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Abstract: This paper presents a methodology for high resolution radar image generation
and automatic target recognition emphasizing the computational cost involved in the
process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain
signal processing algorithms must be applied to the information sensed by the radar. From
actual data collected by radar the stages and algorithms needed to obtain ISAR images are
revised, including high resolution range profile generation, motion compenaatid®AR
formation. Target recognition is achieved by comparing the generated set of actual ISAR
images with a database of ISAR images generated by electromagnetic software. High
resolution radar image generation and target recognition processes anestomeleand

time consuming, so to determine the most suitable implementation platform the analysis of
the computational complexity is of great interest. To this end and since target identification
must be completed in real time, computational burden of frattesses the generation and
comparison with a database is explained separately. Conclusions are drawn about
implementation platforms and calculation efficiency in order to reduce time consumption
in a possible future implementation.
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1. Introduction

Radar systems are key components in military and civilian schemes. Different applications have
emerged since World War |l related to this kind afis®. ARadio Aid to DetectionAnd Ranging
(radar[1]) is an electromagnetic sensor used for the detection and location of energy scattering objects.
These systems not only have the ability to detect targets and show their position, but also to generat
images and carry out certain electronic attack tasks, among many other applications. The basic
principle of radar sensors is based on the time needed by the emitted electromagnetic wave to reach
target and back.

This principle is depicted iRigurel, andcan be divided into the following phadés?]:

1. The radar emits an electromagnetic energy which travels through space.

2. If the transmitted energy hits a target, it will be scattered in all directions.

3. Part of the scattered energy travels back to the raddrit will be sensed by the
receiving antenna.

4. In the receiver, energy is amplified and with the aid of signal processing techniques the
presence of a target may be determined. Not only the existence of targets can a radar
detect but also other parametsuch as its range, its radial velocity, or even the shape
and size of the target if the radar has enough resolution to resolve closely spaced points
within a target.

Figure 1. Basic principle of a radar system.
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In the last decades, radar technology has experienced a change in its focus. Whereas in the
beginning only the detection and tracking of targets was necessary, with the advance of technology the
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need to obtain higher spatial resolution has emerged. Cargggquadars have evolved into more
flexible devices with the ability to generate high resolution imagery for mapping purposes or target
identification[3]. Radars are the most suitable sensors for a rapid and reliable recognition of targets as
they can perate in scenarios where visibility is very poor, such as bad weather conditions, smoky and
dusty environments,etc. Their ability to resolve targets at a long range as well as
their operation under any weather conditions makes them differ from otreorsdike thermal or
optical oneg2].

Target recognition using radar sensors can be divided into two techniques: cooperative and
noncooperativgl]. Cooperative techniques, known as identification friend or foe (IFF), require the
communication betweetarget and radar, while narooperative techniques,-salled norcooperative
target identification (NCTI), do not establish any communication with them but rely on the comparison
of the measured targets with a reference database. This database igpogpugdlied with actual target
measurements obtained in scheduled measurement camgdjdrsvever, it implies the collection of
information from a great number of flying targets in different aspect angles and configurations and
even so, the main problehes in the fact that not all existing aircrafts may be measured. For this
reason, other methods have been deployed to populate the database. These methods incluc
measurements in anechoic chamber and electromagnetic simul8}iofise latter is of greahterest
due to its low cost and the simplicity of obtaining a vast number of CAD aircraft models for
electromagnetic simulations.

In this paper a target recognition methodology based on high resolution radar imagery is presented.
Algorithms related to igh resolution radar image creation and the problems found are introduced, as
well as a target recognition methodology based on image cross correlation. High resolution radar
image generation and target recognition processes are complex and time con$tmiggal of a
NCTI system is the reliable recognition of targets in real time; therefore, studies on the computational
burden of the whole process are of great interest. These studies will make it easy to identify the
computationally critical points of ¢hsystem in order to previously choose an implementation platform
that could perform these operations efficiently. Accordingly, the computational burden of the proposed
system is revised distinguishitige complexity of image generation from the complexitytarget
recognition. With these results conclusions about implementation platforms and calculation efficiency
are drawn in order to reduce time consumption in a possible future implementation.

