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Abstract: In a health management system, prognostics, which is an engineering discipline 

that predicts a system’s future health, is an important aspect yet there is currently limited 

research in this field. In this paper, a hybrid approach for prognostics is proposed. The 

approach combines the least squares support vector regression (LSSVR) with the hidden 

Markov model (HMM). Features extracted from sensor signals are used to train HMMs, 

which represent different health levels. A LSSVR algorithm is used to predict the feature 

trends. The LSSVR training and prediction algorithms are modified by adding new data 

and deleting old data and the probabilities of the predicted features for each HMM are 

calculated based on forward or backward algorithms. Based on these probabilities, one can 

determine a system’s future health state and estimate the remaining useful life (RUL). To 

evaluate the proposed approach, a test was carried out using bearing vibration signals. 

Simulation results show that the LSSVR/HMM approach can forecast faults long before 

they occur and can predict the RUL. Therefore, the LSSVR/HMM approach is very 

promising in the field of prognostics. 

Keywords: prognostics; least squares support vector regression; hidden Markov model; 

remaining useful life 
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1. Introduction 

Condition-based maintenance (CBM), which can increase system maintenance efficiency and 

reduce life cycle cost, is gaining popularity. Developing the capability of prognostics and remaining 

useful life (RUL) prediction can save great costs and improve the logistics support. Therefore, 

prognostics and RUL prediction can improve the functions of CBM [1,2]. 

At present, various health management systems are being gradually proposed and applied, such as 

health and usage monitoring system (HUMS) [3], integrated vehicle health management (IVHM) [4], 

and prognostics and health management (PHM) [5,6]. PHM, proposed in Joint Strike Fighter (JSF), 

represents the highest level of CBM. In these health management systems, prognostics is an important 

but difficult task. Currently, there is limited research in this field due to the fact that small fault 

symptoms and disturbances cause difficulties in carrying out studies. Therefore, this paper aims to 

contribute to the growing body of research in the area of prognostics technology. 

Prognostic approaches can be placed into three categories: physical model-based prognostics, 

evolutionary or trending model-based prognostics, and experience-based prognostics [7]. The physical 

model-based method has the highest accuracy, but it is often complicated to model precisely and the 

cost is high. Evolutionary or trending-based prognostics are data-driven and feature-based methods. 

They are considered effective and available prognostics approaches. The third category,  

experience-based prognostics, relies on statistical reliability. Some popular prognostic methods of the 

second category are the auto-regressive moving average (ARMA) model [8], the artificial neural 

network (ANN) [9], the Bayesian network [10], and the support vector regression (SVR) [11,12]. 

Among these methods, ANN is a widely-used method. The disadvantages of ANN are that the number 

of hidden layers is difficult to choose and that the calculation may fall into a local minimum. SVR is a 

machine-learning algorithm based on Vapnik-Chervonenkis (VC) theory and the structural risk 

minimization principle; therefore it avoids the disadvantages of ANN [11] and is a potential method in 

prognostics. There are also other extended SVR methods, such as least squares support vector regression 

(LSSVR) [13,14]. LSSVR proposed by Suykens [15,16] is often applied to predict non-linear  

time-series signals. In health management, LSSVR can be used to estimate the future health 

deterioration and can be extended for remaining useful life (RUL) prediction. There are a series of 

articles about the use of LSSVR in prognosis and monitoring, such as [17,18]. Although the LSSVR 

algorithm can predict the signal trends, it is difficult to assess the health status of a system for each 

stage. To solve this problem and make health assessments more clear, in this paper a hidden Markov 

model (HMM) method is introduced to describe health states during component degradation. The 

HMM technique, initially introduced by Baum [19], is a stochastic approach based on Markov chains. 

HMM has strong fault classification and status classification ability, therefore, the HMM method can 

be used in fault detection and diagnosis [20–22], but it cannot predict the future health status. 

In this paper, a hybrid fault prognosis method based on LSSVR and HMM is proposed. In this 

method, LSSVR is used to predict the fault features, while HMMs are used to describe health states. 

Fault processes can be divided into several stages and HMMs are built and trained for each stage. 

Suppose given an observation sequence, the probabilities of the observation for HMMs are used to 

determine which health state of the given observations the sequence belongs to. Combining these 
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HMMs with the future features predicted by LSSVR can provide an estimate of the remaining useful 

life (RUL) of a system. 

