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Abstract: Activities of daily living are good indicators of elderly health status, and
activity recognition in smart environments is a well-known problem that has been previously
addressed by several studies. In this paper, we describe the use of two powerful machine
learning schemes, ANN (Artificial Neural Network) and SVM (Support Vector Machines),
within the framework of HMM (Hidden Markov Model) in order to tackle the task of
activity recognition in a home setting. The output scores of the discriminative models,
after processing, are used as observation probabilities of the hybrid approach. We evaluate
our approach by comparing these hybrid models with other classical activity recognition
methods using five real datasets. We show how the hybrid models achieve significantly
better recognition performance, with significance level p < 0.05, proving that the hybrid
approach is better suited for the addressed domain.

Keywords: activity recognition; hidden Markov model; hybrid schemes; wireless
sensor networks

1. Introduction

Population aging is currently having a significant impact on health care systems [1]. Improvements
in medical care are resulting in increased survival into old age, thus cognitive impairments and problems
associated with aging will increase [2]. It has been estimated that one billion people will be over the
age of 60 by the year 2025 [3]. As the burden of healthcare on society increases, the need for finding
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more effective ways of providing care and support to the disabled and elderly at home becomes more
predominant. Automatic health monitoring systems are considered a key technology in this challenge [4],
because they can serve a dual role: (1) to increase the safety and the sense of security of people living
on their own; and (2) to allow elderly patients to be self-reliant longer, fostering their autonomy [5].

Monitoring human activities of daily living (ADL), in order to assess the cognitive and physical
wellbeing of elderly, is considered a main aspect in building intelligent and pervasive environments [6].
Systems that recognize ADL from sensor data are now an active topic of research; indeed diverse
approaches have been proposed to deal with the activity recognition problem, ranging from video
cameras [7], RFID readers [8] and wearable sensors [9]. However, Wireless Sensor Networks (WSN)
are considered one of the most promising technologies for enabling health monitoring at home due
to their suitability to supply constant supervision, flexibility, low cost and rapid deployment [10,11].
Besides, the inherent non-intrusive characteristics of these networks have been proved to suit perfectly
with environments where privacy and user acceptance is required [12]. Previous approaches have
shown how simple binary sensors have solid potential for solving the ADL recognition problem in the
home [13], and can be applied in human-centric problems such as health and elder care [14–16]. In
Reference [17], binary sensors measuring the opening or closing of doors and cupboards, the use of
electric appliances, as well as motion sensors were used to recognize ADLs of elderly people living on
their own. Indeed, this kind of sensors is considered one of the most promising technologies to solve key
problems in the ubiquitous computing domain, due to their suitability to supply constant supervision and
their inherent non-intrusive characteristics.

In different studies, several models have been used to recognize ADL from sensor streams, such
as Bayesian Networks [14], Conditional Random Field [18] or Evolving Classifiers [19]. However,
recognizing human activities has to cope with several challenges: each human performs each activity
differently, the length of the activities is usually unknown and sensor data are noisy. Nevertheless,
temporal probabilistic models provide a good framework to handle the uncertainty caused by these
issues. Specifically, the hidden Markov model (HMM) has been successfully applied in many sequential
data modeling problems, and has been shown to perform well in this domain [8].

HMM can be effectively used for recognizing human activities, but modeling the emission
probabilities when observable variables are defined by a collection of binary values can reach a
high degree of complexity. To exactly model the distribution of the observation vector, all possible
combinations of values in the feature space have to be considered, resulting in a large number
of parameters and requiring accordingly large numbers of training elements. As demonstrated by
Kasteren et al., the most plausible solution to this problem is to use a naive Bayes assumption, meaning
that strong model assumptions, as the complete independence of every feature, must be applied [20].
In this paper we postulate that the combination of the discriminative capabilities of a machine learning
scheme, such as an artificial neural network (ANN) or a support vector machine (SVM), and the superior
dynamic time warping abilities of HMM can offer better results for the dynamic pattern recognition task
addressed in this domain.

The resulting model is denoted as a hybrid HMM approach, where the temporal characteristics of
the data are modeled by HMM state transitions and a machine learning scheme is used to model HMM
state distributions. An important advantage of such hybrid models is that existing methods for HMM
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design, training and recognition can be employed without significant modifications, since the hybrid
HMM behaves essentially as a conventional HMM.

Different types of hybrid HMM systems have successfully been applied in diverse domains. A
particularly popular approach is to combine HMMs with ANNs. Rynkiewicz applied a hybrid
HMM/ANN scheme to predict time series data, obtaining a model that gave a much better segmentation
of the series [21]. Models based on a hybrid ANN framework have been also widely used on various
recognition tasks, namely: speech recognition [22,23], handwritten text recognition [24], sentence
recognition [25] and digit recognition [26].