The article is organized as follows: Section 2 introducgh hesolution radars as image sensors
bringing into focus inverse synthetic aperture radars (ISAR). Section 3 presents the methodology usec
in this study for ISAR image generation from actual flying aircrafts data and its recognition, based on
the previouswvork by[6]. The methodology presented requires complex computations implying a high
computational burden as it is explained in Section 4. Finally, Section 5 discusses the results and
conclusionsgalling for further work and research in the area.

2. High Resolution Radars

To high resolution radars (HRRs) targets appear as comprised of individual scattering points, also
called scattering centersbackscatter sourcesr scattererd7]. Figure 2 shows an example of these
scattering centers projected on the radar line of sight direction. At a given viewingtanggeaspect
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angle, eachscattererreflects energy at a certain amplitude and phase. High resolution radars have the
ability to discen the different scattering centers of a target in both the propagation and the transversal
direction of the transmitted energy; being able, therefore, to identify the geometry of a target. Thus,
resolution of these radars is defined in two dimensions,henohe hand there is tlstantrange
resolution which depends on the radar bandwidth and is defined as the ability to seattieersin

the direction of the radar line of sight; on the other hand, there isrdlssrange resolution which
depends on #hwavelength of the emitted signal and the angular sweep made during the illumination
time. Crossrangeresolution is defined as the ability to resoboattereran the normal direction to the

plane containing the radar line of sight and the target ootatngle.

Figure 2. Example of scattering centers in a target.
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There exist mainly two different types of HRRynthetic aperture radar§SAR) andinverse
synthetic aperture radardSAR). Both make use of the relative motion of target and radar to &chiev
high resolution in the crogsnge direction.

SAR radars achieve high resolution in the ci@sgye dimension by taking advantage of the motion
of the vehicle carrying the radar to synthesize the effect of a large antenna d@efi8teThese
sensors are usually wused for i maging the Ear
reconnaissance, measurements of sea state, geological and mineral explorations and other sensir
applications. SAR requires coherence between sigralsthe means necessary for the storing and
subsequent processing of the received echoes. ISAR imagery is based on the same principle as SA
imagery, but in contrast it is the target rotational motion which will generate the necessary information
for obtaning the image while the radar remains st§®|@].
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2.1. Inverse Synthetic Aperture Radar

High resolution radar imagery obtained by ISAR radars candménsional or Zlimensional. On
the one hand, 1D imagesegent thescatterersof a target projectedn the dimension of the radar line
of sight (LOS) that is inslantrange, or the scatterersof a target projected on therossrange
dimension. 1D images projected slantrangeare callechigh resolution range profile@HRRP)while
those projected on tleeossrangedimension are called crosange profileg7,9].

Usually the stop & go assumption is held, which means that the target is assumed stationary during
the transmission and the reception of a pulse. Sometimes howevetathimsent cannot be assumed
valid because the pulse repletion time is too long or because the target moves very fast. In such case
an autofocusing technique is also needed to form HRBR1] The crossange profiles are obtained
by exploiting the targemotion with respect to the radar and by using the aspect angle changes to
synthesize the aperture. Obviously an dotusing step is needed first. This paper works with range
profiles (HRRP) instead of crosange profiles and the stop & go approximatisrassumed to be
valid so no autofocusing technique is needed to obtain HRRP.

HRRP represent the energy reflected by egesttererin a moving target as a function of distance.
Each profile is comprised afainge binsthat can contain energy from diffetescattering centets
Figure 3depicts how high resolution range profiles present the energy reflected $gatterersof a
target in the dimension of the radar line of sight. Signal processing needed to obtain the HRRPs
of a target is not very complgkowever, they are very sensitive to the target viewing angle (aspect
angle) due to occlusion dfcatterersor other unwanted effects such as speckle or rotational range
migration (RRM)[4].