The remainder of the paper is organized as follows: Section 2 outlines the framework of the 

LSSVR/HMM prognostics approach. Section 3 presents the training and estimation algorithms of 

HMM. Section 4 introduces the prediction algorithm based on LSSVR. Section 5 provides an 

application and simulation results. Section 6 presents our conclusions. 

2. LSSVR/HMM Based Prognostics 

2.1. The Hidden Markov Model 

This aim of this section is to introduce how to use the HMM-based method to describe a fault 

process. The fault process of a machine has a certain time-span. To analyze the fault process, it can be 

divided into several health states. However, fault states are unobservable but hidden in some 

observable signals, such as vibration signals. The HMM-based method provides a way to detect  

the unobservable fault states, as HMM is a stochastic technique for classifying signals and  

modeling [23,24]. An HMM describes a double stochastic process. One is the Markov chain, which 

describes state transitions. Another is the stochastic process, which describes the relations between 

states and observations. Suppose the number of health states is N, which are h1, h2,…, hN. The last state 

hN represents that the system fails. This state sequence is a Markov chain. The structure of an N-state 

left-to-right HMM is commonly used in fault analysis as shown in Figure 1. 

Figure 1. N-state left-to-right hidden Markov model. 

h1 h2 hN

a11 a22

a12
… …

a23

aNN

 

As shown in Figure 1, an HMM consists of a finite number of states where aij (i,j = 1,2,…,N) is the 

transition probability from state hi to state hj. Observation sequences from different conditions can be 

used to train different HMMs. For instance, observations from normal condition can train an HMM for 

normal state. An HMM can be described as:  

( , , , , )N M A B   (1)

where N is the number of states, M is the number of observations for each state,   is the initial 

probability vector, A = (ajj)N×N is the probability transition matrix which describes the transition 

relations between the states, B = (bjk)N×M describes the observation probability distribution and bjk is 

the probability of the kth observation in state j. N and M are known based on history experiences or 

prior knowledge. In other words, they are assumptions before HMM training. π, A, B are learned from 

the data. As N and M are also included in A and B, the model can be abbreviated as [23]: 
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( , , )A B   (2)

As the observation sequence from a health state can train an HMM, N HMMs can be trained, which 

are written as λ1, λ2,…, λN. λi represents the HMM trained based on the given observation sequence 

from the ith health state. Given an observation sequence O={o1, o2,…, oT} where T is the length of the 

sequence, P(O|λi) is the likelihood probability of observation sequence O occurring at the condition of 

model λj, which can be used to determine whether O belongs to the health state hi. 

As mentioned above, using HMMs can describe machine fault processes. According to the 

likelihood probabilities of present observations, HMMs can detect and diagnose faults. However, the 

HMM method cannot predict future health states and the RUL, because the future observation 

sequence cannot be obtained. To solve this problem, a hybrid prognostics method based on LSSVR 

and HMM is proposed in this paper, where LSSVR provides a way to predict the future fault features.  

2.2. Framework of LSSVR/HMM Prognostics 

The framework of the hybrid fault prognosis scheme is described in Figure 2. In this scheme, the 

LSSVR algorithm is used to predict the future fault features and the HMMs are used to describe 

different health states. 

Figure 2. Framework of the LSSVR/HMM fault prognostics scheme which contains two 

processes. One is HMMs training (off line) and another is fault feature and RUL prediction 

process (on line). 
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As shown in Figure 2, the process of the hybrid LSSVR/HMM prognostic approach can be 

summarized in the following steps: 

(1) Feature extraction  

As most observation signals have much random noise and uncertain interferences, features should 

be extracted from the signals before fault diagnosis and prognosis. In this paper, the linear predictive 

(LP) method, as mentioned in article [25], is used to extract the features from vibration signals. In the 

LP method, the signal Sn can be predicted as a linear combination of the   previous signal, which can 

be written as: 

1 1 2 2
1

ˆn n n n i n i
i

s l s l s l s l s   


     


 
 

(3)

where l1, l2, …, lρ are linear prediction coefficients which can be used as feature vector of the signals. 