Other hybrid HMM systems are also present in the literature. Stadermann et al., presented an
acoustic model combining SVMs and HMMs that obtained an improvement of the word error rate
compared with baseline acoustic models [27]. Ganapathiraju et al., also employed an implementation of
a hybrid SVM/HMM system for speech recognition, where the SVMs were trained on segment level data
with one-state HMMs [28]. In Reference [29], Markov et al., used Bayesian Networks as speech
models to create a hybrid HMM/BN acoustic scheme that achieved better performance than the
conventional HMM.

In the activity recognition domain, hybrid approaches have been also successfully employed. In our
recent work [30], we showed that an ANN could be hybridized with HMMs to deal with the activity
recognition problem in a home setting. Lester et al., developed a hybrid model that combined a modified
version of AdaBoost with HMMs, and demonstrated it to be quite effective for recognizing various
human activities using wearable devices [31].

This paper proposes two new approaches to recognize ADLs from binary sensor streams based on
hybrid HMM schemes (combined with either ANN or SVM). We evaluate and compare the activity
recognition performance of these models on multiple fully annotated real world datasets: three well
known datasets generated by Kasteren et al., and two new datasets (“OrdonezA” and “OrdonezB”)
that we introduce in this paper. This kind of approach has been previously applied for recognizing
human activities using wearable devices but not in a wireless sensor network setting, to the best of our
knowledge. In our experiments, hybrid models outperform other classical activity recognition methods,
showing that the combination of generative and discriminative models can result in a significant increase
in recognition performance.

This paper is organized as follows. Section 2 gives an overview of the type of data used in this study.
Section 3 details the structure of the model employed in this work. Section 4 describes the experimental
setting and experimental results obtained. Finally, Section 5 presents our conclusions and future work.

2. Binary Sensor Data

In this paper we have employed datasets generated by a set of simple state-change sensors installed
in five different environments. Each dataset is composed by binary temporal data from a number of
sensing nodes that monitored the ADLs performed in a home setting by a single inhabitant. Three of
these datasets have been broadly employed in previous studies [32,33] and are publicly available for
download from Reference [34].
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The datasets were obtained using similar sensor systems in different houses. The layout of the
different home settings differs strongly, as well as the sensors configuration. The type of sensors
employed to monitor the users was chosen according to two main criteria: ease of installation and
minimal intrusion. Sensors that need to be worn on the body may be considered intrusive by the user,
and sensors that are easy to install can increase the acceptance of the system.

The WSNs deployed in our different home environments were focused to measure equivalent things:
passive infrared sensors to detect motion in a specific area; reed switches for open/close states of doors
and cupboards, and float sensors to measure the toilet being flushed. An overview of the datasets can be
found in Table 1.

Table 1. Home settings description.

KasterenA KasterenB KasterenC OrdonezA OrdonezB

Setting Apartment Apartment House House House

Rooms 3 2 6 4 5

Duration 22 days 12 days 17 days 14 days 21 days

Sensors 14 23 21 12 12

To provide a proper temporal format, the timeline is discretized into a set of time slices: measurements
of the binary sensors taken at intervals that are regularly spaced with a predetermined time granularity
∆t. Sensor events for each time slice t are denoted as xit, indicating whether sensor i fired at least once
between time t and time t + ∆t, with xit ∈ {0, 1}. In a home setting with N state-change sensors, a
binary observation vector ~xt = (x1t , x

2
t , . . . , x

N−1
t , xNt )T is defined for each time slice. In the employed

data representation, each time interval strictly corresponds to a single data instance. The class of each
data instance is defined by the activity label of the corresponding time segment. The activity at time slice
t, which is the state that the system is in, is denoted with yt ∈ {1, . . . , Q} for Q possible states, so the
classification task is to find a mapping between a sequence of observations x = { ~xt1, ~xt2, . . . , ~xT} and a
sequence of labels y = {yt1, yt2, . . . , yT} for a total of T time intervals (see Figure 1).

Figure 1. Temporal segmentation and relation between sensor readings xi and time
intervals ∆t.
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3. The Hybrid HMM Approach

In our ADL recognition problem, the goal is to identify which activities took place given a sequence
of sensor data. Therefore, we want to find the likeliest sequence of activities y1:T that best explains the
sequence of observations x1:T . In a probabilistic framework, this problem corresponds to finding the
sequence y1:T that maximizes the a posteriori probability p(y1:T |x1:T ).

