag 1 can be 

represented by the path sections So_4 and Si_2, and all the 18 long path records in Table 1 can be 

represented by the 10 short path section records. The whole path graph is separated into two tree 

structures by the center node, and the tree structures represent the concentration and distribution of 

products, respectively. The topology similar to Figure 1 is very common in the RFID technology based 

applications, such as supply chain management, logistics management, and so on.  

Figure 1. Path graph of an electronics supply chain. 
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Table 1. The path records of products in supply chain for a period. 

Path Records 

Tag 1: A[2, 3] → B[5, 6] → O[8, 9] → H[11, 12] → I[14, 16] 

Tag 2: C[3, 4] → Q[5, 7] → O[8, 9] → H[11, 12] → J[13, 15] 

Tag 3: D[1, 3] → Q[5, 7] → O[8, 9] → H[11, 12] → J[13, 15] 

Tag 4: A[2, 3] → B[5, 6] → O[8, 9] → H[11, 12] → J[13, 15] 
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Table 1. Cont. 

Path Records 

Tag 5: F[3, 6] → O[8, 9] → H[11, 12] → J[13, 15] 

Tag 6: C[3, 4] → Q[5, 7] → O[8, 9] → K[10, 11] → M[12, 14] 

Tag 7: D[1, 3] → Q[5, 7] → O[8, 9] → H[11, 12] → I[14, 16] 

Tag 8: A[2, 3] → B[5, 6] → O[8, 9] → K[10, 11] → N[13, 15] 

Tag 9: D[1, 3] → Q[5, 7] → O[8, 9] → K[10, 11] → N[13, 15] 

Tag10: A[2, 3] → B[5, 6] → O[8, 9] → K[10, 11] → M[12, 14] 

Tag11: C[3, 4] → Q[5, 7] → O[8, 9] → K[10, 11] → N[13, 15] 

Tag12: F[3, 6] → O[8, 9] → H[11, 12] → I[14, 16] 

Tag13: D[1, 3] → Q[5, 7] → O[8, 9] → K[10, 11] → M[12, 14] 

Tag14: F[3, 6] → O[8, 9] → K[10, 11]→ N[13, 15] 

Tag15: C[3, 4] → Q[5, 7] → O[8, 9] → H[11, 12] → I[14, 16] 

Tag16: F[3, 6] → O[8, 9] → K[10, 11] → M[12, 14] 

Tag17: D[1, 3] → Q[5, 7] → O[8, 9] → K[10, 11] → N[14, 16] 

Tag18: C[1, 2] → Q[4, 5] → O[8, 9] → H[11, 12] → I[14, 16] 

Table 2. Path section records. 

Source Sections Sink Sections 

So_1: A[2, 3] → B[5, 6] → O[8, 9] Si_1: O[8, 9] → H[11, 12] → I[14, 16] 

So_2: C[3, 4] → Q[5, 7] → O[8, 9] Si_2: O[8, 9] → H[11, 12] → J[13, 15] 

So_3: C[1, 2] → Q[4, 5] → O[8, 9] Si_3: O[8, 9] → K[10, 11] → M[12, 14] 

So_4: D[1, 3] → Q[5, 7] → O[8, 9] Si_4: O[8, 9] → K[10, 11] → N[13, 15] 

So_5: F[3, 6] → O[8, 9] Si_5: O[8, 9] → K[10, 11] → N[14, 16] 

3.1. Tree Structure Based Path Splitting Algorithm 

In the last section, we found that we can reduce the storage cost and improve the performance of 

path oriented RFID data queries by splitting the whole path of each product into two sections and 

storing the information of each path section in database separately. Therefore, we proposed a tree 

structure based path splitting algorithm in this section. First, the definitions of several important 

concepts are given as below: 

Definition 1. Path graph G(V, E) is a directed acyclic graph representing the moving path of tags. V 

is the set of locations, E is the set of transitions between locations. An edge e = (vi, vj) indicates that 

tags can move from location vi to location vj. 

Definition 2. The successor node set of node v is the set of all the successor nodes of node v in G, 

denoted as Suc(v), while the precursor node set of node v is the set of all the precursor nodes of node 

v in G, denoted as Pre(v). 