The residual errors are written as: 

1

ˆn n n n i n i
i

e s s s l s 


   


 (4)

The value of the linear prediction coefficients l1, l2, …, lρ can be calculated by minimizing the 

mean-square value of the residual errors over a signal window. The mean square value is written as: 

2 2

1

( ) | ( ) ( ) |n n n i n i
m m i

e e m s m l s m


    


 (5)

where en(m) = e (n + m), Sn(m) = S(n + m), n is the starting point of the signal window, n + m is the 

terminal point of the signal window. 

Vibration signals are always non-stationary. If signals are segmented into several short-time signals, 

they can be considered stationary. Therefore, we can obtain short-time signals by segmenting vibration 

signals into small windows; and each window as a frame. To segment the vibration signals into small 

windows, the length of a small window should be determined. Each window has equal length. Based 

on the given length, the vibration signals can be divided into several small windows. And then the 

linear prediction coefficients can be extracted from these windows. The feature extraction is described 

in Figure 3. 

Each window is coded into a feature vector which is written as: 

T
1 2[ , , ] ,     1tt t to l l l t T     (6)

where ot is the feature vector of the ith signal window, lt1, lt2, …, ltρ are the linear prediction 

coefficients of the tth signal window, T is the number of the windows. Then the observation sequence 

O={o1, o2, …, oT} is composed of these feature vectors, which will be used for HMM training or 

LSSVR prediction. 
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Figure 3. Feature extraction by segmenting the vibration signals into small windows. 

 

(2) HMMs training 

HMMs training can now be carried out based on the fault features history. In this paper, the historic 

fault features are experimental data. The training data used for a specific state come from the 

corresponding experimental conditions. The essence of this step is to estimate the HMM parameters 

for each state. Based on observation sequences from N different conditions, optimal HMMs λ1, λ2, …, λN 

are trained for corresponding health state. This step is an off-line process. 

(3) Prediction of features based on LSSVR 

Suppose the present time is t, and the feature vector after k time units is denoted  ^ o t+k which can be 

predicted based on the data before time t using the LSSVR algorithm. Based on the feature vector 
 ^ o t+k , one can predict the system health state at the future time t + k. 

(4) Log-likelihood calculation 

Calculating likelihood probabilities P( ^ o t+k |λi) according to forward or backward algorithms [26,27] 

and comparing all of these probabilities, one can find the maximum probability:  

1 2(max( , ,..., ))Ni index P P P   (7)

where P1, P2, …, PN are the likelihood probabilities for the corresponding HMMs. 

The corresponding state hi is considered the health state of the future time t + k. Therefore, this 

method can be used to predict future health states. If k = 0, the health state is the present state. 

(5) RUL prediction. 

As shown in Figure 2, the fault prognosis should run until the probability for the last state model is 

higher than for all other state models. Then the probability P( ^ o t+k |λN) for the last state indicates that 

the system will fail at the future time t + k. Therefore, the RUL is k time units. 

3. HMM Training 

HMM training is to obtain the optimal model and the training process needs to estimate the model 

parameters. An HMM is described in Equation (2). When the observations are discrete, they can be 

represented by distributed probabilities. However, the observations are always continuous in an actual 
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system. In this situation, a mixture of several Gaussian distributions is used to describe observation 

probabilities which are written as [26]: 

1

( ) ( | , )
Q

j t jl t jl jl
l

b o c N o


  
 

(8)

T 11
( ) ( )

2
/ 2 1/ 2

1
( | , )

(2 ) | |

jl jl jlx x

t jl jl d
jl

N o e
  

 


 


  
(9)

where bj(ot) is the probability of observation ot at the condition of state hj, ot is the feature vector of the 

tth window, Q is the number of the mixture Gaussian components, cjl is the weight of the lth mixture 

component in state hj, and μjl and Σjl are the mean and covariance of the Gaussian density.  

Then an HMM is re-written as: 

( , , , , )jl jl jlA c    (10)

3.1. Forward-Backward Algorithm 

Given an observation sequence O={o1, o2,… , oT } and a model λ, how to calculate the probability 

P(O|λ) is a basic and important problem. Both forward and backward algorithms can solve this problem. 
In a forward algorithm, define the forward variables as ηi(t) = P(o1, o2, …, ot, qt = hi |λ),1 ≤ t ≤ T, 

which is the probability of generating o1, o2, …, ot and ending in state hi. qt represents the state attime t.  