In this section, we describe the classic HMM, explain the probability distributions that make up
such model and introduce the set of parameters underlying these distributions. Then, we present
how to create the hybrid recognition system through the effective combination of the HMM with
discriminative classifiers.

3.1. Hidden Markov Model

A standard HMM is a generative probabilistic model defined in terms of an observable variable
xt and a hidden variable yt at each discrete time instant. In our case the observable variable is
composed by the features in the sensor feature space and the hidden variable is the ADL to recognize.
Generative models provide an explicit representation of dependencies by specifying the factorization of
the joint probability of the hidden and observable variables. The HMM is defined by two dependence
assumptions, represented by the directed arrows in Figure 2.

• The hidden variable at time t, namely yt, depends only on the previous hidden variable yt−1 (first
order Markov assumption [35]).
• The observable variable at time t, namely xt, depends only on the hidden variable yt at that

time slice.

Figure 2. Graphical representation of HMM dependencies.
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The joint probability therefore factorizes as follows:

p(y1:T ,x1:T ) = p(y1) p(x1|y1)
T∏
t=2

p(yt|yt−1) p(xt|yt) (1)

The different factors further specify the workings of the model. The initial state distribution p(y1) is
a probability table with individual values denoted as follows:

p(y1 = i) ≡ πi (2)
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The observation distribution p(xt|yt) indicates the probability that the state yt would generate
observation xt. In our domain each binary sensor observation is modeled as an independent Bernoulli
distribution, giving:

p(xt|yt) =
N∏

n=1

p(xn
t |yt) (3)

p(xn
t = v|yt = i) = (µin)v(1− µin)1−v (4)

The transition probability distribution p(yt|yt−1) represents the probability of going from one state to
the next. This is given by a conditional probability table A, where individual transition probabilities are
denoted as follows:

p(yt = j|yt−1 = i) ≡ aij (5)

Therefore, the entire model is fully specified by three probability distribution: the distribution over
initial states parameterized by π = {πi}; the transition distribution parameterized by A = {aij}; and the
observation distribution parameterized by B = {µin}.

3.2. Hybrid Generative/Discriminative Modeling

The hybrid HMM approach is a combination of an HMM that models the temporal characteristics
of the sequential data and a static classifier that outputs a posterior probability for each label, taking as
input the features in the sensor feature space. In this paper, we make use of two popular and powerful
machine learning schemes as emission probability estimators: an ANN (Artificial Neural Network) and
an SVM (Support Vector Machine). A standard HMM is employed to capture the temporal dynamics, but
instead of directly using the sensor features to define an observation distribution, we trained the HMM
employing the posterior probabilities obtained by the discriminative model selected (either an ANN or
an SVM). A diagram of an example of hybrid HMM approach is shown in Figure 3.

Figure 3. HMM/MLP model structure.
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The neural networks we used in this work are Multi-Layer Perceptrons (MLP) trained with the
error back-propagation algorithm in order to maximize the relative entropy criterion. The support
vector classifiers are widely used in diverse disciplines due to their high accuracy and ability to handle
non-linear problems. In brief, these schemes apply a kernel function K(.) to the dot product of feature
vector to avoid dealing directly with the high dimensional space and the excessive computations that
result from such transformations [36]. From the choice of available kernel functions we have chosen the
radial basis function (RBF) kernel K(x, y) = exp(−(|x− y|2)/(2σ2)), motivated by our experiments.
Besides, in our case, the implementation of the SVM has to reduce our multiclass problem into multiple
binary classification problems.

As previously explained, in a classic hidden Markov modeling approach, the emission probability
density p(~xt|yt) has to be estimated for each state yt of the Markov chain, that is, the probability of the
observed sensor features xt given the hypothesized state yt of the model. However, since in the presented
scheme the emission probabilities are provided with discriminative models, we took advantage of an
important property of these models, which is that their outputs are estimates of posterior probabilities
when trained for pattern classification.

MLP can be trained to approximate the posterior probabilities of states when each unit of the output
layer is associated with a specific state of the model [37]. A common way to obtain such distribution for
every state y ∈ {1, . . . , Q} is to use the softmax activation function at the output layer:

p(y|~x) =
exp(sy)∑
i∈Q exp(si)

(6)

where sy is the yth output value before applying the softmax function.
Regarding the SVM, the transformation of the model’s class distances to probabilities is done by

applying a sigmoid function:

p(y|~x) =
1

1 + Aexp(−sy +B)
(7)

where sy denotes the SVM output representing class y. The sigmoid function parameters A and B are
estimated using the algorithm from Reference [38].