Definition 3. A whole path p is a full movement path from a source node to a sink node in G in the 

form of v0→v1→…→vn, where v0 is the source node and vn is the sink node in G. The node set and 

edge set of the path p are denoted as CV(p) and CE(p). The whole path set, P, is the set of all the whole 

paths in G. Unless specifically mentioned, the word “path” means whole path in this paper. 
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Definition 4. If a whole path p in G is split into two sections by a node vi∈CV(p), then the section 

before vi is called the source section of p and the section after vi is called the sink section of p. We 

denote the set of source sections which end with the node vi as    
 , and    

 
 is the set of sink sections 

which start with the node vi. In particular,    
 ={ iv } when the node vi is a source node in G, and  

   
 

={ iv } when the node vi is a sink node in G, where iv  is a special path composed of only one node. 

For example, in Figure 1,   
  = {A→B→O, C→Q→O, D→Q→O, F→O},   

 
 = {O→H→I, O→H→J, 

O→K→M, O→K→N},   
 ={  } and   

 
={  }. 

Definition 5. For any node v∈V (or edge e∈E), if there exists a path p∈P that satisfy v∈CV(p) (or 

e∈CE(p)), then we can say that p is the covered path of v (or e) in G. The covered path set of node v, 

UP(v), is defined as: 

UP(v)={ p∈P| v∈CV(p)} (1) 

Definition 6. Given v∈V, for any node vi∈V, if there exists a path p∈P that satisfy vi∈CV(p) and  

v∈CV(p), then we can say that vi is the covered node of v in G. The covered node set of node v, 

UN(v), is defined as: 

UN(v)={vi∈CV(p)| p∈UP(v)} (2) 

Definition 7. Given v∈V, for any edge ei∈E, if there exists a path p∈P that satisfy ei∈CE(p) and  

v∈CV(p), then we can say that ei is the covered edge of v in G. The covered edge set of node v, UE(v), 

is defined as: 

UE(v)={ei∈CE(p)| p∈UP(v)} (3) 

Definition 8. For any node vi∈UN(v), if there does not exist a path p∈P that satisfies vi∈CV(p) and 

v   CV(p), then we can say that vi is the full-covered node of v in G. The full-covered node set of 

node v,    (v), is defined as: 

   (v)={ vi∈UN(v)|UP(vi) UP(v)} (4) 

Definition 9. For any edge ei∈UE(v), if there does not exist a path p∈P that satisfies ei∈CE(p) and 

v   CV(p), then we can say that vi is the full-covered edge of v in G. The full-covered edge set of node 

v,    (v), is defined as: 

   (v)={ei∈UE(v)|UP(ei) UP(v)}  (5) 

The path splitting method will influence the effect of data compression directly, but splitting paths 

in a path graph optimally is an NP-hard problem. Therefore, we propose a heuristic path splitting 

approach called tree structure based path splitting algorithm. The implementation of the proposed 

approach is an iterative process, and the main procedure consists of nine steps as described below: 

Step 1. Compute the section-tuples. Compute the 4-tuples {  
 ,   

 ,   
 
,   

 
} of each node v in G, 

where   
  and   

 
 are the size of the sets   

  and   
 
, and   

 and   
 
 are the average length of the path 

sections in    
  and   

 
, respectively. We present a simple method to compute the section-tuples of each 

node, and there is an iterative procedure for the computation of each element in the section-tuples. 
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Step 2. Compute the covered-path number. Compute the covered-path number of each node v  

(i.e., the size of the covered path set of v, |UP(v)|) which defines its path-degree, dv, as: 

dv = |UP(v)| =   
   

 
 (10) 

Proof: |UP(v)| is the size of the covered path set of v. Let Yv be the Cartesian product of   
  and   

 
. 

Here, the Cartesian product is the set of the whole paths connected by any two path sections 

respectively from   
  and   

 
 via the common node v .   

  and   
 
 are the size of   

  and   
 
 respectively, 

thus   
   

 
is the size of Yv. For any path p∈UP(v), we can get v∈CV(p) by an application of  

Definition 5. The path p can be split into two sections by the node v , the source section p1 and the  

sink section p2. Applying Definition 4 we have p1∈  
  and p2∈  

 
, then p∈Yv holds. Hence,  

|UP(v)|   
   

 
. Conversely, for any   ∈ Yv, combined by two path sections from   

  and   
 
  

(v∈CV(  )) respectively, which is a path in G  (  ∈P) obviously, we can get   ∈UP(v) by applying 

Definition 5. Hence,   
   

 
 |UP(v)|. Combining the two inequalities above, we see that it suffices to 

require that |UP(v)|=   
   

 
. This completes the proof. 