The recursive estimation of the forward is as follows [26,27]: 

(a) Initialization: 

1(1) ( )i i ib o 
  (11)

(b) Forward recursion (For t=1,2,…,T−1, 1 ≤ j ≤ N): 

1
1

( 1) ( ) ( )
N

j i ij j t
i

t t a b o 


 
   

 
  (12)

(c) End: 

1

( | ) ( )
N

i
i

P O T


   (13)

In a backward algorithm, we define the backward variables as βi(t) = P(ot+1, ot+2,…, oT | qt = hi, λ),  

1 ≤ t ≤ T, which is the probability of generating ot+1, ot+2,… , oT and ending in state hi. 

The recursive estimation of the backward is as follows [26,27]: 

(a) Initialization (1 ≤ i ≤ N): 
( ) 1T i 

  (14)

(b) Backward recursion (For t = T-1,T-2, …, 1, 1 ≤ i ≤ N): 

1 1
1

( ) ( ) ( )
N

t ij j t t
j

i a b o j  


  (15)

(c) End: 

1
1

( | ) ( )
N

i

P O i 


  (16)
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3.2. Re-Estimation of the HMM Parameters 

The goal of HMM training is to find the model λ* = argmax 
         λ P(O|λ). That means the parameters of 

each HMM should be re-estimated until the convergence error achieves requirements. The Baum-Welch 

algorithm [26] provides a solution to this problem. 

Given an observation sequence O, define γt(i) = P(qt = hi |O, λ), which is the probability of that the 

state at time t is hi. γt(i) can be calculated as: 

1

( ) ( )
( )

( ) ( )
i t

t N
j tj

t i
i

t j





 
 

 

 
(17)

Define γt(i, l) as the probability of the lth mixture Gaussian component when the state at time t is hi. 

γt(i, l) can be calculated as: 

1

( | , )
( , ) ( )

( | , )
il t il il

t t Q
im t im imm

c N o
i l i

c N o






 


  
(18)

ξt(i, j) = P(qt = hi, qt+1 = hj |O, λ) is defined as the probability of that the state at time t is hi and the 

state at time t + 1 is hj. ξt(i, j) can be calculated as: 

1 1( , ) ( ) ( ) ( )/ ( | )t t ij j t ti j i b o j P O     
  (19)

If there are K observation sequences and the length of each sequence is T, the parameters of a 

HMM can be estimated as follows [26,27]: 

1
1
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K

k

k
i

i

K


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
  

(20)
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(22)

1 1

1 1

( , )
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K T k k
t tk t

il K T k
tk t

i l o

i





 
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 
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(23)

T
1 1

1 1

( , )( )( )

( )

K T k k k
t t il t ilk t

il K T k
tk t

i l o o

i

  


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 

 
  

    

(24)

According to Equations (20)–(24), the parameters of the HMMs are re-estimated. Finally, optimal 

models of the health states can be obtained as shown in Figure 2. Given an observation, the likelihood 

probabilities for each state can be calculated according to Equations (13) or (16). In the forward-backward 
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algorithm, ηi(t) and βt(i) will tend to be zero as time grows. To avoid this problem, logarithmic values 

of probabilities are usually used in the actual calculations. 

4. Feature Trend Prediction Based on LSSVR 

4.1. LSSVR Algorithm 

The idea of SVR is to map non-linear problems to linear problems in a high dimension space. 

LSSVR is an improved algorithm based on SVR, and it uses a least square loss function instead of the  

ε-insensitive loss function [16,28]. Compared with SVR, the calculation procedure of LSSVR has 

higher efficiency. 
Considering the sample data as {(x1,y1), …, (xi,yi), …, (xD,yD)}, where xi is the input vector, and  

yi is the objective value. The optimization equation of the LSSVR is described as [13,14]: 

2 2

, ,
1

T

1 1
min ( , )

2 2

. .   ( )    1

D

i
e

i

i i i

J e C e

s t y x e i D



 

    


 

 

ω ω

ω  

(25)

where ω is weight vector, ei is error variable, C is a regularization parameter used to control the 

punishment degree of samples beyond the error, the function of Φ(*) is to allow LSSVR to work in a 

linear space, and κ is the bias term which is an unknown and needs to be estimated. 