Hence, the output values of the classifiers are estimates of the probability distribution over states
conditioned on the input:

gyt(~xt) = p(yt|~xt) (8)

with gyt denoting the output representing state yt. The a posteriori probability estimates from the output,
p(yt|~xt), can be transformed into emission probabilities required by HMMs, p(~xt|yt), by applying
Bayes rule:

p(~xt|yt) =
p(yt|~xt)p(~xt)

p(yt)
(9)

The state priors p(yt) can be estimated from the relative frequencies of each state from the training
data. Besides, the scaled likelihoods p(yt|~xt)/p(yt) can be directly used as emission probabilities in the
addressed scheme since, during recognition, the scaling factor p(~xt) is a constant for all states. Posterior
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probabilities are always forced to sum up to 1. Using this conversion, the discriminative models can
be integrated into hybrid structural-connectionist models via a statistical framework [39], obtaining at
each time slice the emission probabilities needed for the HMMs with better discriminating properties
and without any hypothesis on the statistical distribution of the data.

Several studies have shown that incorporating the classification power and discriminating capabilities
of such models with the temporal segmentation power and statistical modeling of HMMs results in a
system that is better than either static classifiers or HMMs [40]. The benefits arising from using ANNs
or SVMs as emission probability estimators are:

• They provide discriminant-based learning, suppressing incorrect classification.
• They do not need to treat features as independent. There is no need of any particular assumptions

about the independence of input features and statistical distributions.
• They are robust against under-sampled training data, meaning that statistical pattern recognition

can be achieved over an under-sampled pattern space.

On the other hand, one of the drawbacks of this hybrid approach is that we have to use fully labeled
datasets to train the classifiers.

The hybrid HMM model training is done by an iterative Expectation-Maximization algorithm, as
proposed by Reference [39]. The training procedure proceeds as follows:

1. Among the available labelled data, training and test subsets are chosen using the
cross-validation mechanism.

2. Assign an initial nonzero value to transition probabilities of the HMM.
3. The training data are employed to train the corresponding classifier (either the MLP or the SVM).
4. Use the partially trained hybrid model to find the best state sequence applying the Viterbi

algorithm. This Viterbi procedure uses the class priors estimated from the relative frequencies
of each class in the training data.

5. The procedure is repeated until convergence.

4. Experimental Setup and Results

To properly evaluate the presented approach, it has been tested on a real domain using real datasets.
In the experiments carried out, we compare the performance of the two hybrid approaches proposed
with other well-known classifiers, and with a classic HMM, since such temporal probabilistic model
has shown to perform well in this domain [32]. It should be noted that we have followed the
recommendations from Brush et al.[41], in the experimentation process and in the presentation of the
results for the activity recognition domain.

This section is organized as follows. We first give a description of the dataset and provide details of
our experimental design. Then, we present the results and discuss the outcome.

4.1. Datasets

Five fully labeled datasets were employed to validate the proposed approach, generated using five
different sensor networks. The activities or labels considered were not the same for every dataset. In
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the datasets generated by Kasteren et al. [34], eight different ADLs were included as labels, namely:
“Leaving”, “Toileting”, “Showering”, “Sleeping”, “Breakfast”, “Dinner”, “Drink”. Time intervals with
no corresponding activity are referred to as “Idle”. In the “Ordonez” datasets “Drink” labels are not
present, nevertheless four additional activities are included, namely: “Lunch”, “Snack”, “Spare time”,
“Grooming”. Table 2 shows the number of separate instances per activity in each dataset.

Table 2. Percentage of instances per class for each dataset.

Activity KasterenA KasterenB KasterenC OrdonezA OrdonezB

Leaving 49.74% 54.36% 46.27% 8.32% 17.41%

Toileting 0.65% 0.27% 0.62% 0.76% 0.55%

Showering 0.7% 0.6% 0.6% 0.54% 0.24%

Sleeping 33.42% 33.53% 28.46% 39.1% 35.58%

Breakfast 0.23% 0.52% 0.62% 0.63% 1.02%

Dinner 1.0% 0.42% 1.26% 0% 0.38%

Drink 0.1% 0.07 0.11% 0% 0%

Idle/Unlabeled 14.12% 10.12% 21.97% 5.61% 11.73%

Lunch 0% 0% 0% 1.59% 1.30%

Snack 0% 0% 0% 0.05% 1.33%

Spare time/TV 0% 0% 0% 42.7% 28.98%

Grooming 0% 0% 0% 0.73% 1.42%

As previously mentioned, sensor data streams were divided in time slices of constant length. For
these experiments, sensor data were segmented in intervals of length ∆t = 60 seconds, based on the
contributions of Reference [20]. This interval length is considered long enough to be discriminative and
short enough to provide good accuracy labelling results, since with larger time slices the shorter activities
would not survive the discretization process. After segmentation, there were a total of 33,120 time slices
for “KasterenA” dataset, 17,280 time slices for “KasterenB”, 24,480 time slices for “KasterenC”, 20,160
time slices for “OrdonezA” and 30,240 time slices for “OrdonezB” dataset.