Step 3. Compute the length-difference. Each node can split all its covered-paths into two sections, 

source sections and sink sections. The length-difference  v of each node can be computed by 

 v =|  
 
   

 | (11) 

Step 4. Compute the throughput ratio. The throughput of a specific node means the number of tags 

which have been in the node. Therefore, we can compute the throughput ratio, Hv, by the throughput of 

the current node to the sum of tags in the whole system as: 

   
  

                            

 (12) 

  =                        (13) 

where, location(Ti)t is the location of tag Ti at time t, and Dv is the throughput of node v. 

Step 5: Calculate the combined weight. Calculate the combined weight Wv for each node v, as 
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                  (14) 

where,   ,   and    are the weighting factors for the corresponding system parameters. Note that 

these weighting factors can be chosen as needed such that           . The contribution of the 

individual components can be tuned by choosing the appropriate combination of the weighting factors. 

The first two components in the Equation (14),    and   , are directly related to the topology of the 

path graph，while the third component    is directly related to the real movement distribution of tags 

in a period. Therefore, we can get a common path splitting schema based on the topology of the path 

graph by increasing the values of    and   . In contrast, if we want to get the path splitting schema 

which can preferably apply to the storage of the information of the existing tags in system, we should 

increase the value of   . 

Step 6. Choose the root-node. Choose the node with the biggest Wv as the root-node, denoted as Ri. 

Step 7. Construct the path trees. With the root of Ri, construct two tree structures, the forward tree 

Tif and the backward tree Tib. The construction of Tif : First, for each out-edge of Ri in G, add a new 

branch and a corresponding child node in Tif ; Then, do the same process to all its child nodes and 

grandchild nodes in Tif until all the leaf nodes in Tif do not have out-edges in G. Likewise, the 

backward tree, Tib, can be constructed by doing the similar processes to Ri and the in-edges in G. After 

that, any path p∈UP(Ri) can be represented together by the path sections in Tif and Tib. 

Step 8. Remove the full-covered sets. Remove the nodes in    (Ri) and the edges in    (Ri) from G, 

for the covered path sets of these nodes and edges have been included in the trees Tif and Tib. 

Therefore, V = V−    (Ri) and E = E−    (Ri). 

Step 9. Repeat Steps 1–8 for the remaining nodes in G until V =  . 

After processing by our splitting algorithm, the path graph of a complex supply chain will be split 

into two groups of trees, the forward trees and the backward trees. The forward tree (Tif) represents the 

path information of the tag after it reaches the root node, and its direction is from the root node to leaf 

nodes; the backward tree (Tib) represents the path information of the tag before it reaches the root node, 

and its direction is from leaf nodes to the root node. All the leaf nodes in forward trees are the sink 

nodes in G, and all the leaf nodes in backward trees are the source nodes in G. Therefore, the path 

information of each tag will be split into two sections and stored into the two different trees separately. 

3.2. An Illustrative Example of Path Splitting 

We demonstrate our algorithm with the help of Figure 2. All the numeric values obtained from 

executing the path splitting procedure on the 19 nodes in Figure 2(a), are tabulated in Table 3. nto two 

sections, “A→C→K” and “K→L→O”, and its root-node is K. 

Figure 2(a) shows all the locations and paths in the path graph. The lettered nodes represent the 

different locations, and the directed edges between nodes signify that tags can move in the direction of 

the arrow. Figure 2(b,c) show the recursive process of the computation of the section-tuples in Step 1, 

and we use the symbol “X” to represent the values that have not be calculated yet in Figure 2(b). 
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Figure 2. An illustrative example of path splitting. (a) Topologic structure of the supply 

chain; (b) Recursive process of the computation of the section-tuples; (c) Section-tuples of 

the nodes; (d) Throughput and throughput ratio of nodes; (e) The root-node and its covered 

node set; (f) The construction of forward tree and backward tree; (g) Remove full-covered 

set. (h) The result of tree structure based path splitting algorithm. 
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Table 3. Execution of path splitting algorithm. 

