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Abstract: The technology of sensor, pervasive computing, and intelligent information 

processing is widely used in Body Sensor Networks (BSNs), which are a branch of 

wireless sensor networks (WSNs). BSNs are playing an increasingly important role in the 

fields of medical treatment, social welfare and sports, and are changing the way humans 

use computers. Existing surveys have placed emphasis on the concept and architecture of 

BSNs, signal acquisition, context-aware sensing, and system technology, while this paper 

will focus on sensor, data fusion, and network communication. And we will introduce the 

research status of BSNs, the analysis of hotspots, and future development trends, the 

discussion of major challenges and technical problems facing currently. The typical 

research projects and practical application of BSNs are introduced as well. BSNs are 

progressing along the direction of multi-technology integration and intelligence. Although 

there are still many problems, the future of BSNs is fundamentally promising, profoundly 

changing the human-machine relationships and improving the quality of people’s lives. 

Keywords: body sensor network; sensor; data fusion; network communication; practical 

application of BSNs 
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1. Introduction 

As important public network applications, BSN applications are in great demand in medical  

care [1–3], sports and entertainment [4–6], the military-industrial sector [7], and the social public  

field [8–10], and BSNs have gradually become a research hotspot. BSNs are a kind of WSN which is 

formed by physiological parameter sensors placed in the human body, on the body surface or around 

the body. The main techniques it covers are sensors, data fusion, and network communication. It is not 

only a new type of universal health care, disease monitoring, and prevention solution, but also an 

important component of the so-called Internet of Things. Its main purpose is to provide an integrated 

ubiquitous computing hardware, software, and wireless communication technology platform, and an 

essential condition for the future development of ubiquitous health care monitoring systems [11]. 

BSNs originated from WSNs, so there are many similarities between them. However, the 

characteristics are correspondingly different because of their different application purposes. Firstly, 

considering network deployment, WSNs can be deployed to inaccessible environment, such as forests, 

swamps or mountains. Many redundant nodes are placed in the environments mentioned above to 

solve the problem of node failures, so node density is higher, whereas BSN nodes are deployed in, on 

or around the human body, so the total number of nodes is generally up to a few dozens. Each node 

ensures the accuracy of monitoring results by its robustness [12]. Secondly, considering attributes, 

nodes in WSNs perform the same functions, and have the same properties. The size of nodes is not 

very critical. Once the node is deployed, it will probably no longer need to be moved. According to the 

different physical signals collected, BSN applications have different sensor types [13]. Moreover,  

the requirements of BSN node design are relatively high. The node size must be small enough, and the 

nodes need to have high wearability and high biocompatibility [14]. Due to the locations the nodes are 

deployed, they will move as the human body moves. Thirdly, considering energy supply, WSNs and 

BSNs can be battery-powered. The former, deployed outdoors, can also be powered by wind energy or 

solar energy, while the latter can also be powered by kinetic energy and heat [15,16]. Finally, 

considering data transmission, the transfer rates of WSNs are almost the same, but those of BSNs are 

different, as the data type and channel assignment are different among nodes on the body surface and 

in the body [13]. Additionally, BSNs deployed in the human body are for monitoring human 

physiological data, which are subject to user’s personal safety and privacy protection issues. Therefore, 

QoS and the real-time prosperity of data transmission must be considered [17,18]. 

The general architecture of a BSN is shown in Figure 1. Sensor nodes which are placed in the body 

collect physical data and perform preliminary processing. The data are gathered by a sink node and 

then transmitted to a base station in order to share over the Internet, which is the basis of many 

applications, including health care systems, social welfare, patients and immediate service, diagnosis 

services by doctors and medical experts, and emergency treatment systems, etc. 

Nowadays BSN research still faces many key technical challenges. Figure 2 summarizes the main 

research areas of BSNs. The research work on sensor design and use mainly focuses on the wearability 

of sensor nodes [19], the capacity of fault diagnosis and fault treatment [20], energy consumption [21] 

and sensor deployment [22], etc. In the aspect of data fusion, research mainly includes the design and 

implementation of denoising [23], feature extraction [24], data classification [25], data compression [26], 

and other key technologies. A growing number of scholars combine situational awareness and data 
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fusion technologies in the activity recognition area [27,28]. In the aspects of network communication, 

research mainly focuses on the problems of network topology design [29], channel characterization [30], 

channel access control [31,32], routing algorithm design [33], and lightweight communication 

protocols design, etc. These key technologies must be considered when building a complete BSN 

system. They are not only of great research value, but also of important practical value. 

Figure 1. Architecture of a BSN. 

 

Figure 2. Main research areas in BSNs. 

 

Existing surveys have made detailed investigations on BSN architecture, signal processing, 

communication protocols, context awareness and QoS. Reference [12] mainly focused on propagation 

of information, communication protocols, QoS and security. Moreover, it gave some examples of 

medical monitoring based on BSN. In Reference [13] the authors provided a detailed research on 

sensor devices, physical layer, MAC layer and radio technologies, then made a classification on body 

sensor projects and summarized some open research issues on multi-aspects. In Reference [34], 

researchers presented an overview of BSN in enabling pervasive healthcare and assistive 

environments, listing many applications of sensor devices and communication protocols. The authors 

also analyzed current obstacles and future open issues from an overall angle. Reference [35] placed 

emphasis on network communication, discussing the issues of physical layer, MAC layer, network 

layer and routing protocols in detail. Different from the above papers, we set forth our views from the 
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perspective of system design, with a detailed explanation of the research status of three aspects: sensor, 

data fusion, and network communication. In each section, we summarize the issues which need to be 

considered in design phase, listing some typical related cases. We also present the trends of 

development and technical challenges. In addition, we list some key research achievements of BSNs in 

various fields, such as medicine, social welfare, sports, and man-machine interfaces. Moreover, we 

have provided a detailed analysis of trends and challenges of BSNs from a systemic perspective. 

The remainder of this paper is organized as follows: Section 2 describes the various types of sensors 

and hotspots in BSNs. Section 3 explores the development of data fusion. Section 4 discusses BSN 

network topology and communication between layers. In Section 5, we introduce the typical 

applications in various fields and the system design problems to be considered in BSNs. Section 6 

briefly concludes this paper. 

2. Sensors 

Sensors are the key components of BSN, as they connect the physical world with electronic 

systems. They are mainly used to collect the information about physiology and the surrounding 

environment. Sensor nodes, which have a sensor as their main part, are responsible for processing 

information by format conversion, logical computing, data storage, and transmitting. One sensor node 

generally comprises a sensor module, processor module, wireless communication module, and power 

supply module [36]. The sensor module is responsible for collecting the status of measurands and 

converting data from physical quantities to electrical signals. The processor module is responsible for 

controlling the sensor nodes. The wireless communication module, consisting of network layer, MAC 

layer and wireless transceiver in the physical layer, is responsible for communication among sensors and 

computers. The power supply module is responsible for providing energy for entire the sensor node. 

2.1. State-of-the-Art Research on BSN Status 

In recent years, with the development of BSN applications in many fields, electrocardiograph 

(ECG) sensors, accelerometers, pressure sensors, and respiration sensors are gradually becoming the 

hotspots of BSN sensor research. A large amount of research has been done on improving the 

wearability of sensor nodes, and optimizing data processing algorithms. An in-depth study has been 

made on problems such as energy control, fault diagnosis, and sensor node number reduction. All of 

these works promote the development of BSNs in the direction of energy-efficiency and accuracy. 

2.1.1. Classification of Sensors 

In practical applications, the type of sensors and the number of sensors a BSN system employs 

depend largely on the particular application scenario and system infrastructure [34]. BSN system may 

take advantage of many different types of sensors to complete the detection of physiology signals, 

human behavior, and the surrounding environment. Sensors in BSNs can be of many types due to their 

various application-specific requirements. 

According to the types of measured signals, sensors in BSNs can be divided into two categories [37]. 

The first category, which includes accelerometers, gyroscopes, ECG sensors, electro-encephalograph 
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(EEG) sensors, electromyography (EMG) sensors, visual sensors, and auditory sensors, collect 

continuous time-varying signals. This type of sensor collects signals continuously, placing more 

emphasis on real-time signal acquisition, and correspondingly both data transmission quantity and 

power consumption are very large. The second category, such as glucose sensors, temperature sensors, 

humidity sensors, blood pressure monitors, and sensors monitoring blood oxygen saturation, collect 

discrete time-varying physiology signals. As the signals that sensors collect change slowly, the amount 

of data transmission quantity is smaller than for the first category. It is possible to reduce energy 

consumption by using sleeping mode. 

According to the types of data transmission media, the most commonly used sensors in BSNs can 

be divided into the following three categories: wireless sensors, which employ wireless communication 

technologies such as Bluetooth or Zigbee, radio frequency identification devices (RFID), and Ultra 

Wideband (UWB) to communicate with other sensors or devices. Most applications employ this type 

of sensors for improving wearability and reducing the interference of sensors with usual activities. 

Wired sensors, employing wired communication technologies, can replace wireless sensors if 

wearability is not seriously affected. The transmission mode is more stable than that of wireless 

sensors. However, their installation and deployment is relatively complicated. Removing wires 

completely will be an inevitable trend for BSNs [13]. Human body communication (HBC) sensors, 

which use the human body as the transmission medium, have only been proposed in recent years. This 

type of sensor adopts sub-GHz frequencies without antennae, which reduces the power consumption 

and the size of sensor nodes. Therefore, they can easily be integrated into body-worn devices. What’s 

more, the communication distance of a HBC sensor is constrained around human body, which 

effectively improves the communication security [38]. However, it has less communication speed than 

a normal wireless sensor. Recently it was supported by the IEEE 802.15.6 standard for use in  

short-range, low-power and highly reliable wireless communication systems which are close to, on or 

in the human body [39]. 

According to the deployment positions of sensor nodes, sensors in BSNs can be divided into three 

categories [37]: Type 1 are wearable sensors, such as temperature sensors, pressure sensors and 

accelerometers. The size and weight of the sensor should be considered in the design process, in order 

not to interfere with the usual activity of users. Type 2 are implantable sensors, which can be 

implanted or inhaled/ingested into the body, such as a camera pill. This type of sensor needs to be not 

only tiny enough, but also non-corrosive and biocompatible. Type 3 is placed surrounding people,  

and can be used to recognize behaviors and collect information about the surroundings, such as  

visual sensors. 