4.2. Experimental Design

The raw data streams generated by the sensor networks can either be used directly or preprocessed
into a different representation form. In order to augment the features space and to obtain further
evaluation of our models, in this work we have experimented with different feature representations,
originally proposed by Kasteren et al. [32]. The sensor streams have been employed using three
different representations:
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• Raw: The raw sensor representation uses the sensor data in the same way it was received from the
sensors network. The value is 1 when the sensor is active and 0 otherwise (see Figure 4(a)).
• ChangePoint: The change point representation indicates the moment when a binary sensor changes

its value. That is, the value is 1 when a sensor state changes from zero to one or vice versa, and 0
otherwise (see Figure 4(b)).
• LastSensor: The last sensor representation indicates which sensor fired last. The sensor that

changed state last continues to give 1 and only changes to 0 when another sensor changes its
value (see Figure 4(c)).

Figure 4. Considered feature representations. (a) Raw; (b) ChangePoint; (c) LastSensor.

(a) (b) (c)

During the experimentation these feature representations were used standalone and combined.
Combining the feature representations was done by concatenating the feature matrices.

As can be noticed in Table 2, datasets suffer from a severe class imbalance problem due to the nature
of the data. The class imbalance problem can be defined as a problem encountered by inductive learning
systems on domains for which some classes are represented by a large number of examples while others
are represented by only a few [42]. In learning extremely imbalanced data, the overall classification
accuracy is considered not an appropriate measure of performance. A trivial classifier that predicted
every instance as the majority class could achieve very high accuracy. Since in our case rare classes are
of interest, we evaluate the models using F-Measure, a measure that considers the correct classification
of each class equally important.

Table 3. Confusion Matrix showing the true positives (TP), total of true labels (TT) and total
of inferred labels (TI) for each class.

Inferred

True 1 2 3

1 TP1 ε12 ε13 TT1

2 ε21 TP2 ε23 TT2

3 ε31 ε32 TP3 TT3

TI1 TI2 TI3 Total

This measures can be calculated using the confusion matrix shown in Table 3. The diagonal of the
matrix contains the true positives (TP), while the sum of a row gives us the total of true labels (TT) and
the sum of a column gives us the total of inferred labels (TI). First, we calculate the precision and recall
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for each class separately and then take the average over all classes. F-Measure can be calculated from
the precision and recall scores as follows:

F-Measure =
2 · precision · recall
precision+ recall

(10)

The precision and recall metrics are defined as follows:

Precision =
1

N

N∑
i=1

TPi

TIi
(11)

Recall =
1

N

N∑
i=1

TPi

TTi

(12)

The models were validated splitting the original data into a test and training set using a “leave one day
out” approach, retaining one full day of sensor readings for testing and using the remaining sub-samples
as training data. The process is then repeated for each day and the average performance measure reported.
Significance testing is done with significance level p < 0.05 using two different tests: a two-tailed
Student t-test using matching paired data and a Wilcoxon signed-ranks test. We also perform a Wilcoxon
significance test because Student t-test has shown a high probability of Type I errors when applied to
repetitive random sampling or cross/leave-one-out validation [43].

4.3. Results

To evaluate the performance of the proposed hybrid approaches, they are compared with other
classical activity recognition methods. As previously mentioned, two different discriminative models
hybridized with HMMs are used in this work (HMM/MLP and HMM/SVM). Apart from a generative
model (represented as a standard HMM), several well known classifiers are included in the comparison
using a sliding window mechanism. It must be noted that, when using the HMM, each feature is modeled
by an independent Bernoulli distribution, as proposed by previous studies [32].

The choice of the classifiers included in the comparison is based on the activity recognition study
presented by Bao et. al. [44]. These discriminative models are: an MLP, an SVM, a tree-based
classifier, a rule-based classifier and an instance-based classifier. Both MLP and SVM classifiers have
the same configuration and topology as those hybridized with HMMs, which we have used to estimate
the emission probabilities. For these classifiers, no function is applied to their output, since they are
focused to directly recognize the activities, taking the sensor features as input. The tree-based classifier
is modeled by the C4.5 algorithm [45], a widely employed algorithm to generate decision trees. The
rule-based classifier is composed of propositional rules obtained through the Ripper algorithm [46]. The
k-Nearest Neighbor (k-NN) algorithm [47] generates the instance-based classifier. The k-NN has to be
parameterized with the number of neighbors (k) used for classification; in our case, our experiments
showed that best results are obtained using k = 5.