Node Id   
 
   

 
   

    
              

A 3 0 1 3.7 3 3.7 0.10 0.88 

B 3 0 1 3.7 3 3.7 0.10 0.88 

C 3 1 2 2.7 6 1.7 0.20 2.33 

D 6 0 1 3.7 6 3.7 0.25 2.155 

E 6 1 1 2.7 6 1.7 0.25 2.155 

F 3 1 2 2.7 6 1.7 0.15 2.305 

G 3 0 1 3.7 3 3.7 0.05 0.855 

H 3 0 1 3.7 3 3.7 0.10 0.88 

I 3 0 1 2.7 3 2.7 0.15 1.005 

J 3 1.8 4 1.7 12 0.1 0.55 5.065 

K 3 2 3 1.7 9 0.3 0.45 3.795 

L 2 3 3 1 6 2 0.35 2.375 

M 1 3 3 0 3 3 0.10 0.95 

N 1 2.8 4 0 4 2.8 0.15 1.395 

O 1 4 3 0 3 4 0.15 0.875 

P 1 4 3 0 3 4 0.20 0.9 

Q 2 2.8 4 1 8 1.8 0.40 3.22 

R 1 3.8 4 0 4 3.8 0.30 1.37 

S 1 3.8 4 0 4 3.8 0.10 1.27 

The path-degree, dv, of each node is computed in Step 2, and the length-difference,   , of each node 

is calculated as Step 3. As shown in Figure 2(d), based on the value of Dv we can calculate the 

throughput ratio, Hv, of each node. After the values of all the components are identified, we compute 

the weighted metric, Wv, of each node as proposed in Step 5 of our algorithm. Here, the weighting 

factors considered are   = 0.4,   = 0.1 and   = 0.5, which is a relatively balanced choice.  

Figure 2(e) shows how a node with maximum Wv is selected as the root-node as stated in Step 6 of our 

algorithm. The solid black node represents the root-node elected for the path graph, and the blue 

crosshatched nodes represent the covered node set of the root-node. Figure 2(f) shows the forward tree 

and backward tree constructed by execution of the Step 7. As shown in Figure 2(g), the nodes in the 

full-covered node set and the edges in the full-covered edge set of root-node have been removed, and 

the solid black node is another root-node elected in the next election procedure. Figure 2(h) shows the 

final result, all the forward trees and backward trees constructed by our algorithm. Therefore, each 

whole path can be represented by two path sections, and the source section is stored in a backward tree 

while the sink section is stored in a forward tree. The two trees have a collective root-node which is 

also called the split-node of this whole path. It can be easily proved that there must be one and only 

one split-node for each whole path. As shown in Figure 2(h), the whole path “A→C→K→L→O” have 

been split into two sections, “A→C→K” and “K→L→O”, and its root-node is K. 

4. Relational Schema for RFID Data Storage in a RDMBS 

The main aim of splitting paths is to effectively reduce the storage cost of path information and 

improve the performance of path oriented data queries, but which also requires us to do the 

corresponding adjustment to the data storage scheme and the way of data query. 



Sensors 2013, 13 5767 

 

 

Figure 3(a) shows the original relational schema to store RFID data in Reference [7]. The size of 

TAG_TABLE is related to the number of tags, so it is impossible to reduce the size of TAG_TABLE. 

However, there are many tags moving and staying together through the whole path, so we can reduce 

the storage cost by representing such a collective movement by a single record no matter how many 

tags were originally collected. For this reason, BUNDLE_TABLE has been added in our relational 

schema. There are seven fields in BUNDLE_TABLE. PATH_ID is the identifier for the path 

information and (START_B, END_B) and (START_F, END_F) are the identifiers for the time 

information of the corresponding source section and sink section. In addition, SIZE is the tag number 

of current bundle. The new TAG_TABLE in Figure 3(b) only has three fields, TAG_ID, BUNDLE_ID 

(the identifier for BUNDLE_TABLE) and INFO_ID (the identifier for INFO_TABLE). 

Figure 3. (a) Original relational schema; (b) New relational schema to store RFID data. 