According to their automatic adjustment ability, sensors in BSNs can be divided into two 

categories: self-adapting sensors, which can automatically adjust processing method, order, and 

parameters, boundary conditions or constraints according to data characteristics, make themselves 

adapt to the statistical distribution and structural characteristics of the measured data, in order to get 

the best treatment effect. Non-self-adapting sensors, which are simple to design and need no 

consideration of self-adjusting function, are widely used in BSNs at present. Because of the 

requirements of complexity and accuracy enhancing, self-adapting methods will be gradually applied 

to design of sensors. 
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2.1.2. Main Researched Sensors 

With the development of different applications, more and more sensors are appearing in the BSN 

field. The most commonly used sensors are shown in Table 1. Several typical BSN sensors are 

introduced below. 

Table 1. Commonly used sensors in BSNs. 

Sensors Function Signal Type 
Sampling 

Frequency 
Placement 

Accelerometer 
Obtaining acceleration on each spatial axis of 

three-dimensional space. 
Continuous High Wearable 

Artificial 

cochlea 

Converting voice signal into electric pulse and 

sending it to implanted electrodes in ears, 

generating auditory sensation by stimulating 

acoustic nerves. 

Continuous High Implantable 

Artificial retina 

Receiving pictures captured by external camera 

and converting them to electric pulse signals, 

which are used to stimulate optic nerves to 

generate visual sensations. 

Continuous High Implantable 

Blood-pressure 

sensor 

Measuring the peak pressure of systolic and the 

minimum pressure of diastolic. 
Discrete Low Wearable 

Camera pill 
Detecting gastrointestinal tract by wireless 

endoscope technique.  
Continuous High Implantable 

Carbon dioxide 

sensor 

Measuring the content of carbon dioxide from 

mixed gas by infrared technique. 
Discrete 

Low/Very 

low 
Wearable 

ECG/EEG/EMG 

sensor 

Measuring voltage difference between two 

electrodes which are placed on surface of body. 
Continuous High Wearable 

Gyroscope 

Measuring angular velocity of rotating object 

according to principle of angular momentum 

conservation. 

Continuous High Wearable 

Humidity sensor 

Measuring humidity according to the changes 

of resistivity and capacitance caused by 

humidity changes. 

Discrete Very low Wearable 

Blood oxygen 

saturation sensor 

Measuring blood oxygen saturation by 

absorption ratio of red and infrared light 

passing through a thin part of body.  

Discrete Low Wearable 

Pressure sensor 
Measuring pressure value according to the 

piezoelectric effect of dielectric medium. 
Continuous High 

Wearable/ 

Surrounding 

Respiration 

sensor 

Obtaining respiration parameters indirectly by 

detecting the expansion and contraction of 

chest or abdomen. 

Continuous High Wearable 

Temperature 

sensor 

Measuring temperature according to the 

changes of materials physical properties. 
Discrete Very low Wearable 

Visual sensor 
Capturing features of subject, including length, 

count, location, and area. 

Continuous/ 

Discrete 
High/Low 

Wearable/ 

Surrounding 
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(1) ECG Sensors 

ECG sensors are used for electrocardiograph signal monitoring, which is the main way to diagnose 

heart disease in electronic healthcare systems. ECG signals reflect the change of current intensity on 

the skin caused by the contractile activity of the heart over time, which can easily be recorded using 

non-invasive electrodes on the chest or limbs of body [40]. They can be represented as a pattern of 

cyclically occurring ECG waveforms with different frequency contents: QRS complex, P and T waves. 

ECG waves indicate the overall rhythm of the heart and weaknesses in different parts of the heart 

muscles, and they can be measured to diagnose abnormal heart rhythms. Among ECG waveforms, the 

QRS complex reflects the electrical activity within the heart during ventricular contraction and 

provides much information about the state of heart [41]. ECG sensor nodes transmit data in a wireless 

way, which contributes to better wearability. Generally, the nodes are so small that they can easily be 

embedded in fabric or plaster. 

According to the types of electrodes, ECG sensors can be divided into three categories: sensors with 

wet electrodes, sensors with dry electrodes, and sensors with non-contact electrodes. Wet electrodes 

were used for ECG monitoring first, but now are rarely used in BSNs, as this kind of electrode may 

cause skin irritation and signal degradation due to dehydration. As an alternative, dry electrodes have 

become more and more popular, but they still contact the skin directly. In addition, dry electrodes 

which don’t have the benefit of conductive gel, are much more sensitive to the conditions of the skin 

and are highly susceptible to motion artifacts (MAs). In Reference [42], a kind of wireless sensors with 

non-contact electrodes is presented. The sensor consists of a set of capacitive electrodes manufactured 

on a standard printed circuit board that can work within fabric or other insulation. In contrast to wet 

and dry contact sensors, non-contact sensors do not require any direct contact with the body, so they 

are completely insensitive to skin conditions. Nevertheless, the denoising ability requirement is 

relatively high for non-contact sensors. Experiments show that insulating layers between non-contact 

sensors and skin may obscure the features of smaller signals, such as P-waves, if the layers are too 

thick to maintain signal quality. Moreover, insulating layers may cause noise too, which must be 

weakened or removed by more effective denoising algorithms. 

(2) Accelerometers 

Accelerometers are used for measuring the acceleration of components in an inertial three-dimensional 

coordinate system. They play an important role in human energy expenditure detection and behavioral 

recognition, because of their small size, relatively low cost, as well as the convenience of integrating 

them into existing sensor network platforms [22]. 

One purpose of utilizing accelerometers is to detect human energy expenditure. Accelerometers can 

obtain physical activity frequency, motion intensity, and other information if placed on the human 

body. Energy expenditure can be inferred by a series of algorithms based on the information 

accelerometers get. Compared with other methods utilizing passometers or cardiotachometers alone, 

this method has higher accuracy and has become a trend in energy expenditure detection [43]. At 

present, the most accurate energy consumption instrument is called the LivePod [44], which employs 

triaxial accelerometers to identify the action of a human body in any direction by an intelligent fuzzy 

algorithm. It can achieve an accuracy of 97% using a high-precision personalized model for energy 
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consumption calculation. Compared with the Livepod, the accuracy of existing research models needs 

to be improved. 

Compared with human energy expenditure detection, behavioral recognition is much more 

complex, because it employs not only accelerometers, but also other inertial sensors to recognize 

direction and angle of movement and other action parameters. Furthermore, it needs to get activity 

information from raw sensor data, thus the signal processing process is more complex [45]. Generally, 

accelerometers work together with gyroscopes and magnetometers to achieve a more accurate 

measure, but it’s not absolute. In Reference [46], a kind of inertial measurement unit (IMU) called 

EcoIMU which only utilizes accelerometers is presented, which can accurately measure linear 

acceleration and angular velocity. It is built from a pair of triaxial accelerometers, expanding the 

application scope of accelerometers from relative motion tracking to absolute motion tracking. 

Moreover, the use of accelerometers significantly lowers the power consumption and the cost of an 

IMU, which conforms to the desirable low-power characteristics of BSNs. Reference [22] indicates 

that behavioral recognition often requires multiple sensor nodes. The more nodes it utilizes, the higher 

accuracy it obtains, however the more difficult it becomes. Therefore, in order to identify motions 

accurately with only a few nodes, finding the best deployment location for sensor nodes has become a 

hot topic of research in the field of BSN sensors in recent years. 

(3) Pressure Sensors 

In BSN applications, pressure sensors are generally used to monitor pressure changes of the 

underside of foot in real-time mode, providing data for pressure analysis, behavioral recognition, and 

energy expenditure detection. Because of its special position on the human body, it is difficult to 

integrate pressure sensors with other modules, such as wireless communication modules, in one sensor 

node. They are generally installed on a pressure plate or inside special insoles. The pressure sensors 

are always connected with an external micro-controller by cable. In Reference [47], a low-cost foot 

pressure measurement system has been developed to measure the pressure of each contact point of the 

pelma by a pressure plate, in order to calculate the contact area. The system adopts feature extraction 

and pattern recognition techniques to recognize clubfoot pattern, aiming to automatically design 

personalized insoles. In Reference [48], researchers place pressure sensors into insoles to calculate 

motion parameters, including distance, time, total weight, speed, and frequency. The parameters are 

used to recognize behaviors aided by feature extraction and support vector machine (SVM), providing 

a novel method to measure energy expenditure. However, the proposed method ignored the problem of 

temperature drift caused by motion, which affects the accuracy of pressure measurements. This is a 

considerable problem in pressure sensor design. 

(4) Respiration Sensors 

Different from the sensors introduced above, respiration sensors in BSNs are generally composed of 

several sensors, such as pressure sensor, accelerometer or gyroscope. They get respiration parameters 

indirectly by detecting the expansion and contraction of the chest or abdomen based on those sensors. 

Respiration sensors are always used in the treatment of respiratory diseases and for continuously 

monitoring human symptoms. A breathing feedback system with wearable textile-based sensors is 

introduced in Reference [49]. The sensor gets the depth and respiratory rate by recognizing expansion 
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and contraction of the chest based on a kind of piezoresistive material called a carbon-loaded 

elastomer. It can be implanted into fibers or textiles, helping users to practice correct breathing and to 

treat respiratory diseases. In addition, Reference [50] proposed a new method to solve the problem of 

continuous respiration monitoring. This method is based on reconstruction of the angular motion 

caused by breathing, which makes use of accelerometer data. It tracks the axis of rotation and obtains 

the angular velocity of the sensor nodes placed on the chest, implementing accurate respiration 

detection despite the interference caused by body movements. However, most respiration sensors 

monitor the parameters of breath simply, with rare consideration of flow rate and tidal volume of 

respiration, which is the future research direction of respiration sensors. 

2.1.3. Design of Sensor Nodes 

Although sensors are the key components of sensor nodes, they cannot work independently. They 

must work together with other modules to realize signal acquisition. In order to meet the demands of 

low power consumption and high wearability, many issues need to be considered in the sensor node 

design process, including energy control, fault diagnosis, and reduction of sensor nodes. 

(1) Energy Control 

In order to implement long term monitoring functions, energy control has been one of the hot topics 

in the field of BSN sensors for a long time. Presently, primary researches include low-power 

architecture design, low-power processor design, low-power transceiver design, and energy acquisition 

design. In Reference [19], a programmable architecture of ultra-low power consumption based on 

dynamic time warping designed specifically for wearable inertial sensors is proposed. Provided that 

the sampling frequency is 3 Hz and bit resolution is 4 bits, the sensor node can run at a power 

consumption of 9 μW, meeting the need of recognizing motions perfectly. The power consumption of 

a sensor node can be reduced more than three orders of magnitude by using the proposed architecture 

compared to traditional low power microcontrollers, such as the MSP430. In Reference [21], 

researchers introduce a low-power processor design, which reduces supply voltage to below threshold 

voltage, in order to lower leakage power and prolong the life of logic circuits and SRAM. 