Figure 3. High resolution range profile.
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The resolution of @aange profile is dependent on the bandwidth of the emitted signal; the shorter the
emitted pulse, the wider the bandwidth and the finer the resol@idjh Unfortunately, there are
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limitations in the reduction of the width of the emitted pulse sintelitnited by the energy the radar

is capable of transmitting. Most radars are not able to transmit the power needed to achieve high
resolution with a pulse waveform. Nevertheless,phise compressig8] technique allows radars to
obtain high resolutiomising long pulse widths. This technique consists of modulating the frequency of
the emitted waveform along the total pulse width. The receiver is in charge of the quadrature
demodulation of the received signal using a matched filter to maximize the -Rigvaise

Ratio (SNR). Typical waveforms used in pulse compression techniqueschag[12] and
steppedrequency{13]. Radars using pulse compression technique sense the total radar returns in the
frequency domain; hence, HRRPs are obtained by agpmninverse Fourier transform to the radar
complex return$9].

On the other hand, 2D images, named ISAR images, represent the geometry of a target in both
slant and crossrange.ISAR images contain information of consecutive HRRPs with small angular
variation; these images display the distribution of scattering centers within a target in the perpendicular
direction of t he[l4. kigueé depids the datt ahatilSAR imagesapresent the
scattering centers of a target in two dimensiofse aircraft displayed in this figure correspond to
a Fokker100.

Figure 4. Scattering centers in an ISAR image.
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Signal processing needed to achieve ISAR images is complex and implies higher computational
burden than that needed for the generatioARRPs. There are several methods used in literature to
form ISAR images including bagbrojection methodglL5] or rangeinstantaneous Doppler algorithms
(RID), such as RadekVigner transform (RWT) method16], joint timefrequency analysis
method[17], reassignedsmoothed pseudo Wign¥fille distribution [18], fractional Fourier
Transform[19], etc. The algorithm used in this paper for the creation of ISAR images is called range
Doppler algorithm (RDA)[7,9]. This technique is the most common sincesithe simplest onet |
mainly consistsin the application of a double Fourier transformation; first, an inverse Fourier
transform is applied to the quadrature demodulated data (I/Q samples) in order to obtain a matrix filled
with high resolution range prités and second, a Fourier transform is applied to every range bin of
these profiles in order to acquire information of sieatterersn the crossrangedimension. The basic
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approach of this algorithm is depicted Figure 5where A denotes the profilesatix and A is
its transpose.

Figure 5. RDA Algorithm.
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Target motion with respect to the radar makes it possible to achieve ISAR images; nevertheless, no
every movement is desired and this may cause blurring in the obtained images. In order tlmsavoid
defocusingmotion compensation techniques must be applet0].

Generally speaking, target motion can be decomposed into translational and rofatiitigP?2]

In order to get focused images both the translational and rotational motion musinpensated.
Translational motion causes consecutive HRRPs to be misaligned, so in order to compensate it ar
alignment of profiles must be completed, this procedure is also cafige bin alignmentin addition

to profile alignment, aphase adjustmenprocedure must be applied in order to refer every
measurement to the same oriffih. In the past decades, translational motion compensation has been
of great interest and now it has become a-established technology. Range bin alignment methods
are ratherstandard, including centroid trackif@B,24] envelope correlatiof14], contrast/entropy

based method&5], prominent point processing or dominant scatterer algofiéeinetc.

On the other hand, rotational motion causestion through resolution celldMTRC) [27] which
produces thecatterersto move from bin to bin irslant or crossrange However, it can be ignored
provided that the target is small or the required resolution is cfZ&#ke

Many algorithms have beenqposed in the literature for motion compensation in ISAR imaging.
What is presented here is the computational complexity analysis of a combination of translational
motion compensation methods (envelope correlation and dominant scatterer algorithm) ia geder
a focused ISAR image. The driving idea is to achieve an affordable processing chain, in terms
of computational burden which is the mandatory requirement for a future possible implementation in
real time.