PATH_ID ELEN OEN TAG_ID PATH_ID START END INFO_ID

START END LOC START_TIME END_TIME

INFO_ID PRODUCT_NAME MANUFACTURER PRICE

PATH_TABLE TAG_TABLE

TIME_TABLE

INFO_TABLE

 

PATH_ID ELEN OEN TAG_ID BUNDLE_ID INFO_ID

START_F END_F LOC START_TIME END_TIME

INFO_ID PRODUCT_NAME MANUFACTURER PRICE

PATH_TABLE TAG_TABLE

TIME_TABLE_F

INFO_TABLE

SPLIT_NODE

START_B END_B LOC START_TIME END_TIME

TIME_TABLE_B

BUNDLE_ID

BUNDLE_TABLE

PATH_ID START_B END_B START_F END_F SIZE

 

(a) (b) 

Obviously, the size of PATH_TABLE is related to the number of paths in the path graph, and it will 

be reduced if we store the split path sections instead of the whole paths. However, compared with 

TIME_TABLE and TAG_TABLE, the size of PATH_TABLE is much smaller. Therefore, reducing 

the size of PATH_TABLE has little effect on reducing the whole storage cost, and the efficiency of 

path oriented queries might be influenced by the complex structure of split PATH_TABLE, instead. 

For this reason, the structure of PATH_TABLE remains the same as before except an added label of 

SPLIT_NODE. A more detailed overview of the path encoding schema can be found in Reference [7], 

which we will introduce briefly in this paper. Each location in the path graph is associated with a 

different prime number, and the prime number for location La is denoted by Prime(La). The Element 

List Encoding Number of the path pi: L1→L2→…→Ln is given by ELEN(pi) = Prime(L1) × Prime(L2) 

× … × Prime(Ln), and we can get the locations that compose pi by the Element List Encoding Number 

ELEN(pi) based on the Fundamental Theorem of Arithmetic. The path pi contains location La if and 

only if ELEN(pi) mod Prime(La) = 0. The Order Encoding Number of pi, OEN(pi), is the number with 

0    OEN(pi)    ELEN(pi) computed by the Chinese Remainder Theorem, and we can know the  

order information for any location La in the path by computing OEN(pi) mod Prime(La) [7].  

Suppose that the locations, La and Lb, are the locations in the same path pi, they have the parent-child 

relationship (i.e., La/Lb) if and only if OEN(pi) mod Prime(La) < OEN(pi) mod Prime(Lb) holds. 

Likewise, La and Lb have the ancestor-descendant relationship (i.e., La//Lb) if and only if OEN(pi)  

mod Prime(La) + 1 = OEN(pi) mod Prime(Lb). The symbols, “/” and “//”, are used to represent the  

parent-child and ancestor-descendant relationship between locations in this paper, respectively. 
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Except for TAG_TABLE, TIME_TABLE is the biggest table, and its size will unceasingly increase 

over time. Hence, reducing the size of TIME_TABLE is the key point to reduce the storage cost, and it 

is also one of the main emphases of this paper. Based on the forward trees and backward trees 

constructed in the last section, we construct the time trees to store the time information for the tags in 

which the node has the start time and end time as well as the location. Similarly, there are also two 

types of time tree, forward time tree and backward time tree. The forward time tree is responsible for 

storing the time information corresponding to the sink sections, and the backward time tree is 

responsible for storing the time information correspond to the source sections. The different nodes in 

the time tree represent different paths even though they have the same node id, such as C[3,4] and 

C[1,2] in Figure 4(a). The region-based numbering schema [18,19], which assigns a node with two 

values (START_F and END_F in forward time tree, or START_B and END_B in backward time tree), 

is used in the time tree. It encodes the starting and ending positions of a node in a path to identify the 

node so that the ancestor/descendant relationship between two nodes can be determined by merely 

examining their codes. Such a numbering schema can greatly improve the path oriented data query 

performance. START_F (START_B) and END_F (END_B) are assigned consecutively during the 

depth-first search. In the forward time tree, the region numbering has the property that node A is the 

ancestor of node B (A is also the precursor of B in the path) if and only if A.START_F < B.START_F 

and B.END_F < A.END_F. By contrast, in the backward time tree, the region numbering has the 

property that node A is the ancestor of node B (actually, A is the successor of B in the path) if and only 

if A.START_B < B.START_B and B.END_B < A.END_B. 

Figure 4. Time tree. (a) The backward time tree; (b) The forward time tree. 