Consequently, it is a compelling strategy for energy-constrained systems with relaxed performance 

requirements. However, the effects of process variation become more prominent at low voltages, 

particularly in deeply scaled technologies. For this purpose, the paper presents a system-on-a-chip 

which demonstrates techniques to mitigate variation, utilizing timing methodology to avoid output 

voltage failures and propagation delays in logic gates, in order that the system can run at a low voltage. 

In terms of low-power transceiver design, Reference [51] presented a low power contact impedance 

sensor node named CIS, integrating an efficient transceiver using human body as a kind of 

transmission medium. The proposed CIS adopts a capacitive sensing technique based on LC resonance 

for detecting the parasitic capacitance between electrodes and the human body to turn a transceiver on 

or off automatically. It can compensate for channel quality degradation due to contact impedance 

variation, thus leading to significant reduction of the power consumption of a Low Noise Amplifier 

(LNA) by more than 70%. In addition, energy acquisition design can help the sensor nodes to collect 

power by themselves. For example, biological fuel cells can convert chemical energy into electric 
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energy using a biocatalyst. In Reference [15], researchers mention that glucose biological fuel cells can 

collect power by enzymatic chemical reactions occurring in the human body. 

(2) Fault Diagnosis 

BSNs consist of multiple sensors, while any broken down sensor may affect the running of the 

whole system, so failure node detection and isolation cannot be ignored. One solution is to detect them 

by comparing the contents among neighbor nodes. Reference [20] indicates that detection accuracy 

decreases as the number of sensor nodes decreases. Furthermore, the number of nodes in a BSN is 

relatively small, and there is rarely a circumstance applying multiple sensors of the same kind to 

collect signals at the same position, so the method mentioned above is more suitable for WSNs rather 

than BSNs, and it does not perform well in the latter. Another challenge is to find the right neighbors 

for data validation in order to reduce false alarms. In Reference [52], authors propose a more 

reasonable approach, which uses sliding window techniques to split a sensor stream into segments and 

provides a fault detection algorithm based on these segments. The proposed fault detection algorithm 

can be divided into two sub-categories: history based and non-history based. The fault detection rate of 

the former is more reliable, while the latter can help to validate the former. 

(3) Reduction of Sensor Nodes 

Reduction of sensor nodes mainly aims at inertial sensors for behavioral recognition. It not only 

improves the wearability of behavioral recognition systems, but also lowers the cost, saves energy, 

simplifies the recognition process, as well as reduces data redundancy. Principal methods to solve the 

problem are the optimization of node placement and the improvement of activity recognition 

algorithms. At present, some research projects regard node placement optimization as one of the main 

research problems in the field of behavioral recognition in BSNs. In Reference [22], the authors 

propose several schemes for how to place wearable sensors for different body actions and provide an 

optimal framework of node placement. The framework can also help to find the most relevant band 

from all the time-frequency features collected by wearable accelerometers. In this paper, the authors 

divide the analytical method process into three steps: feature extraction, feature selection, and 

classification. Then they classify the actions by different data features, and provide the best placement 

scheme for each type of action. Different from the method mentioned above, Reference [53] proposes 

a method to reduce the number of sensor nodes by improving the activity recognition algorithms.  

The authors have also proved that the problem is NP-hard. However, they propose a behavioral 

recognition model which uses a decision tree structure to minimize the number of nodes involved in 

classification of each action. The method reduces nodes by 72.4%, while still maintaining 93.3% 

classification accuracy. 

2.2. Trends and Challenges 

With the deepening of the research, sensor technology is becoming mature with its application 

scope expanding on a daily basis. It’s developing towards the direction of high wearability and low 

power consumption. As a BSN is characterized by long-term real-time monitoring, measures must be 

taken to reduce the size of sensors and eliminate any possible physical and chemical harm to the 

human body for the sake of long-time use. Many studies have been carried out on the improvement of 
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wearability in previous research. However, despite the fact a small portion of sensors show good 

wearability, many others still need to be improved. Especially for sensors monitoring human activities, 

there are still a lot of work to do in order not to affect everyday life and sports training. Similarly, 

solving the problem of power consumption of sensors is still a long-term goal. Nowadays, the 

functions of sensor nodes are becoming more and more complicated, and the demands of data 

processing quality increase continuously as well, which makes prolonging the service life of sensor 

nodes another major problem for the future, and meanwhile low-power design methods are being 

studied. In addition, with new physical parameters of interest being discovered continuously, 

researchers should design more and more new types of sensors. Meantime, research into new 

materials and new energy in other fields will promote the progress of BSN sensors. 

There are still some difficulties in the research of BSN sensors, such as extension of sensor life, 

improvement of measurement accuracy and design of implantable sensor antennas. In practical 

applications, replacement of sensor node cells may not be timely, and sometimes impossible, 

especially for implantable sensor nodes. How to supply energy is a great challenge to achieve  

long-term automatic monitoring. Some researchers propose acquiring energy from the external 

environment, but this technology is still not mature. Besides, there exists another challenge on how to 

improve the accuracy of signal measurement, when accuracy depends on the position of sensors and 

the denoising ability of sensors, so finding new denoising methods is also a challenge at present. As for 

implantable sensors, it is hard to design the antenna of a wireless communication module, as the 

antenna material must be non-corrosive and biologically compatible, such as platinum and titanium, 

but the wireless communication capability of these materials is less than that of copper, while their cost 

is too high to be widely used [54]. Meanwhile, the radio frequency (RF) environment will change with 

the variation of wearer’s age, weight, and posture. All of these factors above will affect the quality of 

wireless communication, which needs to be considered carefully by designers [55]. 

3. Data Fusion 

Data fusion in BSNs is a procedure for processing data or information coming from multiple 

sensors with multi-level, multifaceted processing to make data more effective and meet users’ needs 

better. BSNs produce a large amount of physiological data according to the application purpose. The 

way in which these data are manipulated is a fundamental issue faced by sensor node designers. Data 

fusion techniques combine data from multiple sensors and related information, which can achieve 

more accurate inferences compared to a single, independent sensor. It also can filter noise effectively, 

making predictions and inferences from monitored actions or phenomena [56]. At the same time, data 

fusion techniques can reduce data redundancy, and consequently reduce the load and energy 

consumption of BSNs, with the advantage of prolonging the network lifetime [57]. Not all data in 

BSNs needs to be fused, such as blood pressure, body temperature, and heart rate. Data of these types 

are measured by single sensors, and can reflect physiological performance directly. Other types of data 

which are measured from multiple sensor in BSNs, like heart waves, pulse waves, and data to identify 

people’s motion, cannot be used directly. In these cases, data fusion techniques are necessary. 

There has been a lot of research in data fusion. Data fusion techniques were applied in the military 

field in early days, including automatic target recognition in the design of smart weapons, guidance of 



Sensors 2013, 13 5417 

 

 

autonomous vehicles, remote sensors, and battlefield supervision. Later, they were applied in nonmilitary 

fields, such as robotics, automatic control of industrial manufacturing systems, and the development of 

smart buildings [58]. As a branch of WSNs, BSNs are also developing very fast in the fields of  

medicine [59], or activity recognition [60], in which data fusion techniques play an important role. 

3.1. State-of-the-Art Research on Data Fusion 

The process of data fusion mainly includes preprocessing, feature extraction, data fusion 

computation, and data compression. There are always some kinds of noise and interference in human 

physiological signals, which cause that collected signals cannot be used directly. In this circumstance, 

preprocessing is helpful, as it can filter noise from data and get useful information. The main 

preprocessing methods are piecewise linear representation, Fourier Transform (FT), Wavelet 

Transform (WT), high pass and low pass filters, mathematical morphology filters, Laplacian 

Transform, and Kalman filter, etc., which can be applied to remove noise. Feature extraction is carried 

out after preprocessing, which assembles representative data into feature vectors to distinguish among 

different actions or phenomena [61]. In this stage, researchers analyze information by means of Fast 

Fourier Transform, wavelet analysis, etc., to thus extract the features of collected signals. After that, 

the extracted features are used as input of data fusion computation methods which will generate fusion 

results. Data fusion computation on information of different types is difficult. Researchers found that 

activity classification algorithms and intelligent computing methods [24,25], including hierarchical 

methods, decision trees, Bayesian Network (BN), Artificial Neural Network (ANN), and Hidden 

Markov Model (HMM), are suitable for solving this kind of problem. Furthermore, the methods can 

effectively relieve the pressure of low recognition accuracy. Finally, data that gets preliminary 

treatment will be compressed before transmission, which will significantly reduce the total amount of 

data transmission in BSNs. In this way, power consumption is reduced [62]. In the aspect of data 

compression, several encoding methods are common techniques. In recent years, research on data 

fusion has achieved many fruitful results, and a number of research hotspots in the data fusion process 

area have come out, as well as combination of data fusion with other techniques and applications. 

3.1.1. Preprocessing 

When detecting human body physiological parameters, data collected by sensors is often affected 

by interferences, leading to a lot of noise. Reference [40] states that these disturbances are from two 

sources. Firstly, low Signal to Noise Ratio (SNR) signals caused by irregular movements and human 

respiratory actions. Secondly, interference with signal acquisition and transmission caused by 

instrumentation amplifiers in the surrounding environment or in sensors of the system itself. Noise 

types also vary due to the different types of sensors and different applications. MAs, such as baseline 

drift, flicker noise, and thermal noise, as well as wire interference may be caused by instrumentation 

amplifiers in measuring ECG, EEG, and EMG. High and low frequency noise will be introduced 

during the signal collection process by inertial sensors measuring body movements. 

Preprocessing is an efficient and effective way to carry out the denoising process on original data 

while maintaining useful information. The main techniques include piecewise linear representation, 

FT, WT, high pass and low pass filters, mathematical morphology filters, and Kalman filter. For 
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example, Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) are naturally 

suited for non-continuous data processing [23]. Techniques such as low-pass median value filter, 

Laplacian Transform, and Gaussian filter can be used to remove high frequency noise. The Kalman 

filter is an optimal recursive data processing algorithm, which is always used to correct measured 

values based on the observed value of the current moment and the best estimated value of a previous 

moment. It plays an important role in dealing with measured values which are not very accurate. 

Using dry electrodes is one of the significant factors which increases power line interference (PLI) 

and MA, and finding solutions to reduce these noises or interferences is an important issue. A lot of 

methods are proposed to remove the PLI in bio-potential signals, such as the notch filter and analog 

notch filter [63]. However, the removal of MA in wearable healthcare systems is more complex. Due 

to the nature of wearable devices, the captured ECG signals are severely distorted with baseline drift 

and MAs [64]. In Reference [65], researchers introduced the multiscale mathematical morphology 

filtering concept into QRS detection, while the method of mathematical morphology, initiated in  

the late 1960s, has become one of the favorite signal analysis tools in many shape-oriented  

problems [66,67]. They successfully designed the ECG QRS complex detection algorithm based on it. 