1
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3. ISAR Generation and Target RecognitiorSystem

The complete system under study is implemented in Matlab® (R2008a) and consistspfithy,
generation of an ISAR image from a dataset of flying aircrafts. To that end, motion compensation of
high resolution range profiles must be implementgetcondly, after an ISAR image is obtained, the
comparison with a database of ISAR images is carried out with the final purpose of aircraft
recognition. This database is populated with ISAR images generated synthetically with
electromagnetic softwar€igure 6 depicts the flowchart of this procedure.
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Figure 6. System identification flowchart.
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3.1. Data Set

The use of actual data in the generation of ISAR images is of great importance since it is possible to
obtain realistic images that could not be obtained by any other means. However, it must be noted tha
actual data is not usually accessible and not easgeasure since the use of high level technology
resources is required.

The North Atlantic Treaty Organization (NATO) performs different activities under its Research
and Technology Organization (RTO). Data used in this work comes from the ORFEO civllizar
measurement campaign, held in 1995 and obtained with the FELSTAR radar. FELSTAR is a
steppedrequency Shand radar owned by TNBEL and located in The Hague, The Netherld28$
This measurement campaign was carried out as part of theSET@40 Task Group activity and up
to 17 different civilian aircrafts were measured as targets of opportunity. By using actual data from the
ORFEO campaign and applying the RDA algorithm explained in previous sections, ISAR images of
different civilian aircréts are obtained.

3.2. ISAR Image Formation
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This section describes the algorithm used for the generation of an ISAR image from actual data
using Matlak®; this procedure is based on the flowchartigure 7. As mentioned above, for the
generation of a fagsed ISAR image, in addition to the implementation of RDA the implementation of
a motion compensation method is also necessary.

Figure 7. ISAR image formation flowchart.
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In order to acquire a more focused image a Hamming wirjd@8] is first appliedto the samples
since it reduces sidelobes in 43 dB. In case a Hamming window was not employed, with the inverse
Fourier transform needed to obtain the profiles, a rectangular window would be automatically applied
which has high sidelobes that can prodineedcclusion of scattering cent§sg)].

The next step after windowing and application of inverse Fourier transformations (using the IFFT
algorithm) is the translational motion compensation of the obtained HRRPs. To align the profiles an
algorithm based othe envelope correlation methfidt,31]is applied first. In the case covered in this
article, a reference profile is first established defined as a sum of six aligned profiles after applying
correlation between them. The remaining profiles will then lmed by correlating them to the
reference oneNote that the reference profile must be updated after a new profile is aligned by
including the new one to the reference profile and discarding the oldest one. Aftdigpreent using
envelope correlatiofficoarse alignment), a fine alignment is applied. This-&lignment comprises
three steps: first, a prominestatterermust be selected; second, profiles araligned by tracking the
prominentscattereralong the profiles matrix; to do so, profiles rnmaa are found within a small band
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from the prominenscattererand, when necessary, profiles are realigned. Finally, phase adjustment is
carried out by using the dominant scatterer algorithm (036,32] where the phase of the dominant
scattererpreviousy selected is subtracted from the phase of the rest of the profiles already aligned.
Figure 8shows the whole translational motion compensation pro€éggre §a) presents the initial

10 HRRPs of a measured Boeif§7, and as can be seen, these praditescompletely misaligned. By
employing envelope correlation profiles are-phigned as shown ifigure §b). Lastly, after phase
adjustment profiles are finally aligned agHigure &c).

Figure 8. Profile alignment processa) initially misaligned HRRP(b) pre-aligned HRRP;

(c) aligned HRRP after translational motion compensation.
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Figure 9(a) shows the initially misaligned profiles as in Figure 8(a), but in a 2D plot. This figure
presents the whole set of profiles of a measueding767 in the ORFEO campaign. Figure 9(b)
shows the resulting aligned profiles as in Figure 8(c) in 2D. With this last figure it is easy to observe
the evolution from a misaligned set of HRRPs to an aligned set.

Regarding rotational motion compensatj®rB3], it has already been noted that it would only be
necessary when the resolution needed is very fine or target rotation is very high. Neither case is preser
in this study; hence, this step is omitted.

Finally, application of Fourier Transformatiqasing the FFT algorithm) to the range bins of the
aligned profiles is applied and an ISAR image is obtained. Examples of different ISAR images
obtained by means of the procedure described in this section are displ&ygdren10 As expected,

ISARs obténed are not of great quality if compared to a video or an IR sensor image although they
have enough quality to discern the existence of an aircraft with certain geometry and dimensions.