Tables 4–8 show the average F-Measure values for the five different datasets evaluated (“KasterenA”,
“KasterenB”, “KasterenC”, “OrdonezA” and “OrdonezB” respectively). Rows correspond to the
different feature representations employed (standalone and combined) and columns show the results
of the experiments for each activity recognition model.
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Table 4. Experimental results for dataset “KasterenA”. Average F-Measure (expressed in %).

Dataset KasterenA
Hybrid Models Schemes

Representation HMM MLP SVM MLP SVM Trees k-NN Rules
(k = 5)

Raw 41± 20 55± 12 58± 12 51± 11 54± 10 53± 12 55± 11 52± 12

ChangePoint 72± 14 56± 11 76± 9 50± 11 52± 11 54± 10 54± 10 54± 11

LastSensor 61± 15 60± 12 62± 12 61± 11 61± 11 59± 11 61± 11 61± 11

Raw&CP 51± 20 57± 11 65± 9 54± 10 56± 10 56± 12 58± 11 54± 13

Raw&LS 69± 13 69± 11 72± 9 67± 10 67± 8 69± 9 69± 7 65± 10

CP&LS 72± 15 71± 10 76± 8 68± 8 67± 8 68± 7 69± 7 67± 12

Raw&CP&LS 70± 14 68± 12 73± 9 68± 8 70± 8 69± 7 70± 7 63± 11

Average 62± 15 62± 11 69± 10 60± 9 61± 10 61± 10 62± 9 59± 11

Table 5. Experimental results for dataset “KasterenB”. Average F-Measure (expressed in %).

Dataset KasterenB
Hybrid Models Schemes

Representation HMM MLP SVM MLP SVM Trees k-NN Rules
(k = 5)

Raw 39± 13 53± 9 51± 10 50± 10 57± 10 51± 10 54± 11 48± 12

ChangePoint 51± 16 60± 9 73± 11 53± 5 56± 6 58± 7 58± 6 58± 8

LastSensor 40± 17 65± 9 63± 10 65± 12 65± 12 64± 12 65± 12 64± 12

Raw&CP 28± 10 54± 9 56± 14 53± 10 57± 8 55± 10 55± 7 51± 15

Raw&LS 37± 12 54± 15 60± 12 55± 11 60± 8 59± 9 63± 9 49± 12

CP&LS 44± 9 72± 11 72± 10 65± 8 63± 7 68± 7 66± 8 66± 9

Raw&CP&LS 42± 10 60± 11 65± 14 57± 9 63± 6 61± 8 65± 8 49± 10

Average 40± 12 60± 10 63± 12 57± 9 60± 8 60± 9 61± 9 55± 11

Table 6. Experimental results for dataset “KasterenC”. Average F-Measure (expressed in %).

Dataset KasterenC
Hybrid Models Schemes

Representation HMM MLP SVM MLP SVM Trees k-NN Rules
(k=5)

Raw 15± 8 50± 12 45± 10 50± 10 49± 9 50± 8 48± 10 44± 11

ChangePoint 45± 8 59± 6 58± 10 47± 8 46± 9 45± 7 46± 7 45± 6

LastSensor 46± 12 66± 7 63± 6 67± 7 67± 7 66± 8 67± 7 67± 7

Raw&CP 46± 10 50± 9 49± 8 47± 7 51± 8 49± 8 47± 9 43± 14

Raw&LS 46± 11 58± 10 57± 8 57± 10 61± 6 62± 7 62± 8 48± 12

CP&LS 40± 16 66± 9 62± 7 62± 8 66± 8 65± 9 64± 8 65± 8

Raw&CP&LS 47± 12 61± 8 59± 8 61± 9 62± 7 65± 7 62± 8 51± 9

Average 40± 11 59± 9 56± 8 56± 8 57± 8 57± 8 57± 8 52± 10
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Table 7. Experimental results for dataset “OrdonezA”. Average F-Measure (expressed in %).