Other researchers use the algorithm in different ways. They utilize hybrid mathematical morphology 

filtering to suppress impulsive noise when doing opening-closing operations to get a more effective 

QRS detection [68]. This can remove baseline drift and use modulus accumulation to enhance signals. 

In Reference [63] a single-scale mathematical morphological (MM) filter and an approximated 

envelope are combined together. This MM filter removes baseline wand erring, impulsive noise, and 

the offset of DC componentd while the approximated envelope enhances QRS complexes. These 

algorithms have been further improved in removing MAs and other interference. In order to realize 

activity recognition and get accurate characteristic values which are not affected by system noises, 

adopting a Kalman filter can obtain precise parameters of moving objects, such as instantaneous 

angular and coordinate data. As data collected from sensors are not absolutely correct when monitoring 

movement and posture, researchers put the Kalman filter into use for processing data, so as to make 

output result close to the real data. In a practical application, a Kalman filter is always adopted to 

process acceleration data [69]. It can also be used in applications such as gait tracking to calculate thurl 

angle and swing angular velocity. 

3.1.2. Feature Extraction 

In general, features can be defined as the abstraction of raw data. The aim of feature extraction is to 

get the feature vectors in a tidy form, representing the characteristics of the original data accurately. 

Most activity recognition methods use windowing techniques to divide sensor signals into smaller time 

segments, and features will be extracted from training data [24]. Those features often characterize 

windows of body-fixed sensor data, and are used as inputs of classifiers. 

Commonly used features are as follows [25]: (1) Time-Domain Features: such as Variance and 

Root Mean Square (RMS); (2) Frequency-Domain Features: such as Spectral Energy, Spectral 

Entropy; (3) Time-Frequency Domain Features: such as Wavelet Coefficients; (4) Heuristic Features: 

such as Signal Magnitude Area (SMA), Signal Vector Magnitude, and Inter-axis Correlation;  
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(5) Domain-Specific Features: such as features used in Time-Domain Gait Detection. In ECG detection, 

the QRS waveform analysis features must be extracted due to the importance of QRS [68]. 

Techniques commonly used in feature extraction include SVM-Based Feature Selection, K-Means 

Clustering, and Forward Backward Sequential Search. Besides, Feature Transform Methods include 

Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Local Discriminant 

Analysis (LDA). In practical applications, researchers explore many methods to extract more  

accurate features in addition to the techniques introduced above. Among these feature extraction 

methods, wavelet analysis is particularly useful in recognizing human activities, for it can identify  

activity transition points and generate time-frequency characteristics while enhancing the signal.  

Reference [70] proposes a feature extraction algorithm based on time series approximation which 

converts the sensor-based time series data into a density map. It realizes fast, accurate and efficient 

classification of activity, while it can easily be deployed in a BSN at the same time. In Reference [71], 

the authors propose a systematic approach of feature detection and extraction for measuring human 

postures based on sensing and feedback. They demonstrate that the construction of sensing and 

feedback system for dynamic postures is much more complicated than that for static postures. In 

particular, they consider that dynamic postures can be described by a set of blueprints or human body 

movement trajectories. 

3.1.3. Data Fusion Computing 

Data fusion algorithms are the core of data fusion computing. A lot of research has been done in 

integration of data of the same type. In data fusion algorithm design, modeling information of different 

types and fusing them together are problems faced by researchers. Techniques or algorithms of fusion 

computations can be divided into two categories: the activity classification algorithm and the influence 

model. The former includes threshold-based classification, hierarchical methods, decision trees, and  

k-nearest neighbor (K-NN), while the latter includes SVM, BN, ANN, HMM. Besides, Gaussian 

mixture models, Fuzzy Logic, and Markov chains are also in use. Actually, two or more techniques are 

usually applied in BSN applications. 

Activity analysis is an important field of data fusion computation in BSNs. It records activity 

patterns in a period of time which relies on a classification algorithm to recognize different types of 

activities by analyzing data coming from wearable sensors [24]. Reference [72] adopts a supervised 

learning approach to recognize 14 physical activities, using a binary decision-tree with a Naive Bayes 

classifier at each internal node. It also develops a feature selection algorithm based on mutual 

information to process data from 14 tri-axial accelerometers, which can recognize human activity with 

a 96% average accuracy. Threshold-based classification could differentiate static postures and dynamic 

activity, and identify dynamic activities of different types, such as discriminating between going up 

and down stairs from walking straight [73]. Nowadays, the methods of threshold-based classification 

and robustness algorithm are being combined together and applied to the detection of falls. The authors 

of Reference [45] use three kinds of classifier, which are AdaBoost, HMM, and K-NN, to analyze data 

from accelerometers when identifying human hand activity. The result shows that AdaBoost can 

achieve the highest recognition accuracy (86%). The drawback of these classifiers is that they need a 

large amount of training data to ensure accuracy of recognition. 
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In recent years, researchers have done a lot of research on influence models, and the major research 

directions include ANN, BN and HMM. ANN is used as a solid clustering algorithm, and it works like 

the biological nervous system of a brain that consists of a large number of small and simple 

interconnected components, that is, neurons. Each neuron has a certain amount of computing power 

and a strong learning ability, which enables it to easily add new context information into the system. 

The WSN system based on ANN will inevitably produce noise, but it can still work well, which  

shows the good nature of ANN. Moreover, the unsupervised training on input data can be realized 

effectively [74]. Self-Organizing Map (SOM) is a kind of ANN method. In addition to the advantages 

inherited from ANN, SOM provides an efficient way of visualizing and clustering data. However, 

SOM has the features of instability and dependence on the training data. To solve these problems 

Reference [28] proposes a novel Spatio-Temporal Self-Organizing Map (STSOM). Compared with 

traditional SOM, STSOM not only minimizes the number of neurons, but also reduces the iterations of 

the learning and classification processes, which enable the system to run locally in a low-power way. 

BN is one of the most effective theoretical models for uncertain knowledge representation and 

reasoning. A BN is a directed acyclic graph. Nodes represent a random variable, while directed edges 

between nodes represent the relationship between nodes. BNs use conditional probability to represent 

the relationship between the various information elements and can effectively conduct expression and 

integration of multi-source information. In the study of BN, it follows an independence assumption 

that each node in graph is strictly independent from other nodes. However, in BSN applications, the 

assumption is challenged by the increase of dependency between parent and child. In Reference [56] it 

is proposed that if hidden nodes are inserted into BSNs, system stability can be enhanced, while  

Reference [75] has reported some similar work about introducing hidden nodes by using a distributed 

Bayesian network. References [24] and [56] indicate that hidden nodes can be used to coordinate the 

inherent redundancy of sensor networks and are able to detect node failures. Furthermore, irrelevant 

sensor data is not sent across the network, which will reduce power consumption. In recent years, 

researchers have proposed a multi-sensor data fusion algorithm based on D-S evidence theory, taking 

D-S theory as an alternative of Bayesian inference, which is a methodology for the representation and 

combination of empirical evidence. In Reference [76], researchers design a BSN system for human 

posture recognition based on the algorithm. Experimental results show that the system can achieve 

recognition accuracies between 98.5% and 100%. 

As a kind of Markov chain, HMM is a probabilistic model used to represent non-deterministic 

processes, which consists of states, actions, and observations. Generally, in applications of activity 

recognition, it is required not only to sense and simulate the context of static scene, but also to identify 

the dynamic scene, therefore the HMM is applied to the supervising layer, generating a model of 

context transitions, in order that the analysis and identification of dynamic activities in real world can 

be realized. HMM plays an important role in the study of dynamical influence models of human 

interactions. In Reference [77], researchers collect the social behavioral signals of each entity in a 

social network using various sensors, modeling by the signals and time stamps based on HMM. They 

then infer the underlying pattern of interpersonal influence. Furthermore, the paper points out that 

HMM can also speculate on the functional roles of people and make classification accurately. In 

Reference [78], researchers develop Graph-Coupled Hidden Markov Models (GCHMM) for studying 

the model of local infectious disease spread in a social network, analyzing the transition dependencies 
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between multiple HMM. This paper discusses a case of infectious disease which spreads among 

students, collecting and processing information by mobile phones. The model can forecast the spread 

path of an infectious disease, so as to control its spread. 

3.1.4. Data Compression 

After preliminarily treatment of signals, sensor nodes generally do compression and encryption 

rather than sending it to a base station or sink node directly. Studies show that data compression can 

effectively reduce the amount of data transmission. Since the memory module and data sending 

module consume lots of energy [26], data compression can lower power consumption effectively on 

BSN sensors, by reducing information stored in memory and transmitted by the transceiver. 

In BSNs, data compression can be achieved by not only classical data compression algorithms, such 

as source encoding, differential encoding, and Huffman encoding, but also some novel methods 

proposed by several researchers. Some collections and transmissions of physiological signals have 

instantaneity requirements, so minimizing the amount of data transmission is necessary. For example, 

Reference [62] proposes a compression algorithm based on interception and differential encoding 

techniques, because the temporal and spatial of data collected by inertial sensors have correlations. 

Experiments prove that the algorithm can effectively reduce the amount of data transmission and give 

better real-time performance. Reference [79] adopts a algorithm called joint orthogonal matching 

pursuit (JOMP) based on distributed compressive sensing (DCS) theory, combining it with the 

synchronous mechanism, which can control interval times and efficiently reduce the number of 

samples, the amount of data processing, transmission and storage. In Reference [80], researchers 

evaluate the effectiveness of a wireless neural recording system using compressed sensing for 

transmission. They propose a union of support techniques for compressive sensing. Compared to 

conventional basis pursuit reconstruction, the proposed technique provides an average signal-to-noise 

and distortion ratio (SNDR) improvement of 6 dB and a maximum SNDR improvement of 9.5 dB. It 

also provides a 2-fold reduction of the output data rate. Reference [81] adopts the DFT method, and 

solves compression and decompression problems by discrete sinc interpolation. In the ECG monitoring 

application, Reference [82] proposes a compression algorithm based on WT, which achieves low 

transmission delay by reducing the size of frames. Similarly, in Reference [83], researchers also study 

the data compression of ECG, and propose a low-cost quadratic compression algorithm which can 

increase encoding speed and reduce energy consumption effectively, while maintaining high signal 

quality. For the sake of minimizing the energy consumption of a multi-hop wireless network based on 

joint routing and compressed aggregation, Liu Xiang et al. [84] analyzed the complexity of this 

optimization problem and find that it is NP-complete. They further propose a mixed-integer 

programming formulation (MIP) to obtain the optimal aggregation trees for small scale problems, 

along with a greedy heuristic algorithm to obtain the near-optimal aggregation trees for large scale 

problems. Finally, the energy efficiency is improved. 