O[8,9]

B[5,6] Q[5,7] Q[4,5] F[3,6]

A[2,3] C[3,4] D[1,3] C[1,2]

O[8,9]

H[11,12] K[10,11]

N[14,16]I[14,16] J[13,15] M[12,14] N[13,15]

(1,18)

(2,5)

(3,4)

(6,11)

(7,8) (9,10)

(12,15)

(13,14)

(16,17)

(1,16)

(2,7)

(3,4) (5,6)

(8,15)

(9,10) (11,12) (13,14)

(a) (b)

The movement 

direction of tags

 

In our relational schema, there are two time tables, TIME_TABLE_B and TIME_TABLE_F, 

corresponding to the backward time trees and forward time trees, respectively. The split-node (root-node) 

of a whole path will present in both corresponding forward time tree and backward time tree. To retrieve 

the time information conveniently and efficiently, we assign the region numbers that correspond to the 

source node (START_B and END_B) and sink node (START_F and END_F) in the path record of the 

tags in the specific bundle to the bundle. As shown in Figure 4, the time trees are constructed from the 

path records in Table 2. 

We can get the time and location information for tags and bundles by their region numbers of source 

node and sink node. For example, if we know the region numbers of the source node and sink node of 

tag 11 are (7,8) and (11,12), respectively, we can retrieve the nodes satisfying START_F   7 and 

END_F   8 in forward time tree and START_B   11 and END_B   12 in backward time tree, such as 

C[3, 4], Q[5, 7], O[8, 9], K[10, 11] and N[13, 15]. We have not changed the INFO_TABLE in which 
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the information of products such as manufacturer, price and name are stored, and the whole structure of 

our relation schema is shown in Figure 2(b). We take the data in Tables 1 and 2 for example to compare 

the changes of data storage based two different schemas. Limited by the length of paper, we only show 

the details of TIME_TABLE in original schema and TIME_TABLE_B and TIME_TABLE_F in our 

new schema. As shown in Table 4, the introduction of the split-path based RFID data storage model 

has greatly improved the storage efficiency and made the time information records in TIME_TABLE 

reduce from 41 to 17. 

Table 4. Status of tables after storing trace records in Table 1. (a) TIME_TABLE in 

original schema; (b) TIME_TABLE_B and TIME_TABLE_F in new schema. 

START END LOC START_TIME END_TIME 

1 18 A 2 3 

2 17 B 5 6 

3 16 O 8 9 

4 9 H 11 12 

5 6 I 14 16 

7 8 J 13 15 

10 15 K 10 11 

11 12 M 12 14 

13 14 N 13 15 

19 36 C 3 4 

20 35 Q 5 7 

21 34 O 8 9 

22 27 K 10 11 

23 24 M 12 14 

25 26 N 13 15 

28 33 H 11 12 

29 30 I 14 16 

31 32 J 13 15 

37 46 C 1 2 

38 45 Q 4 5 

39 44 O 8 9 

40 43 H 11 12 

41 42 I 14 16 

47 66 D 1 3 

48 65 Q 5 7 

49 64 O 8 9 

50 55 H 11 12 

51 52 I 14 16 

53 54 J 13 15 

56 63 K 10 11 

57 58 M 12 14 

59 60 N 13 15 

61 62 N 14 16 

67 82 F 3 6 
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Table 4. Cont. 

START END LOC START_TIME END_TIME 

68 81 O 8 9 

69 74 H 11 12 

70 71 I 14 16 

72 73 J 13 15 

75 80 K 10 11 

76 77 M 12 14 

78 79 N 13 15 

(a) TIME_TABLE 

START_B END_B LOC START_TIME END_TIME 

1 18 O 8 9 

2 5 B 5 6 

3 4 A 2 3 

6 11 Q 5 7 

7 8 C 3 4 

9 10 D 1 3 

12 15 Q 4 5 

13 14 C 1 2 

16 17 F 3 6 

TIME_TABLE_B 

START_F END_F LOC START_TIME END_TIME 

1 16 O 8 9 

2 7 H 11 12 

3 4 I 14 16 

5 6 J 13 15 

8 15 K 10 11 

9 10 M 12 14 

11 12 N 13 15 

13 14 N 14 16 

TIME_TABLE_F 

(b) 

The split-path based storage model not only can reduce the storage overhead, but also can improve 

the path oriented data query performances. First, the smaller sizes of the TIME_TABLE_B and 

TIME_TABLE_F can reduce the time cost of scanning the time information table. In addition, the 

adoption of the BUNDLE_TABLE enables many queries not to have to scan the TAG_TABLE, so that 

the execution time of queries can be reduced further. 