Dataset OrdonezA
Hybrid Models Schemes

Representation HMM MLP SVM MLP SVM Trees k-NN Rules
(k = 5)

Raw 51± 7 78± 7 79± 5 77± 7 78± 7 78± 7 77± 5 78± 7

ChangePoint 57± 5 61± 7 64± 7 52± 7 53± 7 52± 7 53± 7 52± 7

LastSensor 54± 7 71± 7 67± 10 67± 8 66± 8 65± 8 65± 8 65± 8

Raw&CP 51± 5 81± 7 79± 6 77± 7 78± 7 78± 7 76± 7 78± 7

Raw&LS 56± 5 82± 5 83± 8 82± 7 84± 7 82± 7 80± 86 83± 8

CP&LS 50± 7 72± 7 72± 10 72± 8 71± 8 72± 7 71± 8 69± 8

Raw&CP&LS 53± 5 82± 5 83± 7 82± 7 84± 7 83± 7 79± 8 83± 7

Average 53± 05 75± 6 76± 7 73± 7 73± 7 73± 7 72± 18 72± 7

Table 8. Experimental results for dataset “OrdonezB”. Average F-Measure (expressed in %).

Dataset OrdonezB
Hybrid Models Schemes

Representation HMM MLP SVM MLP SVM Trees k-NN Rules
(k = 5)

Raw 69± 7 74± 6 74± 8 68± 6 69± 7 69± 7 69± 7 68± 6

ChangePoint 65± 8 61± 12 68± 6 50± 7 50± 5 51± 7 52± 7 51± 6

LastSensor 62± 6 72± 6 70± 7 72± 7 73± 7 71± 7 73± 7 73± 7

Raw&CP 69± 7 75± 7 75± 6 68± 7 69± 7 69± 8 69± 8 69± 6

Raw&LS 67± 6 71± 7 74± 6 74± 7 76± 6 72± 6 76± 7 76± 6

CP&LS 66± 6 70± 7 72± 7 71± 8 74± 7 71± 6 73± 7 72± 6

Raw&CP&LS 66± 7 72± 7 74± 6 73± 7 76± 7 74± 6 76± 8 77± 6

Average 66± 06 71± 7 72± 7 68± 7 69± 7 68± 7 70± 7 69± 6

The results for datasets “KasterenA” and “KasterenB” are quite similar. With those datasets, the
best results are obtained by the hybrid SVM/HMM approach, however the differences with some of the
sliding window approaches (instance-based classifier, for example) are not statistically significant, with
significance level p < 0.05. For dataset “KasterenC”, the hybrid MLP/HMM approach outperforms the
other models, but the differences in this case cannot be considered to be significant either. Besides,
with “KasterenB” and “KasterenC” datasets, both hybrid approaches significantly outperform the
HMM approach.

Experiments carried out over the “OrdonezA” dataset show a clearly better F-measure performance for
the hybrid schemes. In this case, the increase in performance for such hybrid approaches is statistically
significant in all cases. On the other hand, although the HMM/SVM model outperforms the HMM
hybridized with an MLP, the differences are not significant.

The results in the last test, over the “OrdonezB” dataset, are consistent with the experimentation data.
The hybrid models achieve the best F-Measure value, but the difference with other models is considered
to be not statistically significant in some cases.
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Regarding the type of representation employed, in general terms, the best results are obtained using
the “LastSensor” configuration as standalone and the “ChangePoint + LastSensor” concatenation as
combined representation.

In Figure 5, the averaged performance over all datasets is shown for each model included in
the experimentation. It can be noticed how both hybrid models significantly outperform the other
approaches. The SVM hybrid model is the scheme that offers the best performance for this domain,
significantly outperforming all other approaches. Both significance tests (Student t-test and Wilcoxon
signed-ranks test) reveal how there are significant differences in the performance between hybrid MLP
and hybrid SVM approaches.

Figure 5. Averaged performance for each model in the comparison.

This finding shows that combining the classification skills of a discriminative model with the
generative and temporal powers of HMMs can lead to significantly better performance in real world
activity recognition. In our experimentation, the generative/discriminative combination has been proved
to outperform as much to the HMM as to the discriminative model employed (either the MLP or
the SVM).

Besides, it is also remarkable that, when dealing with binary sensor features, the activity recognition
algorithm based on SVM generalizes better than the MLP approach, in both hybrid and sliding window
configurations. In some cases, differences in the results for the MLP hybrid approach are not even
significant when compared with other models that used the sliding window mechanism (for instance
when compared with the SVM). However, in both cases the recognition power of the discriminative
models increases when they are combined with the ability of HMM to deal with temporal patterns.