3.2. Trends and Challenges 

In the field of data fusion research, there exist some research trends, including data processing 

position, lightweight data fusion algorithms, design of pervasive context-aware frameworks, as well as 
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cloud computing. As communication consumes more power than local computation, wireless data 

transmission uses a large amount of power [26]. Therefore, processing data locally is an efficient way 

to save power. However, the data processing ability of nodes is generally limited, which leads to a 

contradiction about data processing localization. How to solve this problem is a hotspot for further 

research. At the same time, limited resources and computation ability make it difficult for nodes to 

carry out large scale computing, and therefore designing lightweight embedded data fusion algorithms 

to alleviate the load of processors is necessary. In addition, BSNs usually operate in many different 

situations, while the human body has diverse signs and actions, and so does the environment. Studies 

on adaptive and distributed BSN frameworks to adapt to these cases is necessary. In Reference [85], 

researchers designed a distributed framework based on a Markov decision process for coordinating 

sensing among sensors in a BSN system. The framework can generate a globally optimal sampling 

policy by analyzing the status of each sensor. It solves the problems that occur when the sampling rates 

of sensors are too high or too low, so as to extend the overall lifetime of the BSN system. With the 

development of the cloud computing technique, mining data streams of body sensors online or offline 

with cloud technology has become a new research hotspot. In Reference [86], researchers integrate 

cloud computing into BSNs, providing flexibility of data storage solutions using cloud technology. 

They globally realize data analysis, storage and access for BSN services based on cloud computing.  

There are still some difficulties in data fusion of BSNs. Affected by human activities and 

equipment, signals of sensors are inevitably mixed with some noise, which leads to the fact that data 

collected by sensors cannot be used directly [27,87]. How to effectively filter all kinds of noise is now 

a big challenge. In practical BSN applications, there is a certain degree of redundancy among data 

collected by multiple nodes. Collaborative data fusion could effectively reduce the amount of data and 

improve calculation accuracy. To figure out the relevance of heterogeneous data is difficult, therefore, 

designing a better collaborative data fusion algorithm becomes another challenge. Furthermore, the 

combination of BSN techniques and cloud computing increases the difficulty of data management and 

calculation. Large scale computing frameworks design, real-time data processing and data stream 

management have all become major challenges. 

4. Network Communication 

BSNs have many features similar to WSNs in the aspects of network communication, such as in the 

aspects of network architecture, radio technology, communication protocols, energy control, and 

network security, etc. As a result, many of the BSN technologies are derived from WSN technologies 

which are more mature [31,88–90], but some characteristics of BSNs make it difficult to directly 

transplant technologies from WSNs. For example, sensor devices are basically deployed on or in a 

human body, so the electrical characteristics of the body can influence radio communications. Human 

activities will also cause frequent changes of network topology [89,91]. Therefore, researchers should 

improve the existing WSN technology to apply in BSN communications properly, or propose new 

technology to meet the specific needs of BSN communications. 
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4.1. State-of-the-Art Research on Network Communication 

In the process of BSN designing, many factors should be taken into consideration. Consequently, 

such designs as network topology, physical layer, MAC layer, and routing layer can be better 

accomplished. In order to improve the efficiency of network protocol, in some cases, boundaries 

among layers need to be broken, and cross-layer protocols need to be introduced. 

4.1.1. Design Factors 

In BSN design, a lot of research work has been carried out, and the following aspects should be 

seriously considered. Generally, BSN nodes cannot employ circumscribed wired power, which is a 

constraint for long time operation. Meanwhile, nodes are designed as small as possible for wearability, 

so their battery capacity is very limited. For example, the sensor node designed by Benny et al., is only 

in 26 mm size [92]. Some other researchers adopt the energy acquisition technology harvesting power 

from surrounding electromagnetic environment instead of batteries, but this leads to a stricter power 

consumption restrictions at the same time [16]. In BSNs, many key applications cannot work well if 

any node stops working when the energy has run out. Therefore, the network architectures and 

protocols should guarantee that nodes could complete the data transmission of highest quality with the 

least power consumption. In addition, BSNs should balance power consumption distribution, avoiding 

the overload of a few nodes. 

Radio transmission range of sensor nodes will become smaller along with miniaturization design 

and energy conservation design. Examples of ultra-low range transceivers in the literature include 

Reference [93] with 0.2–1 m, Reference [94] with 0.2 m and Reference [95] with 0–1 m transmission 

ranges. The smaller the transmission range is, the more careful the network topology design should be. 

In this circumstance, the star topology is not suitable, because nodes far away from sink node are not 

easy to communicate with. 

The path loss directly reflects the network communication performance. In BSNs, the electromagnetic 

waves transmit by diffraction along the body instead of penetrating into the body, which causes a 

remarkable path loss, especially when transceivers are placed on the different sides of body, i.e., one 

on the chest and the other on the back [91]. 

Many BSN applications such as fall detection have strong reliability demands [96]. When a fall 

happens, the whole system must have the ability to collect the fall information immediately, and then 

send alarms to the appropriate consoles, but if the network encounters heavy congestion or topological 

partition at the same time, data could not be send out, which will affect the system on making a 

decision for reaction. In this case, users may be hurt. Therefore, the number of errors of data 

acquisition must be as small as possible, and so must the delay. 

Due to the fact the data collected has a close relationship with individual information, it will 

inevitably involve user data security issues. If personal information leaks, the user will be in danger. 

Cryptography and trust evaluation methods can effectively solve these issues. In Reference [97], 

researchers propose a key agreement scheme called ECG-Improved Jules Sudan (ECG-IJS), which  

is suitable for BSNs. It allows neighboring nodes to share a common key generated by the features 

which are extracted from ECG signals. The proposed scheme can improve the security of data 
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communication and avoid previous key distribution. In addition, because of the fact that BSNs are 

susceptible to a variety of node misbehaviors, traditional trust evaluation methods are vulnerable to 

attacks. Recognizing malicious behaviors and excluding malicious nodes need to be considered. 

Reference [98] presents a distributed trust evaluation model with the feature of application-independent, 

which allows each node to evaluate integrated trust values of others based on continuously monitoring 

the behaviors of its neighbors. Trust management is executed by cryptographic techniques such as 

symmetric encryption/decryption and hash operations. The proposed model can effectively detect and 

exclude malicious nodes. Similar to the previous study, an attack-resistant and lightweight trust 

management scheme called ReTrust is proposed in Reference [99]. It adopts a two-tier network 

architecture in which network nodes are divided into two parts: sensor nodes and master nodes. The 

former is responsible for data collection, while the latter is responsible for computation and 

communication. In this architecture, a master node is used to compute the trust values of all sensor 

nodes within its range, which can identify malicious behaviors effectively, so as to avoid collaborative 

attacks. Besides security issues, there are many issues related to human health. For example, some 

sensor devices are deployed on or in human body, so radio radiation, sensor working temperature, 

cutaneous stimulation from electrodes and some other factors may injury the human body [16,100]. 

Since human body is moving constantly, sensor nodes on or in the body have the feature of 

mobility. Along with body movements, the distance between sensor nodes will constantly change. This 

will cause serious topological partition problems in that some links between nodes are broken and built 

frequently. This kind of network is called Delay Tolerant Network (DTN), whose routing protocol is 

very difficult to design and realize [89]. 

4.1.2. Network Topology 

The network topology affects the system performance features, such as power consumption, traffic 

load, node robustness, selection of MAC protocol, and routing protocol. The common network 

topologies include star topology, mesh topology, ring topology, and bus topology. Both ring topology 

and bus topology are not fit for deploying on a complex dynamic human body. According to the 

literature statistics, there is almost no application systems using these two topologies because the BSN 

scale is small and sink nodes need to gather body information to send it to remote computers. Hence, 

the star topology has been very popular since BSNs came into being [101–103]. All the nodes directly 

communicate with the sink node. The network communication protocol realization is relatively simple, 

and sometimes even a routing protocol is unnecessary for data transmission, so the star topology is 

widely used. In practical applications, Personal Digital Assistants (PDAs) are often used as sink nodes 

which communicate with other nodes, completing data processing, data transferring, and part of 

decision-making [104]. The star topology has some disadvantages which limit its further development 

in BSNs, for it is difficult for the nodes far away from the sink node to communicate with it due to 

energy limitations. Besides, the nodes located in different sides of body will fail in building 

connections because of low data reception rates [91]. Different from the star topology, the mesh 

topology with more complex realization but more superior performance, is more suitable for multi-hop 

networks. It can reduce path losses caused by diffraction. Each node just needs a small amount of 

energy to communicate with its neighbors, and power consumption of whole network is  
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well-distributed. Currently many researchers are focused on multi-hop networks, in which couples of 

new technologies are well applied, such as energy acquisition, human body channel, etc., so as to 

provide better BSN services. The differences between star topology and mesh topology are 

summarized in Table 2 [29]. 

Table 2. A comparison between star topology and mesh topology. 

 Star Topology Mesh Topology 

Path Loss 

Nodes on the same side with low path 

loss. Nodes on the different sides with 

high path loss. 

Reducing path loss caused by diffraction 

though multiple hops. 

Radio Transmission Range 
Not suitable for small radio propagation 

range. 

Adjusting radio propagation range by 

changing the number of nodes 

Energy Consumption 
Nodes closer to sink node consume 

lower power. 

The nodes nearer to sink node consume more 

energy, as they have to forward not only their 

data but also data from other nodes. 

Transmission Delay 

Sensors connect with sink node directly 

take the least possible delay in 

transmission. 

Nodes closest to sink node get their data 

quickly, without any intermediate delay. 

Inter-User Interference 

Nodes farther away from sink node need 

higher power to transmit data with more 

interference to other nodes. 

As each node only transmits to its neighbors, 

the energy of transmission is low and hence 

with smaller interference. 

Node Failure and Mobility 
Only the failed node is affected and the 

rest nodes of network perform well. 

The whole network including nodes with 

errors need to be reset. 

4.1.3. Physical Layer 

The physical layer, as the bottom layer of BSN structure, is mainly responsible for encoding and 

decoding of signals, preamble generation and removal for synchronization, bit transmission and 

reception, and specification of the transmission medium. In the past few years, the research on BSN 

physical layer has focused on two aspects, which are channel selection and channel characterization. 

(1) Channel Selection  

The physical channel, as the data transmission medium, plays a key role in the BSN. Its 

characteristics directly affect the performance of the whole network. Therefore, in order to achieve the 

best transmission performance, the most suitable channel must be chosen according to different data 

transmission scenes. Figure 3 presents all the bands in a BSN. The Human Body Communication 

(HBC) band which takes the human body as the data transmission medium is only used by BSNs.  