The Lagrangian is written as: 

T

1

( , , , ) ( , ) ( ( ) )
D

i i i i
i

L e J e x e y


        ω ω ω
 

(26)

where αi is Lagrange multipliers. 

According to Karush-Kuhn-Tucker (KKT) optimization conditions, the optimality conditions are 

given as [13,14]: 

1

1
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(27)

By solving Equation (27), the parameters αi and κ can be obtained. Then the LSSVR model for 

estimation is written as: 

1

( ) ( )
D

i i
i

y x K


   x x  
 

(28)

where K(xi·x) is the kernel function which satisfies the Mercer condition: 
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T( ) ( ) ( )i k i kK x x x x    (29)

Frequently used kernel functions are the polynomial, sigmoid and radial basis kernel (RBF) 

functions. This paper applies RBF because it can classify multi-dimensional data. The RBF kernel 

function is given as: 
2

2
( ) exp( )k

k

x x
K x x




    (30)

In fault prognosis, time series are the extracted feature data. Suppose the front r data have been 

obtained, then the object is to predict the future data using the front r data. The input vector and the 

output value can be constructed as: 

1 2 1

2 3 1 2

1 1

  ,      

p p

p p

r p r p r r

x x x x

x x x x
X Y

x x x x
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   
   
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   
   
    





    



 

where p is the number of embedded dimensions. According to above LSSVR method, training this 

sample data can estimate the parameters αi and κ. Then the prediction function can be written as: 

1

ˆ ( )
D

r k i i
i

x K


    x x  
 

(31)

where k is the prediction steps, xi is the ith support vector, and ~ x is  ~ x = {xr+k-υ, ….,  ^ x r+1 , …,  ^ x r+k-1 }. 

As mentioned above, LSSVR can predict future fault features. However, it is difficult to describe 

and assess health states. Combining LSSVR with HMM, it can realize health state prediction and RUL 

prediction. The feature vectors predicted based on the LSSVR are used as observations in each HMM 

to calculate the log-likelihood probabilities as shown in Equation (13) or Equation (16). The model 

with the highest likelihood probability represents the system health state at the corresponding future time. 

4.2. Algorithm Improvement 

As analyzed above, two parameters C and in the LSSVR algorithm need to be optimized. 

Selecting superior parameters can improve the training speed and the performance of LSSVR. Genetic 

algorithms (GA) [13] and particle swarm algorithms [14] are two optimization methods used to 

determine the LSSVR parameters. In this paper, particle swarm optimization (PSO) is used. PSO 

realizes optimization by searching the partial and global optimal solution in a particle swarm. Define 

the fitness function of the ith particle as: 

2

2

1

1
( , )

( ( ))
i N

k k
k

J C

y f x eps



 

  

(32)

where eps is a small value to avoid the denominator to be zero. 

The particle positions and velocities are written as Xi=(xi1, xi2,…, xiD)T and Vi=(vi1, vi2,…, viD)T 

(i=1,2, …, m). m is the number of the particles. The partial best position is written as Pi and the global 

best position is written as Pg. Then the velocity and position updating can be written as: 
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1 1 2 2( 1) ( ) ( )( ( ) ( )) ( )( ( ) ( ))id id id id gd idv k Iv k c r k P k x k c r k P k x k       
 (33)

( 1) ( ) ( 1)id id idx k x k v k     
 (34)

where vid(k) and xid(k) are the dth dimension velocity and position of the ith partial in the kth iteration,  

I is an inertia factor, c1 and c2 are study factor, Pid and Pgd are the dth dimension partial and global  

best position in the kth iteration, r1 and r2 are random during [0,1]. The optimization process is 

described as Figure 4, where the initial positions and velocities are given randomly among the range of 

the particle swarm. 

Figure 4. The parameters optimization process of the LSSVR based the PSO algorithm. 

iJ

2,C 
 

In Figure 4, the partial and global best position searching process is as follows: 

if  ,   then   ,   

if  ,   then   ,   
i best i i best i

i best g i best i

J J P X J J

J G P X G J

  

  
 
 

(35)

where Jbest is the partial best fitness and Gbest is the global best fitness. 

The end condition is meeting the accuracy requirements or arriving at the maximum iterations. When 

meeting the end condition, the best position is considered as the optimal parameters used in LSSVR. 