5. Conclusions

In this paper we have proposed two new approaches to recognize ADLs from home environments
using a network of binary sensors. Experimental results of the hybrid HMM models presented
demonstrate how different hybrid schemes can be effectively employed for activity recognition in a home
setting. Specifically, we show how the hybrid system obtained by using an SVM to estimate the emission
probabilities of an HMM outperforms other well known sequential pattern recognition approaches. By
incorporating the time modelling abilities of the HMM to the discriminative skills of the classifier
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we obtain an efficient scheme that is able to deal with the diverse statistical challenges presented in
recognizing human activities and overcome the weakness of HMMs as effective classifiers. Considering
the performance of the two hybrid approaches evaluated, the results show how the combination of
discriminative and generative models is more accurate than either of the models on their own. Besides,
when comparing the proposed hybrid approaches with other classifiers in terms of F-measure, hybrid
schemes show a significantly better performance, with significance level p < 0.05, in both Student and
Wilcoxon significance tests. It is also remarkable that the proposed hybrid models do not require to apply
model assumptions and can estimate the emission probabilities with better discriminating properties,
increasing the observations space and, without any hypotheses on the statistical distribution of the data,
showing how the proposed system is a proper approach to deal with the addressed problem.

Among the different schemes evaluated, the SVM/HMM hybrid approach obtains a significant and
notable better performance. We consider that SVM based approaches have great potential and further
uses in this human activity recognition problem. However, it must be noticed that hybridizing these
schemes implies a more complex system; hence, when integrating into a real home monitoring solution, it
should be considered whether performance should take priority over efficiency. Fortunately, the training
phase in a deployed activity recognizer is usually done offline, so we do not consider such growth of
complexity a real problem in our domain.

Furthermore, the work presented here further demonstrates that accurate ADL recognition can be
achieved by a set of simple and cheap state-change sensors installed in a wireless network.

In terms of future work, further extensions of the hybrid models are feasible, being possible to
employ different classifiers as the discriminative layer of our approach. Also, due to the fact that the
hybrid schemes can estimate the emission probabilities with better discriminating properties, it would be
valuable to evaluate our approaches with non-binary sensor datasets.
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19. Ordoñez, F.J.; Iglesias, J.A.; de Toledo, P.; Ledezma, A.; Sanchis, A. Online activity recognition
using evolving classifiers. Expert Syst. Appl. 2013, 40, 1248–1255.

20. Van Kasteren, T. Activity recognition for health monitoring elderly using temporal probabilistic
models. Ph.D. thesis, University of Amsterdam, Amsterdam, The Netherlands, 27 April 2011.



Sensors 2013, 13 5476

21. Rynkiewicz, J. Hybrid HMM/MLP models for time series prediction. In Proceedings of
7th European Symposium on Artificial Neural Networks (ESANN 1999), Bruges, Belgium,
21–23 April 1999; pp. 455–462.

22. Bengio, Y. A connectionist approach to speech recognition. Int. J. Pattern Recognit. Artif. Intell.
1993, 7, 647–667.

23. Rigoll, G.; Neukirchen, C. A New Approach to Hybrid HMM/ANN Speech Recognition Using
Mutual Information Neural Networks. In Advances in Neural Information Processing Systems 9,
NIPS*96; The MIT Press: Cambridge, MA, USA, 1996, pp. 772–778.

24. Bengio, Y.; Lecun, Y.; Nohl, C.; Burges, C. LeRec: A NN/HMM hybrid for on-line handwriting
recognition. Neural Comput. 1995, 7, 1289–1303.

25. Marukatat, S.; Artires, T.; Gallinari, P.; Dorizzi, B. Sentence Recognition through Hybrid
Neuro-Markovian Modeling. In Proceedings of the International Conference on Document
Analysis and Recognition (ICDAR), Seattle, WA, USA, 10–13 September 2001; pp. 731–735.

26. Cosi, P. Hybrid HMM-NN Architectures for Connected Digit Recognition. In Proceedings
of IEEE-INNS-ENNS International Joint Conference on the Neural Networks, Como, Italy,
24–27 July 2000; Volume 5, p. 5085.

27. Stadermann, J.; Rigoll, G. A hybrid SVM/HMM acoustic modeling approach to automatic speech
recognition. In Proceedings of the 8th International Conference on Spoken Language Processing
(ICSLP), Jeju Island, Korea, 4–8 October 2004.

28. Ganapathiraju, A.; Hamaker, J.; Picone, J. Hybrid SVM/HMM Architectures for Speech
Recognition. In Proceedings of the International Conference on Spoken Language Process, Beijing,
China, 16–20 October 2000; pp. 504–507.

29. Markov, K.; Nakamura, S. Using hybrid HMM/BN acoustic models: Design and implementation
issues. IEICE Trans. Inf. Syst. 2006, E89-D, 981–988.
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