Its primary technology is electric field coupling which includes capacitive coupling and galvanic 

coupling [105,106]. An HBC channel of the capacitive coupling type is developed based on the near 

electric field around body which is induced by a transmitter terminal, and a receiver terminal is used to 

detect the weak coupling changes of the near electric field along the human body channel. Research 

has shown that the data rate of capacitive coupling is up to 2 Mb/s [107]. In addition, Reference [108] 

has put forward a kind of electromagnetic coupling technology which takes human body as the 
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electromagnetic waveguide to finish communications. Medical Implant Communications Service 

(MICS), which has a transmission power of 25 µW, is also one of communication bands suitable for 

low data rate networks [109]. The Wireless Medical Telemetry Service (WMTS) is mainly used in 

wireless telemetry in hospitals. Its band is similar to some parts of the local TV spectrum in the United 

States, but no research on interference between the two bands has ever been done so far. Band F is the 

2.36 GHz medical band newly approved by the Federal Communication Commission (FCC) in the 

United States. The Industrial Scientific Medical (ISM) band commonly used in BSNs operates at  

2.4 GHz. Hence, for the sake of avoiding interference, corresponding solutions which could deal with 

interference must be designed [110]. UWB communication is believed to have great advantages and is 

promising in WBAN applications. It is a technique with low-power and high data rate features. Its 

large bandwidth signals provide robustness to jamming with low probability of interception. Moreover, 

UWB can be used to monitor vital respiration and heart-rate parameters [111–113]. In addition, UWB 

has good penetrating properties that could be applied to imaging in medical applications [114]. 

Figure 3. BSN frequency bands. 

 

In 2007, the Sixth Working Group of IEEE 802.15 was established to standardize on BSN bands. 

The team eventually divided the bands into three parts: UWB, NB, and HBC [115]. MICS, WMTS, 

FCC, and ISM belong to NB. In addition, with the newly proposed IEEE802.11ad standard, 

researchers try to present novel techniques to enable over-body propagation between 15 GHz and  

40 GHz, and even the unlicensed 60 GHz region [116]. 

(2) Channel Characterization 

Accurate channel characterization can improve the quality of applications, such as estimating delay 

and reducing path loss. In recent years, another key BSN physical layer research area is the channel 

characteristics of various bands. The IEEE802.15.6 working group has put forward the fundamental 

content about channels and their characterization. There are three common channel characterization 

methods: 

(a) Measurement-based methods. Fabio et al., have measured the narrow band transmission 

channel, and analyzed the channel characteristics including the average path spreading gain, 

large-scale attenuation, and small-scale attenuation. Results have shown that movement, 

location, and environmental factors can cause path losses. Movements of the human body will 

result in shadows [30]. 

(b) Simulation-based methods. Reference [117] makes 3D scene simulation of signal propagation 

in the channel by means of Finite-Difference Time-Domain (FDTD). It employs a leap frog 

algorithm to alternately calculate the electric field and magnetic field in the space-domain  
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and simulate the electromagnetic field changes by time-domain updating. This simulation 

model is of great applied value, according to the comparison between simulation results and 

measured data. 

(c) Combination with simulation and actual measurement method. Reference [118] has provided a 

path loss model which can be used to evaluate the energy performance in single-hop and  

multi-hop networks. The sensor nodes deployed around human body can measure the sent and 

received data among different parts of human body, then import the collected data into a 3D 

model of human body, and numerically study path losses. Finally, the path loss parameters and  

time-domain channel characteristics can be obtained. 

4.1.4. MAC Layer 

The original purpose of the BSN MAC layer was to achieve maximum throughput, minimum delay, 

and to maximize network lifetime by controlling the main sources of energy waste, i.e., collisions, idle 

listening, overhearing, and packet cost. Generally, MAC protocols are grouped into contention 

protocols, schedule protocols, and contention-schedule protocols [31]. In contention MAC protocols, 

such as Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocols, nodes contend for 

the channels to transmit data. If the channel is busy, nodes will defer their transmission until the 

channel becomes idle. These protocols are not demanding on strict time synchronization, but they 

cause extra cost. Sana et al. studied the behavior of CSMA/CA protocol in BSNs and concluded that 

CSMA/CA protocol encounter serious collision problems for high traffic nodes [119]. In schedule 

protocols such as Time Division Multiple Access (TDMA) protocols, the channel is divided into 

several time slots. These slots are assigned to nodes and each node transmits during its corresponding 

slot. These protocols are energy conserving protocols. There is no contention, idle listening, and 

overhearing problems, but these protocols require frequent time synchronization which is somewhat 

difficult to achieve. An enhanced Distributed Queuing Medium Access Protocol (DQ MAC) based on 

TDMA has been proposed in Reference [102]. It proposes a remarkable improvement of overall 

network energy efficiency, which scales well for very dense BSNs and is particularly suitable in 

medical scenarios. H-MAC is also a TDMA-based MAC protocol designed for BSNs, which aims to 

improve energy efficiency by exploiting heartbeat rhythm information to perform time synchronization, 

unlike other general MAC protocols which achieve synchronization by sending beacons [104]. 

WhMAC, a signal- oriented TDMA-based protocol of low power, utilizes WBSN-specific features and 

a novel ultra-low power wake-up receiver, to achieve flexible wireless data transfer of physiological 

signals [120]. BodyMAC, another TDMA-based MAC protocol, with a flexible bandwidth allocation 

strategy, improves node energy efficiency by reducing radio transmission, idle listening, and control 

packets overhead times, to realize the smallest collision possibility [121]. Contention-schedule MAC 

protocols combine the characteristics of the former two mentioned above. The authors of [122] 

designed a traffic load aware sensor MAC for collaborative BSNs, called ATLAS. The protocol takes 

the superframe structure of 802.15.4, while it makes full use of its Contention Access Period (CAP), 

Contention Free Period (CFP), and Inactive Period (IP). The protocol can provide better energy 

efficiency, higher capacity-utilization, and less delay based on adaptive traffic load evaluation. 
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In addition, part of the information of a BSN is correlated. For instance, a patient suffering from a 

fever triggers temperature, blood pressure, and respiration sensors at the same time [101].  

The instant data increase may result in serious network congestion. In this case, a CSMA/CA protocol 

encounters serious collisions and extra energy consumption. Besides, nodes are required to perform 

Clear Channel Assessment (CCA) before transmission, which will make the situation worse, but 

TDMA-based protocols can provide good solutions to the issues mentioned above [31]. 

4.1.5. Routing Layer 

Although MAC protocols can solve many problems in BSNs, they do not cover addressing and  

end-to-end package delivery problems which rely on routing protocols. In BSNs, the development of 

routing protocols needs to consider the following issues: firstly, the available power of each node is 

very limited, and power consumption is not balanced among nodes. Along with the continuous power 

consumption when running, part of the nodes consume more power while others consume less, which 

will result in an unbalanced remaining power distribution and reduce the life of the entire network. 

Some researchers focus on resolving this issue of unbalanced energy distribution. Reference [32] 

presents a heuristic self-adaptive routing algorithm for rerouting connections among nodes in an 

energy constrained on-body network. It can select the reachable parent node automatically to balance 

energy distribution. This protocol can help disconnected nodes reconnect again and minimize network 

transmission delays. 

Secondly, the topological partition problem is another issue that BSN routing protocols must take 

into consideration. The body movements will cause frequent partitioning or disconnection in BSN 

topologies. In addition, this situation gets aggravated by the ultra-short wireless range due to its 

wearable design [123]. To solve the problem of topological partition, Quwaider et al., have put 

forward a probabilistic packet routing mechanism in Reference [89]. LLF, a stochastic metric called 

link likelihood fact, is calculated in each node using the history of the link quality between nodes in the 

network. This metric which could reflect the postural trend of the human body, can be used for 

decision-making in forwarding the packets to neighbors. In fact, the routing goal is to reduce  

end-to-end delays by choosing the highest likelihood links. Another method to solve the topological 

partition problem is to employ routing protocols based on replication which make several copies of a 

packet to send to several proper nodes and thus increase the chances of arrival. These protocols will 

definitely cause more serious network congestion and delay, due to excessive packet transmissions. For 

ultra-resource-constrained BSN, such overheads are not acceptable. Majid et al., have proposed a  

store-and-forward data routing method by adopting a gossiping strategy to improve the performance of 

replication-based protocol [124]. Different from the random method, a predefined part of the data  

is selected to be sent, which offer a better solution to the frequent topological partition problem in 

large scale BSNs. 

Finally, WSNs almost never consider temperature factors. However, the effect of sensor 

temperature in BSNs cannot be ignored, since the implantable sensors usually transmit biomedical data 

to neighboring nodes from time to time which may cause damage to the human body due to high 

sensor temperatures. At present, a lot of researchers study algorithms by means of thermal-aware 

routing to deal with temperature factors. Reference [125] proposes a Thermal-Aware Routing 
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Algorithm (TARA) protocol defining hotspots as areas where nodes have a relatively high 

temperature. In order not to cause a temperature rise of these areas any longer, TARA attempts to 

establish another route to detour around the hotspots using a withdrawal strategy. Unlike TARA, the 

Least Temperature Routing (LTR) protocol always chooses neighboring node which has the lowest 

temperature as its next stop [126]. This protocol algorithm is very simple, since LTR does not initially 

schedule the route of packets and just choose nodes with the lowest temperature instead and the 

packets will basically detour to the destinations. In fact, LTR is a greedy approach, which may be 

locally optimal, and probably cannot become globally optimal. One variant of LTR protocol is the 

Adaptive Least Temperature Routing protocol (ALTR) [126]. Different from LTR, ALTR keeps the 

number of hops of each packet. Once it exceeds a predefined maximum hop count, ALTR will apply 

the shortest hop-routing protocol as an alternative protocol to forward packets to the destination as 

soon as possible. Reference [100] proposes the Least Total-Route-Temperature (LTRT) protocol. It 

calculates routes and transmits packets by the single-source shortest path algorithms, such as the Dijkstra 

algorithm. However, the weight in graph theory is denoted by temperature of nodes in order to detour the 

nodes of high temperature. A detailed comparison of BSN routing protocols is shown in Table 3. 

Table 3. Summary of existing BSN routing protocols. 

Protocol Content Resolved Issues 

FPSS 
Choosing path intelligently among nodes based on heuristic self-adaptive 

algorithm in energy constrained on-body network.  
Energy balance 

PRPLC 
Forwarding packets to proper neighbors by prediction of postural trend based 

on link likelihood fact. 

Topological 

partition 

TARA Establishing route to detour around hotspots area using a withdrawal strategy. Minimizing the 

thermal effects of 

Implanted biosensor 
LTR Always choosing neighboring node with the lowest temperature as next stop. 