5. Experimental Evaluation  

In this section, we report our comprehensive evaluation of the proposed model and algorithms. All 

the experiments were conducted on an Intel(R) Core(TM) 2 Duo CPU T9550 @2.66 GHz 2.67 GHz 

system with 2 GB of RAM, running Windows 7. The RDBMS we used to store RFID data is Microsoft 
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SQL server 2005. In the experiments, we consider a comparative data size and query performance 

analysis of the path encoding scheme based model [7], denoted as Path, and the proposed model 

denoted as Split-Path. 

The simulation data for our experiments were generated by a synthetic RFID data generator that 

simulates the operation of RFID readers in supply chain management environment. We suppose that 

there are 222 different positions in the whole supply chain, including two main concentration and 

distribution centers, 20 wholesalers, 100 manufacturers and 100 retailers. The average length of the 

paths is 5. There are six sets of data, which respectively include 1 × 10
6
 tags, 2 × 10

6
 tags, 4 × 10

6
 tags, 

6 × 10
6
 tags, 8 × 10

6
 tags and 1 × 10

7
 tags, for testing the performance of our methods in the 

processing of RFID data with different sizes. 

5.1. Query Set and Query Translation 

As shown in Table 5, 9 representative queries are formulated to test various features of our model. 

Q1 is a tracking query, Q2–Q4 are path oriented retrieval queries, and Q5–Q9 are path oriented 

aggregate queries. 

Table 5. Representative query set. 

Query Number Query 

Q1 <TAG_ID = my_tag_id> 

Q2 <//A//B/C> 

Q3 <//A//B[(EndTime-StartTime) < 50]/C> 

Q4 <//A//B/C, Name = ’laptop’> 

Q5 <COUNT(), //A//B/C> 

Q6 <AVG(B.StartTime), //A//B/C> 

Q7 <AVG(C.EndTime-B.StartTime), //A//B/C> 

Q8 <MIN(B.StartTime), //A//B/C> 

Q9 <MIN(C.EndTime-B.StartTime), //A//B/C> 

In the experiments, we store RFID data in Microsoft SQL Server, and the queries, including 

tracking queries and path oriented queries, must be translated into SQL queries. Because the 

improvement of the relational schema for RFID data storage, we have to update the query translation 

algorithm to get the corresponding SQL statements. We have listed some representative SQL 

statements in Tables 6–8, and pA, pB and pC in the tables below respectively denote Prime(A), 

Prime(B) and Prime(C): 

(Q1) <TAG_ID = my_tag_id> 

Table 6. SQL statements of Q1. 

<TAG_ID = my_tag_id> 

SELECT    P.ELEN,   P.OEN 

FROM        PATH_TABLE   P,  BUNDLE_TABLE   B,  TAG_TABLE   T 

WHERE    T.TAG_ID= my_tag_id     AND    B.BUNDLE_ID=T.BUNDLE_ID    AND 

B.PATH_ID=P.PATH_ID 
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(Q2) <//A//B/C> 

Table 7. SQL statements of Q2. 

<//A//B/C> 

SELECT   T.TAG_ID 

FROM       PATH_TABLE   P,  BUNDLE_TABLE   B,  TAG_TABLE   T 

WHERE    P.ELEN%( pA*pB*pC )=0    AND    P.ELEN% pA<P.ELEN% pB    AND 

P.ELEN% pB+1=P.ELEN% pC    AND    B.PATH_ID=P.PATH_ID    AND 

T.BUNDLE_ID=B.BUNDLE_ID 

(Q3) <//A//B[(EndTime-StartTime) < 50]/C> 

Table 8. SQL statements of Q3. 