As time goes by, new observations are added which may include fault information and can improve 

prediction accuracy. However, the training data will become large with time growth. If the number of 

sample data is too large, it will affect training efficiency. To solve this problem, some unimportant old 
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data, such as non-support vector samples or far history samples, are selected for deletion in this paper. 

These data will not affect the training accuracy seriously. By adding new data and deleting some old 

data, the training samples sequence will be renewed online with time growth. The new training sample 

can be written as: 

( 1) ( ) ( 1) ( )new delX t X t X t X t      (36)

where X(t) is the training sample at time t, Xnew(t+1) is the added new sample at time t + 1, Xdel(t) is the 

deleted sample chosen from X(t).  

The RUL prediction process based on the improved LSSVR algorithm is summarized in Figure 5. 

Figure 5. RUL prediction process based on the improved LSSVR with data renewed online. 

ˆt ko 

 

As shown in Figure 5, at each time t, RUL equals to the future prediction time whose corresponding 

state is the last health state. The prediction accuracy of RUL increases as time increases because new 

observations are added and some unimportant old data are deleted, which makes the feature trend 

predictions more accurate. 

5. Simulations and Results 

To evaluate the performance of the LSSVR/HMM prognostic approach, it was tested using 

experimental bearing vibration data from the Case Western Reserve University Bearing Data Center [29]. 
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The bearing test stand consists of a 2 hp motor, a torque transducer/encoder, a dynamometer, and 

control electronics. The test bearings support the motor shaft. The details of the test stand are shown in 

the website [29]. The actual test conditions of the motor as well as the bearing fault status have been 

carefully documented for each experiment. Different levels of faults in diameter were collected 

separately for the inner raceway, rolling element (i.e., ball) and outer raceway. Faulted bearings were 

reinstalled into the test motor and vibration data was recorded.  

In our simulation, the inner race vibrations signals are used. Its fault diameter includes the 

following levels: 0.007 inches, 0.014 inches, and 0.021 inches. The data was sampled at 12 kHz. 

Added to the normal states, fault process can be divided into four health states. The bearing data center 

provides vibration data from different health states. Data from different conditions are discrete, which 

can be used to train HMMs for the corresponding health status. 

5.1. Feature Extraction 

Vibration data are segmented into several windows and extracted feature vectors as mentioned in 

Section 2.2 and Figure 3. In the simulation, 256 sample data were chosen as a frame. Based on the 

linear predictive method, signals in each window can be predicted as a linear combination of its  

ρ previous signal, which is shown in Equation (3). In the simulation, we take   as 8. Then the feature 

vector of each signal window is ot = [lt1, lt2, …, lt8]
T and the number of the feature dimensions is 8. 

Take the first dimension as an example; the features of the four health states are shown in Figure 6. As 

shown in Figure 6, the extracted feature for each health state is different. This demonstrates that these 

features can be used to distinguish different fault states.  

Figure 6. The first dimension of the feature vectors for each health states. 
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5.2. HMMs Training and Fault Diagnosis 

Suppose three Gaussian distributions are used to describe observation probabilities for each state. 

Give the initial HMM parameters as follows: 

T[1,0,0,0]   

0.5 0.5 0 0

0 0.5 0.5 0

0 0 0.5 0.5

0 0 0 1

A

 
 
 
 
 
 

 

Generally speaking, the influence of the initial values of π and A is not large. But the initial values 

of μjl, Ujl, and cjl may affect the training result. They can be calculated using K-means method based on 

the given samples, which are not discussed here in detail. The convergence error is given as 0.00001.  

To improve the training accuracy, several observation sequences are used to train HMM for a health 

state. The log-likelihood probabilities of HMMs training are shown in Figure 7.  

Figure 7. Log-likelihoods of HMMs during training for the four states. 

 

The simulation results shown in Figure 7 illustrate that the log-likelihoods tend to stabilize with the 

growth of the number of epochs. All of the training epochs are less than 40. These trained HMMs can 

be used to diagnose faults. In this paper, two vibration data sequences are specimens for fault diagnosis 

testing, where one is fault-free data and another is data with a fault diameter of 0.007 inches. The  

log-likelihood probabilities of the test vibration data with fault-free are shown in Figure 8, while the 

log-likelihood probabilities of the data with fault diameter of 0.007 inches are shown in Figure 9. 
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Figure 8. Log-likelihoods for the four state HMMs of the fault-free test data. 