ALTR 
Choosing next stop by both the lowest temperature node and the shortest hop 

count. 
Implanted biosensor 

LTRT 
Choosing the shortest path based on a Dijkstra algorithm with the weight of 

temperature. 
Implanted biosensor 

4.1.6. Cross Layer 

In WSNs, cross layer design is an effective way to improve system performance by compressing or 

adopting the redundant information across layers and modules. Cross-layer optimization combines 

cognitive science, artificial intelligence, and convex optimization to allocate resources, so as to 

efficiently improve the utilization of these resources in wireless networks. Meanwhile, it can also offer 

better QoS for nodes in wireless networks [127]. Reference [128] proposes a cross-layer Dynamic 

Source Routing (DSR) algorithm which extends DSR by exploiting cross-layer optimization 

techniques to minimize the frequency of recomputed routes. DSR initiates a route discovery only when 

a link failure occurs, thus leading to a 50% reduction of recomputed routes compared with the 

traditional DSR protocol, and finally improves the routing energy efficiency of WSNs. Such a study 

also exists in BSN research. Reference [129] studies the real-time data streaming applications in BSNs. 

Firstly, researchers formulate routing and residual energy of nodes during the establishment of the 
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routing paths. And then a cross-layer optimization is applied for improving the real-time performance 

of sensorial feedback for users, maximizing the lifetime of system at the same time. Furthermore, they 

also study the ARBA protocol, which monitors the complex conditions in data streaming from various 

sensors in a real-time mode, adaptively allocating resources to cope with changes in context and 

application requirements. Reference [130] presents a cross-layer communication protocol, called 

Cascading Information retrieval by Controlling Access with Distributed slot Assignment (CICADA), 

designed for wireless multi-hop mobile BSNs. It uses the same packets to take care of both medium 

access as well as routing, which makes low delays and energy efficiency possible while preserving 

network flexibility. BSN-MAC [101], another cross layer protocol, can make dynamic adjustments 

based on the feedback provided by sensors to achieve a better energy efficiency performance by the 

interaction of network coordinators and sensors. Reference [33] presents MOFBAN, a lightweight 

Modular Framework for Body Area Networks, which is a special cross layer design. The framework 

supports many features, such as MAC control, routing and robustness, realized by modules, unlike a 

normal layered architecture, so it is adaptable and expandable. 

4.2. Trends and Challenges 

There are still many issues that need to be further studied in BSN communication. Minimizing  

power consumption as well as ensuring quality of communication links is a long-term objective, and 

energy-efficient MAC and routing protocold remain to be developed [54]. IEEE 802.15.6 has defined 

many BSN band standards, so developing many upper layer protocols which support a variety of 

physical layer channel is an inevitable trend [35]. Besides, in some medical applications, the key 

information should be sent out in time when a medical emergency occurs, but BSN data correlations 

often cause network congestion which makes network protocol design that supports emergency 

communication become a major challenge in further BSN development. Finally, the deployment of 

BSNd is different from that of traditional sensor network applications. They should be able to deal 

with topology changes and adapt to conversion between in-body and on-body. Besides, nodes should 

be ready to join or withdraw from network, so node context awareness and network configuration is 

also a trend in future studies [34]. 

There are still many challenges in the BSN network communication research field. First of all, 

experimental channel models which are significantly simplified fail to take full account of human 

motion and environmental changes. At the same time, as personal safety issues it involved, it is really 

difficult to apply implantable or wearable devices to applications. There are still many factors which 

can affect channel characteristics, such as the electrical characteristics of the human body, human 

mobility, and energy restrictions. Accurate descriptiond of channel characteristics and channel 

prediction are very difficult too. Secondly, for MAC layer protocols in BSNs, TDMA is obviously 

more suitable than CSMA/CA [31], but the time synchronization mechanism is still a weakness of 

TDMA. Thirdly, because BSNd have the features of small scale and low-power transmission, a simple 

human body action will cause a relatively big change of topology with old connections being 

disconnected or new connections built, which is a challenge for the routing protocol designer. 

Moreover, although cryptography technology can achieve better security performance, due to limited 

sensor resources and the fact that pre-deployed secret keys are hard to replace, many existing key 
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management and distribution algorithms are not suitable for BSNs. Therefore, designing efficient key 

management, distribution and agreement schemes in BSNs is still challenging [97]. Finally, the  

trade-off between energy efficiency and the complexity of fast routing algorithms also needs to be 

figured out [35]. All of above are big challenges for BSN topology design. 

5. Applications of BSNs 

With the deepening and extension of research, BSN technology is gradually becoming mature and 

widely used in many fields, including medicine, social welfare, sports, and man-machine interfaces, as 

shown in Figure 4. In addition, in other fields, such as the military, entertainment, and industrial 

systems, applications of BSNs can also be found. 

Figure 4. Application fields of BSNs. 

 

5.1. State-of-the-Art Research on BSN Applications 

5.1.1. Medical Field 

BSN is mostly used in medical field and has a widespread applicability for many kinds of diseases. 

Traditional clinical monitoring is generally carried out in hospitals, where patients’ condition may be 

affected by the clinical environment and monitoring frequency. In contrast, monitoring based on BSNs 

can be carried out in a family environment, which makes the results closer to reality. 

Cardiac disease diagnosis by ECG signals monitoring is a common application of BSNs. In 

Reference [1], researchers present a wearable ECG acquisition system. The system adopts the  

Planar-Fashionable Circuit Board (P-FCB) technique, and screen-prints the electrodes directly on 

fabric, which enables long-term monitoring without skin irritation. The electrodes have high 

conductivity and adhesiveness, and can be attached on the skin surface. Another kind of monitoring 

method is to integrate sensors into an adhesive plaster. The plaster can be attached on the skin, which 

has the advantages of convenience and low cost. For example, Reference [131] suggests integrating all 

the sensors on one plaster, achieving a smart poultice with a reconfigurable sensor array. A thin 

flexible battery is integrated on the plaster, which improves wearability. However, this kind of power 

supply mode leads to great reduction of the plaster’s lifetime. Reference [132] proposes a method 
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utilizing wireless power technology on sensor nodes, which can remove batteries and solve the lifetime 

problem, and further improve the wearability of the monitoring system. In addition to cardiac disease 

diagnosis, Parkinson’s disease (PD) monitoring is also one of the main applications of the BSN 

technique in the medical field. Because the behavioral recognition techniques of BSN can provide 

long-term monitoring and credible data, it is more persuasive than the monitoring by clinical 

observation. Meanwhile, the monitoring can be carried out continuously during daily life, so the 

patients’ information is collected in real time. It is helpful to judge the severity of disease and provide 

scientific support for therapy. Behavioral recognition techniques have been widely used in many of the 

existing PD monitoring systems. For example, in Reference [133], researchers identify movement 

characteristics associated with Parkinson’s patients by wearable sensors, and achieve real-time 

monitoring with high accuracy. In recent years, many studies have shown the connection between PD 

and speech impairment. Some researchers have proposed a wide range of speech signal processing 

algorithms (dysphonia measures), which has become a new trend for predicting the severity of PD 

symptoms. In Reference [134], researchers investigated the accuracy of speech signal processing 

algorithms which are used to discriminate Parkinson’s suffers. Result shows that the classification 

accuracy can reach almost 99% based on only ten dysphonia features. Respiratory disease treatment 

can also be implemented with the help of BSN technology. It utilizes a respiratory sensor for 

monitoring depth and frequency of breathing, so as to guide patients to take correct breathing training, 

which plays a very important role in respiratory disease rehabilitation [49,50]. In addition, [3] studies 

the condition of patients recovering from surgery, employing an ear-worn sensor for post-operative 

monitoring of patients both in terms of their respiratory function (oxygen saturation and heart rate), as 

well as their mobility (accelerometer data), to judge whether patients have abnormal symptoms. This 

application reduces the risk of complications of operation patients during the rehabilitation period. In 

Reference [135], researchers study lung disease by integrating sensors on a shirt. They measure  

trans-thoracic bioimpedance outside the body by an electrical impedance tomography technique, 

thereby measuring lung liquid volume. The application achieves the prediction of pulmonary edema 

and prevents lung disease from becoming worse. 

Nowadays, mobile communication devices such as mobile phones and tablet computers are playing 

more and more important roles in people’s daily lives. Some studies have introduced mobile devices 

into the medical field and realized real-time monitoring of patients with the help of the embedded 

sensors, data processing and wireless communication modules of mobile devices. This kind of 

technique is named mobile health (m-health) which is a new direction of BSNs in the medical field in 

recent years. Because of the adoption of ready-made mobile devices, m-health techniques do not need 

to develop additional dedicated devices, which effectively reduces system costs and increases wearing 

convenience. In some m-health applications, mobile phones are deployed as data aggregators or 

intermediate servers for lightweight processing. In Reference [136], researchers collect physiological 

signals from ECG sensors, accelerometers and temperature sensors by an Android smartphone, which 

works as an aggregator. The signals are shown on the screen of smartphone in the form of either 

graphical or text notations. At the same time, data streams are transmitted to a central server with 

Bluetooth for storage and analysis. Reference [137] presents a preventive healthcare system called 

myHealthAssistant, which also uses a mobile phone as an aggregator. The presented system can 

capture heart rates and calorie expenditures by accelerometers and heart rate sensors, helping to control 
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daily activities as well as specific gym exercises. Moreover, the system can record people’s daily 

activities into a SQLite database and generate a fitness diary. In Reference [138], researchers present a 

system called Intelligent Mobile Health Monitoring System (IMHMS), which can provide medical 

feedback through mobile devices based on biomedical and environmental data. The system collects 

temperature, blood pressure, glucose and other signals with a variety of sensors. All the signals are 

transmitted to a mobile device which is in charge of sending data streams to a medical server. After 

that, a patient’s health status is predicted intelligently based on data analysis and then transmitted back 

to the patients by a medical server. Finally patients can take necessary actions depending on the 

feedback. In some other researches, mobile phones can be used as a platform which concentrates 

sensors and processor. In other words, researchers capture signals by sensors in the mobile phone and 

carry out signal processing with the processor of the mobile phone. Reference [139] presents a method 

for accurate activity recognition that only uses one phone with an accelerometer in it. Different from 

other activity recognition methods, the phone-based method removes additional accelerometers 

deployed on different locations and avoids analyzing data by a personal computer, which is convenient 

for users. Previous phone-based methods assumed that the acceleration signals are collected from a 

known fixed location and orientation. However, varying the location and orientation can affect the 

recognition effect in a real world situation. For dealing with the issue, a project-based method for device 

coordinate system estimation is proposed. Researchers make a detailed comparison of experiments with 

different device locations, and determine the best location of a mobile phone, which can achieve a 

recognition accuracy rate of about 90%. 