As observed irFigure 1Q a blurred band exists approximately in theldle of every image. This
blurring is due to the fact that these images were produced using actual data and some noise and clutt
could not have been completely removed. This will probably affect in the identification stage, resulting
in a degradatioof the final result.
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Figure 9. Profile alignment proceds2D; (a) initially misaligned HRRP; i) aligned
HRRP after translational motion compensation.
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Figure 10.ISAR images obtained from the ORFEO measurement campaphSAR
image of a Boeing 767b) ISAR image of a Fokker 1005)(ISAR image of a Boeing 747.
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3.3. ISAR Image Comparison (Target Recognition)

Target recognition is accomplished by applying a temptaehing technique where targets are
recognized based on the template that best matches the reconstructed ISAR images. The recognition
carried out by comparing ISAR images obtained from actutd tta a database populated with
synthetic ISAR images, that is to say images obtained with electromagnetic software. FASCRO is the
tool employed in this paper in order to generate the synthetic images that will populate the database
The software is basedn the work by[34,35] Its operation lies in a combination of two high
frequency techniques, physical optics (PO) and physical theory of diffraction (PTD) applied to targets
modelled as nowniform rotational Bsplines surfaces (NURB$36,37] Figure 11displays some of
the synthetic images that populate the database.

Figure 11. Examples of ISAR images populating the synthetic databa¥eSynthetic
ISAR image of a Boeing 767b) Synthetic ISAR image of a Fokker 10@) Synthetic
ISAR image of a Boem747.
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As can be easily noticed, synthetic ISAR images are in many ways different from those obtained
from actual data; the images obtained synthetically are much clearer; this is due to the fact that
electromagnetic software runs an ideal scheme, without coimgidany noise or clutter. Synthetic
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ISAR images do not suffer from measurement noise, and also application of translational motion
compensation to HRRPs is not needed for their generation. Moreover, all the aircrafts are considerec
PEC fperfect electric onductor$ in the simulations and also CAD models are approximations of
aircraft geometry. Thus, electromagnetic software cannot simulate all the effects present in a real
environment. Additionally, for the construction of a good database of synthetiaft@@irthe image
projection plane (IPP) must be taken into account since the target reflectivity is strongly dependent on
the aircraft aspect angle and can affect the recognition process. Moreover, the estimation of the angula
velocity of target rotationt®uld be carried out since crassge scaling of the ISAR image depends

on it. In[38,39]an attempt to solve the question of building a robust database can be found taking into
account the image projection plane.[40] an iterative method to estimateetangular parameters of
norrcooperative targets using the estimates of the range and radial velocity of two prominent
scatterersas inputs is addressed.

In the study presented here the flight plans of the different aircrafts are known and the database ha
been built according to them. This implies that the image projection plane and the angular velocity of
the targets in the database used in this paper for recognition are the same as the ISAR image
generated from actual data; this means that their dstim# not necessary. However, in a real
application of norcooperative target recognition flight plans are unknown and the aspect angle of the
aircrafts as well as their angular velocity should be estimated. Consequently, the database should b
populatedwith ISAR images of aircrafts in different aspect angles and trajectories and the ISAR
images of the targets should only be compared to those with the same resolution and image projectior
plane in order to reduce computational burdére proposedemplae-matching techniqueo compare
ISAR images is the normalized cresmrelation between thefd 1i 43] although there is no generally
accepted way of performing this task. Normalized cross correlation (NCC) is one of the most robust
measures for determiningimilarity between points in two or more images providing an accurate
result. However, this method can be computationally intense, especially for large iMages
Equation (1) presents the formula of the NCC:

M-In-1 — —
a a (A\nn- A)(an- B)
r= m=0 n=0 )
= = _
\/éa A (An- A?%A A (B,,- B)?]
€m=0n=0 UEm=0n=0 u

whereA andB are images of sizBl x N andM x M respectively, andA and B denote their mean
value. In the present case, both images have the samd@altel summarizes some of the results
obtained using normalized cressrrelation for target identification.