 

As shown in Figure 8, the HMM with the highest probability is health state 1, which represents 

fault-free state. That is to say the test data are fault-free. The result is consistent with the given data. 

Figure 9 shows that the HMM with the highest probability is health state 2, which represents the fault 

diameter of 0.007 inches. Therefore, the diagnosis result is consistent with the given data. According to 

the above two tests, fault diagnosis based on HMMs is efficient. 

Figure 9. Log-likelihoods for the four state HMMs of the test data. 
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5.3. Features and RUL Prediction 

Collecting lifetime data is a difficult work and the bearing data center does not provide this lifetime 

data. Therefore, we construct a lif time data sequence by taking some vibration data separately from 

each health states. Then the constructed lifetime data sequence is used to test for features prediction 

and fault prognostics. After frame segmentation and feature extraction, the length of the feature sequence 

is 71. We take the front 50 feature vectors as LSSVR training data, and the back 21 as unknown test data. 

With these parameters, the present time is t = 50 and the future prediction time is k = 21. We take the 

first dimension of the feature vectors as an example, and the prediction result is shown in Figure 10. 

Figure 10. The prediction result of the first dimension of the feature vectors based on  

the LSSVR. 

 

In Figure 10, the data before t = 50 are regression estimation results and the data after t = 50 are 

prediction results according to Equation (28). The simulation results indicate that the prediction feature 

trend is essentially consistent with the actual trend. The simulation results can therefore be used to 

make a fault prognosis. 

Based on the trained four HMMs, the log-likelihood probabilities of the life time data for each state 

are shown in Figure 11. 

The state with the highest log-likelihood is the health state of the corresponding time. As shown in 

Figure 11, the system goes from health state 1 to health state 4 during the lifetime. The system is in a 

normal state before t = 38. During the time from t = 39 to t = 55, the system is in health state 2 which 

means the fault diameter is at 0.007 inches. During the time from t = 56 to t = 65, the system is in 

health state 3, which means the fault diameter is at 0.014 inches. After t = 66, the system is in health 

state 4. That indicates that the system fails after t = 66. RUL values can be predicted at each time. The 

RUL prediction results at different times are shown in Table 1. 
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Figure 11. Log-likelihoods for the four state HMMs of the test life time data. 

 

Table 1. Remaining useful life prediction results. 

Present time 50 51 52 53 54 55 56 57 58 59 60 
Actual RUL 16 15 14 13 12 11 10 9 8 7 6 

Predicted RUL 9 10 10 11 9 10 9 8 7 6 5 
Prediction errors 7 5 4 2 3 1 1 1 1 1 1 

In Table 1, the actual value of RUL is the time between the present time and the failure time t = 66. 

The predicted value of RUL is calculated based on the proposed LSSVR/HMM method. As shown in 

Table 1, the predicted RUL is less than the actual RUL. Therefore, the LSSVR/HMM hybrid prognosis 

method can forecast faults long before the actual fault occurs. The RUL prediction errors reduce with 

increasing time and it tends to be 1 time unit in the simulation, but in real situations, the prediction 

results may be not so good because the test lifetime data used in the simulation is perfect and shorter 

than an actual lifetime data sequence. 

6. Conclusions 

Fault prognosis is an essential and difficult technology in health management and CBM. In this 

paper, a hybrid prognostics approach which integrates the HMM method and LSSVR is presented. In 

the proposed LSSVR/HMM approach, the fault process is divided into several health states modeled 

by HMMs. These HMMs are trained based on history sample data. The lot-likelihood probabilities of 

the HMMs are used to classify data and determine the health state. The state with the highest  

log-likelihood is the corresponding health state of given data. LSSVR is used to predict the feature 

trend. Based on the predicted features and trained HMMs, the future health state can be predicted. 

LSSVR trains and predicts RULs online until the highest probability of the predicted feature vector is 

at the last health state. Then the RUL is equal to the prediction time.  
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Testing of the proposed LSSVR/HMM prognostics approach was carried out using bearing 

vibration data. The simulation results showed that the novel approach is efficient in fault diagnosis and 

prognostics and can also predict the RUL. Furthermore, the results showed that the RUL prediction 

accuracy increases with the passing of time. Future work will focus on how to improve the prediction 

accuracy and expand the applications. 
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