5.1.2. Social Welfare 

Along with the ceaseless improvement of social welfare, highly intelligent electronic systems are 

needed to help long-term monitoring of patients, the disabled, the elderly, and children. Some BSN 

applications utilize behavioral recognition and context awareness technology to better the quality of 

care for vulnerable groups. 

In a study of electronic monitoring system for daily activities, Reference [140] proposes a 

behavioral recognition method which mainly focuses on the classification results of human body 

posture conversion, achieving daily activity monitoring of patients and the elderly. As fall-detection is 

also very important, in Reference [141], researchers utilize wearable inertial sensors to predict fall 

actions. A threshold detection method is introduced based on the magnitude of inertial frame vertical 

velocity as the main variable to separate fall activities from non-fall ones. The algorithm is able to 

detect all fall events at least 70 ms before impact, thus proving the feasibility of the application. As a 

more in-depth research, Reference [142] develops a wearable airbag incorporating a fall-detection 

system that uses both acceleration and angular velocity signals to trigger inflation of airbag, which 

prevents serious injury caused by falls. In Reference [143], its authors study fall-detection from 

another perspective. They design a kind of sensor called ear-worn activity recognition (e-AR) with the 

ability of predicting the risk of falls by gait and balanced detection, which is more wearable than others 

mentioned before. In addition to taking care of people with disordered movements, electronic 

monitoring systems are widely used in nursing care of people with cognitive impairments. In 

Reference [9], researchers design an action reminder system for dementia patients, which utilizes a 
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sensor node arrangement in the environment and on the body to recognize patients’ actions and trigger 

different levels of alarm. Similarly, Reference [144] designs a kind of adaptive recognition system. 

The system can recognize behaviors as well as prompt patients with visual and auditory messages.  

In Reference [10], researchers achieve real-time detection of dirty diapers by context awareness 

technology. It can remind nursing staff to replace diapers and solve the problem of nursing 

inconvenience caused by urinary incontinence, and effectively improve the quality of nursing. 

5.1.3. Sports 

In the field of sports, BSN is mainly used for motion recognition and physiological status detection, 

which can help athletes with scientific training, posture correcting and skill improvement. A 

multimodal remote sensing platform called TennisSense is introduced in Reference [4]. The platform 

applies wireless inertia monitor units placed on arm, aided by network digital cameras and a set of 

UBISENSE 3D tracking sensors placed around the tennis court. The sensors can capture and recognize 

athletes’ actions, and then evaluate and correct them. For the same purpose, Reference [5] proposed a 

system for kinematic analysis of swimming strokes. The system utilizes an inertial sensor mounted on 

the swimmer’s goggles for acceleration measurement, which can calculate parameters such as the pitch 

and roll angles from recorded acceleration. Reference [6] develops a framework for the use of inertial 

sensors as a low-cost putting coach for golf. The framework offers great help to golf players on the 

promotion of movement precision when swinging clubs. In the field of sports, in addition to behavioral 

recognition, other BSN techniques can also be used to improve the training quality. For example, in 

Reference [145], researchers design a sweat pH monitoring system which can measure the pH of sweat 

in real time by placing barcodes made of novel ionic liquid polymer on the surface of body, which achieves 

non-invasive detection of the physiological state at the time of moving. Reference [146] presents an 

alternative approach for heart rate measurement which uses sound signals received from a microphone 

instead of an ECG sensor method. It can estimate the athlete’s physical status from the heart rate, and 

help athletes train scientifically and avoid injuries caused by electrodes in direct contact with the skin. 

5.1.4. Man-Machine Interfaces 

Along with the development of behavioral recognition technology, BSN devices can be used to 

replace traditional man-machine interfaces, such as keyboards, mice, joysticks, and touch screens, and 

they can also be used to design somatosensory control systems. In addition, BSN technology can assist 

handicapped people in daily life. In Reference [147], researchers propose some intra-body 

communication (IBC) applications. For instance, an IBC-enabled sensor embedded inside the shoes of 

a blind person can send voice information to the user, telling him or her the current location, 

identifying doorways or crosswalks. IBC-enabled eye-glasses can help deaf people comprehend audio 

broadcast announcements, by displaying texts converted from sound with the help of IBC-enabled 

speakers, Reference [148] presents a hand-gesture-based glove for facilitating communication among 

people with speech and hearing-impaired disabilities. In the system, a wireless sensor glove equipped 

with five flex sensors and a 3D accelerometer is used as input device. By integrating the speech 

synthesizer into an automatic gesture recognition system, user’s hand gestures can be translated into 

sounds. In addition, Reference [149] proposes a method using visual implant technology to recover 
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visual perception of the blind or patients with retinal degeneration, which is also an application of BSN 

in the man-machine interface field. 

5.2. Trends and Challenges 

The scope of BSN applications is becoming wider and wider, which reflects not only in the 

broadening of the application domain, but also the improvement of service quality. Precisely, the 

improvements include three aspects: wearability, power consumption, and generality. Moreover, in the 

aspect of implementation, except for adopting normal sensors, bio-sensors, base stations and other 

hardware devices, more and more researchers are getting interested in mobile devices with embedded 

sensors such as mobile phones and smartphones. 

Wearability is one of the most important issues of BSNs. Researchers have done a lot of work on 

improving features like the volume, weight, wear resistance, softness, and biocompatibility of sensor 

nodes. In the process of sensor node design, reduction of volume and weight can be achieved by 

optimizing system hardware architecture and applying micro-electronic components. In order to 

enhance the wear resistance of sensors, highly abrasion-resistant materials are generally adopted to 

protect them. In the aspect of improving softness, P-FCB technique was proposed and is still under 

continuous study. Besides, flexible batteries can also improve softness, on condition that the problem 

of the great reduction of energy storage is solved. The improvement in biocompatibility could 

contribute to avoiding inflammation and allergy, as well as reducing the failure rate of devices. 

References [150] and [151] show how the defects of biofouling, hermeticity of encapsulation, 

electrode passivation and limited life of the immobilized enzymes can cause implanted sensor failure 

and affect patient health. Therefore, designing sensors with mild side effects is an important research 

topic to improve wearability. 

The power consumption problem, which is one of the major research directions now and in future, 

exists in any BSN system. Different from WSN ones, BSN sensors are small in size. They can only use 

compact batteries with limited capacity, which lead to short sensor node lifetimes [14]. At the same 

time, in many BSN applications, especially for those using implantable sensors, it is hard to prolong 

usage time by replacing the batteries. In view of these problems, how to reduce power consumption of 

sensor nodes, and increase the capacity of a battery in a limited volume, as well as prolong system  

life-span by energy acquisition from the surroundings are all potential development directions. In fact, 

the problems of power consumption are more than limited battery capacity and energy acquisition. In 

the aspects of circuit design, data processing algorithms and network communication protocols, a lot of 

work has been done and needs to be done sequentially and in depth in the future. 

In the future applications of BSNs, it is required that not only a system can work in any 

environment but also that data sharing and function cooperation can be achieved among different 

systems, therefore many studies focus on how to improve the universality of BSN applications. 

Universality mainly consists of algorithm universality and system universality. As for improving 

algorithm universality, further study is needed to explore the issues of signal processing applied to 

multiple non-standard data sets and finding the basic algorithms suited for many conditions. In order to 

improve system universality, research indicates that shaping an eventual data standard for data sharing 

can promote function cooperation among BSN applications. 
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As mobile phones are becoming more and more popular in daily life, m-health technology has 

attracted extensive attention in medical field over the recent years. Existing research has implemented 

activity recognition, energy consumption monitoring and other functions. More and more functions 

will be gradually discovered in the future. In addition, the method of adopting mobile devices in BSN 

systems is not only suitable for the medical field, but also for other fields. With the development of 

smartphones, the capabilities of processors are becoming increasingly powerful, and so are smartphone 

operating systems. With the help of mobile phones, more complex, diverse and humanized functions 

will be achieved, which is a significant trend of BSNs in the short run. 

In recent years, BSN theory has undergone significant development, but there are still many 

challenges in practical applications. For a lot of BSN products it is difficult to meet design 

requirements. In the conversion process from technology to product, defects of usability and accuracy 

limit BSN technology used in some important fields such as the military and serious medical field.  

The usability of BSNs consists of many aspects and needs to be considered appropriately. 

Robustness is the base of usability. BSN systems should be able to diagnose faults and achieve 

failback by themselves [2]. If the network topology of a BSN changes, it should be able to correctly 

handle problems of node connectivity. Users’ privacy issue is also very important. The application 

must ensure that privacy data can only be retrieved by authorized users. The data should be encrypted 

during transmission and storage [25]. In addition, much interdisciplinary knowledge is needed in the 

studies of wearability, lifetime, and service intelligence etc., which is difficult. 

The accuracy of a BSN system depends on the process of signal acquisition, denoising, feature 

extraction, fusion calculation, data compression, transmission, and other follow-up analysis. However, 

it is difficult to make sure that all the processes are accurate. Although current BSN applications can 

achieve some of the basic functions, the accuracy is still not good enough to fully meet application 

requirements. For example, the fall-prediction system proposed in Reference [141] may mistake some 

special movements for falls and pop the air bag unexpectedly, which will seriously affect usual 

activities. However, if overemphasizing accuracy while designing a system, it would be inevitable to 

achieve other target such as low computational cost and low power consumption [152]. Large amounts 

of work need to be done to balance the relationship between computational cost and accuracy of a 

system. The introduction of simpler mathematical models to reduce the computational cost and power 

consumption in the future is an effective way to accomplish all this. 

6. Conclusions 

BSNs, arranging sensors in, on and around the human body, realizes the detection of human action 

and physiological information, which has been widely used in the fields of health care, social  

welfare, sports, entertainment, etc. The ubiquitous network is coming with the method of taking human 

body as a part of the communication network. Therefore, BSN has broad application prospects and 

market potential. 

Although BSNs have been a hotspot of research with the emergence of many practical applications, 

many open problems still remain. For example, in the design of sensor nodes, more attention should be 

paid to node size minimization and energy consumption reduction. Designers should place emphasis 

especially on avoiding the danger of damage to human tissues caused by the heat generated by sensors 
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implanted in the human body. When designing data processing algorithms and communication 

protocols, the same problem of power consumption should be solved, as well as the network 

robustness problem resulting from moving nodes. In addition, due to the close relationship between 

BSNs and human health, there are topics of moral and legal constraints in actual applications. In short, 

BSNs represent the integration of multi-disciplinary areas, aiming to solve many key issues in several 

of these areas, which requires researchers to do further exploration. 

This paper describes the concepts, origin, architecture, and research areas of BSNs, with a 

comprehensive introduction to the current applications and issues of BSNs. We focus especially on the 

research status, development trends and challenges of sensor technology, data fusion technology, and 

network communication technology. Besides, there are some more aspects to be further improved and 

summarized, such as data security and service quality. 
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