Table 1.Target identificatiomesults

Synt-B747 Synt-Fokker 100 Synt-B767

B-767 from actual data 0.1927 0.2473 0.3129

Results of the identification method show low correlation between images, even though the highest
value is obtained for the aircraft to be recognized. The reason why these results are obtained lies in th
fact that synthetic images are much clearer thasetlobtained from actual data. To improve these
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correlation results further image processing should be applied to either image set. Note that this
additional image processing does not have to do with RDA or motion compensation but with
noise/clutter rejeadn techniques; however, that is not the purpose of the present work but the study
of the computational cost of the generation of ISAR images from actual data and the comparison with
a database.

4. Computational Burden Results

One of the requirements an automatic target recognition method is to obtain a result in real time.
Real time can be considered as the time needed to process a result sufficiently rapid in order for the
radar operator to be able to make decisions. For this purpose high perfoeames are usually
needed to achieve these time requirements.

Prior to the selection of a device to implement a system it is of high interest to study the
computational burden by means of analyzing the order of magnitude of the calculations® Matlab
Prdiler [45] is an excellent tool for a preliminary study on computational cost, it was first developed
to provide information for the debugging and optimization of code but it also provides information
about execution time of functions, the number of timdanction is called, computing time in CPU
and even the memory consumed by each function. Consequently, a study of computational burden o
both the generation and the comparison process is carried out using"MPatéiter (R2008a) in order
to identify aitical computational points.

In the next subsection the computational complexity of ISAR image formation is studied,
establishing for each stage in which the process can be decomposed into the number of
operations needed. Finally, computational compyexof ISAR image comparison for target
recognition is revised.

4.1. ISAR Generation Process Computational Cost

ISAR generation process, as noted in previous sections, is comprised of the subsequent stages:

HRRP Generation
Motion Compensation
ISAR Formation

5

Each stage comprises operations dependent on the number of high resolution range profiles (N) anc
the number of different frequencies in a burst of the transmitted stémopency signal (M).
According to the results given by Matf@bProfiler, Table 2and Figure 12show the operations needed
and the percentage of time spent in each stage of the process. The operations groupéithereder
in Figure 12are those needed to plot images, load/save data or display ®a@edfiler main
window. The ISAR image generation process was run in an Intel Xeon @ 2.66GHz and 3.50 GB RAM
PC and the average total time spent for the generation of an image of size 3B pixels
(N = 361 profiles xM = 324 frequencies in a burst) was approximdt@lyeconds.
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Table 2. Operations needed to obtain an ISAR image.

HRRP Generation Windowing N products of M complex samples 3.24%
HRRP Formation N IFFTs of M complex samples 0.05%

RangeBin Alignment  (N-1) circular correlation of M real samples 86.81%

Motion Compensation Scatterer Selection N circular shifts 0.39%
Phase Adjustment N products of M complex samples 0.10%

ISAR Formation M FFTs of N complex samples 2.48%

According toTable 2and Figure 12the most expensive (computationally speaking) stage is the
motion compensation, and more specifically the process of the range bin alignment which involves the
realizatonof N 17 1) <circul ar correlation of fther eal S

Figure 12. Time spent in the generation of an ISAR image.
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Being x[m] and y[m| two profiles of M samples, circular cross correlation is accomplished by
applying Equation (2), where the tesfm+Kk]y denotesx[(m+k) modM], that is to say, the circular
shift of x[m:

M-1
£ 1K1 =ﬁ§0x[m+k]M i @
Analysis of Equation (2) reveals that for every circular correlation of M samples a total of M
products, MA(M T 1) sums and M circular shift
real deending on the nature of data. In this particular case, operations needed for circular correlations
in the range bin alignment stage are real. Moreover, the normalization of the correlation is not needed

since all profiles will be scaled by the same faeatwd it will not have effect in the alignment. It should
be noticed that another technique to perform correlation between signals is through the use of FFT,
which converts correlations into a product of transforms.
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The method revised here for range bin mingnt, based on the envelope correlation, requires the
creation of an initial reference profile made up of the first six aligned HRRPs. The alignment and
creation of this reference profile implicte t he
accomplish the whole alignment process. Next step is the correlation with the following profile, the
alignment with it and the update of the reference profile. This process will be repeated until all profiles
are aligned, therefore, itwillberepedite ( N T 6) ti mes. The update of
sums. The total number of operations needed for range bin alignment of a total number of N profiles
made up of M samples is summarized able 3

Table 3. Operations needed for range bin alignment.