<//A//B[(EndTime-StartTime)<50]/C> 

SELECT    T.TAG_ID 

FROM        PATH_TABLE   P,  BUNDLE_TABLE   B,  TAG_TABLE   T,  TIME_TABLE_B   TB 

WHERE     P.ELEN%( pA*pB*pC )=0    AND    P.ELEN% pA<P.ELEN% pB    AND 

P.ELEN% pB+1=P.ELEN% pC    AND    B.PATH_ID=P.PATH_ID    AND 

T.BUNDLE_ID=B.BUNDLE_ID    AND   TB.LOC=’B’    AND   

TB.START_B<=B.START_B    AND    TB.END_B>=B.END_B    AND     

TB.END_TIME-TB.START_TIME<50 

UNION 

SELECT    T.TAG_ID 

FROM        PATH_TABLE   P,  BUNDLE_TABLE   B,  TAG_TABLE   T,  TIME_TABLE_B   TF 

WHERE     P.ELEN%( pA*pB*pC )=0    AND    P.ELEN% pA<P.ELEN% pB    AND 

P.ELEN% pB+1=P.ELEN% pC    AND    B.PATH_ID=P.PATH_ID    AND 

T.BUNDLE_ID=B.BUNDLE_ID    AND    TF.LOC=’B’    AND    

TF.START_B<=B.START_B    AND TF.END_B>=B.END_B    AND     

TF.END_TIME-TF.START_TIME<50 

Limited by the length of paper, the rest SQL statements are not listed here. 

5.2. Data Compression 

In Microsoft SQL server, the data is stored in an mdf file. As shown in Figure 5, we compare the 

storage cost of the proposed model denoted as Split-Path_A(   = 0.4,    = 0.1 and    = 0.5) and 

Split-Path_B(   = 0.3,    = 0.05 and    = 0.65), the path encoding schema based storage model 

denoted as Path, and the original raw RFID data denoted as Original. In this experiment, we can 

clearly see that the storage cost of Split-Path_A and Split-Path_B are always smaller than that of Path. 

As a matter of fact, the time information storage cost of our model (the total size of TIME_TABLE_B 

and TIME_TABLE_F) is only 4% of that of the path encoding schema based storage model (the size 

of TIME_TABLE). It is worthwhile to note that the proposed model can achieve higher compression 

ratio with the increasing of the tag number. Therefore, the larger the original data size of the system is, 

the better the effects of data expression is. In addition, we can see that the proposed model with higher 

value of    can preferably apply to the storage of the information of the existing tags in system. 
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Figure 5. Storage cost comparison under different storage schema. 

 

5.3. Query Processing 

We conduct experimental evaluations for the nine representative queries in Table 5 to validate our 

approach in this section. In this experiment, the number of tag is 1 × 10
7
, and we compare the query 

performance of two models under this condition. Figure 6 presents the average execution time of 

various queries. We can see that the split-path based storage model can achieve better query performance 

than the path encoding schema based storage model, especially for the path oriented aggregate queries. 

Figure 6. Query performance comparison. 

 

We compare the query performance of the two models according to the number of tags, and the 

results are shown in Figure 7. As shown in Figure 7(a,b,d), the query performances of the two models 

for Q1, Q2 and Q4 are very close to each other. However, as shown in the rest part of Figure 7, the 

performances of our approach are obviously better than that of the path encoding schema based storage 

model, especially for the path oriented aggregate queries. The better query performances of our model 

benefit from the improvement in two aspects. On the one hand, the smaller sizes of the 

TIME_TABLE_B and TIME_TABLE_F can reduce the time cost of scanning the time information 

table; on the other hand, the adoption of the BUNDLE_TABLE enables many queries not to have to 

scan the TAG_TABLE, so that the execution time have been further reduced. 
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Figure 7. Execution time for representative queries. (a) Query 1; (b) Query 2; (c) Query 3; 

(d) Query 4; (e) Query 5; (f) Query 6; (g) Query 7; (h) Query 8; (i) Query 9. 

   

   

   

6. Conclusions 

In this paper, we present a split-path based RFID data storage model to reduce the time and space 

overhead of RFID data processing in supply chain management systems. We split all the path records 

of products into two sections, and the information of these path sections is stored in database 

separately. Because splitting paths in a supply chain optimally is an NP-hard problem, a heuristic tree 

structure based path splitting approach is proposed to split the paths intelligently and automatically.  

In addition, based on the proposed storage model, we design a new relational schema to store the path 

information and time information of tags, and some typical query templates and the corresponding 

SQL statements is defined. Finally, the experimental results demonstrate that the proposed model and 

algorithm provide superior query performance and offer a significant improvement in data 

compression compared to the baseline approaches. 
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