Real Products (N 17
Shifts MN T 1) +2(NT 1)

From Table 3 it can be deduced that this operation has an order of magniD@vbf). That
means, for an image of size 361 x 324 pixels, 37,791,360 real products, 38,249,820 real sums and
117,360 circular shifts. With the implementation of the range bin alignment process in a parallel
device, the computational burden could be reduceditagnitude of orde®(NM) , or even further to
a magnitude oO(N) in cases where the implementation device has enough resources.

This order of magnitude could not be further reduced, at least initially, since parallelization of more
operations could nobe applied due to the dependence of correlations. This means that only one
correlation is done at a time because the reference profile must be computed before the next correlatio
can be executed.

Although FFTs/IFFTs have not been very time consuming @pasacompared to the range bin
alignment stage, it should be noted that a high number of operations are also require® M&llab
algorithm is based on a library called FFT¥%] which has a computational complexity of
O(Nog 2(N)), where N is the number of samples. Only if the magnitude of the range bin alignment
was reduced to O(N), would FFT computational cost and alignment process cost be comparable.

4.2. ISAR Image Comparison (Target Recognition) Computational Cost

The methodoroposed to compare ISAR images is the normalized -casslation between them
showed in Equation (1)t is worth noting that templatematching techniques like the one proposed
here are computationally expensive since ISAR images are normally of largasibns. To speed
up the recognition process other approaches have been proposed in the literature based on th
comparison between a set of features extracted from the ISAR image to be recognized and a databa:
of featureq438,39,47]

In the presentase both images will be squared of the sameizeN, so by using normalized
crosscorrelation one can deduce that a computational complexity of ordef) G§Nneeded.
Nevertheless, images are not centered at the same point so image matching shdditobellg
applied. This matching implies the increase of the computational complexity to an of@éXYf
since additional Rlcomparisons are executed, one per pixel image. This high burden leads to an
average time of 10 minutes to complete one coraparof two images of size 256 x 256 in an Intel
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Xeon @ 2.66 GHz and 3.50 GB RAM PC; thus, recognition using normalized-amosation is
clearly a bottleneck in the system and its computational complexity must be reduced. In order to do so,
insteadof p i x e | by pi xel mat c hi ngdiscrete stepsddixeld) in bothithena g ¢
x and y dimensions while the other remains stable and the correlation is calculated for each position
creating a correlation matrix. The following step is talfthe highest correlation value in this matrix
and to define a range around it in which normalized etoselation will be applied again by shifting
images pixel by pixel.

To clarify the procesEigure 13 shows blue points as the initial shifts where fiX® presents the
point of maximum correlation. In red is depicted the range in which the correlation will be applied
shifting images pixel by pixel.

Figure 13. Shifts applied in ISAR image comparison (g = 16 pixels).

This image shifting based on the Woiin[48], implies the execution ofC normalized
crosscorrelations instead of NIn Equation (3),N denotes the image axis size apds the shift
applied (16 or 32 pixels depending on the image size):

3)

Hence, by using this shifting scheme to carry out image comparisons the computational burden is
reduced from an order of magnitude ©fN* to an order ofO(CN ?). As an example, for the
comparison of two 256 x 256 images with a shift of g = 16 pixelsnféquation (3) the number of
correlations needed to obtain a result is C = 1,378 whereas if shifting was not applied a total number of
N? = 65,536 correlations would be executdtigure 14 compares the order of magnitude in a
logarithmic scale of normaligecrosscorrelation when image shifting method is applied or not, with
figo being 16 pixels.



