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Abstract: In this paper, we combine the acoustic vector-sensor array parameter estimation 
problem with the parallel profiles with linear dependencies (PARALIND) model, which 
was originally applied to biology and chemistry. Exploiting the PARALIND decomposition 
approach, we propose a blind coherent two-dimensional direction of arrival (2D-DOA) 
estimation algorithm for arbitrarily spaced acoustic vector-sensor arrays subject to 
unknown locations. The proposed algorithm works well to achieve automatically paired 
azimuth and elevation angles for coherent and incoherent angle estimation of acoustic 
vector-sensor arrays, as well as the paired correlated matrix of the sources. Our algorithm, 
in contrast with conventional coherent angle estimation algorithms such as the forward 
backward spatial smoothing (FBSS) estimation of signal parameters via rotational 
invariance technique (ESPRIT) algorithm, not only has much better angle estimation 
performance, even for closely-spaced sources, but is also available for arbitrary arrays. 
Simulation results verify the effectiveness of our algorithm. 

Keywords: arbitrary array; acoustic vector-sensor; coherent angle estimation; PARALIND 
decomposition 
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Notation  

(·)T, (·)H, (·)*, (·)−1 and (·)+ denote transpose, conjugate transpose, conjugate, matrix inversion 
and pseudo-inverse operations, respectively.  
IP stands for a P × P identity matrix.  
○,  and  denote Khatri-Rao, Kronecker, and Hadamard product, respectively.  
E[.] is a expectation operator  
Dm(.) is to take the nth row of the matrix to construct a diagonal matrix.  
diag(v) stands for a diagonal matrix the diagonal of which is a vector v 
diag−1(V) denotes a column vector consisted of the diagonal elements of matrix V.  
vec(X) is to arrange matrix X column-wisely to be a column vector.  
A(:,k) denotes the kth column of matrix A. 
hk(n) is nth elements of vector hk. 

1. Introduction 

Compared with traditional acoustic pressure sensor arrays, acoustic vector sensors can measure the 
acoustic pressure as well as all three orthogonal components of the acoustic particle velocity at a single 
point in space, which offers certain significant advantages in collecting more acoustic information and 
enhancing the system performance [1–6]. Since the measurement model of an acoustic vector sensor 
array was developed in [2], researchers mainly turned to the study of incoming signal direction of arrival 
(DOA) estimation and have proposed many DOA estimation algorithms, which include the Capon 
technique [4], estimation of signal parameters via rotational invariance technique (ESPRIT) [7–9], root 
multiple signal classification (MUSIC) [10], self-initiating MUSIC [11], hypercomplex [12], 
propagator method (PM) [13], trilinear decomposition or parallel factor (PARAFAC) [14], as well as 
others [15–21]. The subspace-based methods, such as ESPRIT [7–9] and MUSIC [10,11], require 
eigenvalue decomposition (EVD) of the cross correlation matrix and singular value decomposition 
(SVD) of the received data to obtain the signal subspace or noise subspace, which implies fairly high 
computational complexity, while the propagator method (PM) is considerably less demanding because 
the PM does not require any EVD of the cross correlation matrix and SVD of the received data [22]. 
However, only in high-snapshots situation and signal to noise ratio (SNR), can the PM algorithm 
provide a better estimation performance. In most current algorithms for DOA estimation, some precise 
a priori knowledge, including the sensor locations, gain, phase response and mutual coupling of the 
receiver array is needed, but in realistic situations this can seldom be pre-known. For example,  
Capon [4] and the MUSIC algorithm can be used for arbitrary arrays, however they need to pre-know 
the array geometry. Besides, peak searching is also required for Capon and MUSIC algorithms, which 
renders a heavier computational cost. EVD of the cross spectral matrix or SVD of the received data to 
obtain the signal subspace is needed for the ESPRIT algorithm [7], which has been used for two 
dimensional (2D) DOA estimation for arbitrarily spaced arrays at unknown locations based on the 
acoustic vector-sensor property. However, a problem existing in [7] is that the ESPRIT algorithm 
needs an extra pair matching which increases the computational load, and usually fails to work in 
lower SNR when it is used for 2D-DOA estimation. Reference [14] proposes a trilinear decomposition-



Sensors 2013, 13 5304 
 

 

based 2D-DOA estimation algorithm for acoustic vector sensor arrays, which provides DOA 
estimation for the arbitrarily spaced sensor arrays and doesn’t require knowledge of sensor locations 
and extra pair matching. 

The reflected signal of the same sources through different propagation paths will produce multipath 
signals. Therefore, it is of significant importance to study the coherent angle estimation problem. The 
angle estimation algorithms listed above are all proposed for incoherent sources. When it comes to 
coherent sources, the coherency of sources will result in serious degradation or invalidity of the above 
algorithms. Some conventional coherent angle estimation algorithms, including forward backward 
spatial smoothing (FBSS) [23,24], only work for uniform arrays. 

This paper combines the acoustic vector-sensor array parameter estimation problem with the  
so-called PARAllel profiles with LINear Dependencies (PARALIND) model, and proposes a blind 
coherent 2D-DOA estimation algorithm for arbitrarily spaced acoustic vector-sensor arrays subject to 
unknown locations by exploiting the PARALIND decomposition approach. Our algorithm can provide 
coherent and incoherent two-dimensional angle estimation for arbitrary arrays, and it automatically 
archives paired azimuth and elevation angles, and the paired correlated matrix of the sources can also 
be acquired. Compared with conventional coherent angle estimation algorithms such as the  
FBSS-ESPRIT algorithm which only works for uniform arrays, our algorithm has much better angle 
estimation performance. Furthermore, our algorithm performs considerably well for angle estimation 
of closely spaced sources. We also derive the Cramér-Rao bound (CRB) of angle estimation for 
arbitrarily spaced acoustic vector-sensor arrays. Simulation results verify the effectiveness of the 
proposed algorithm. 

The trilinear decomposition, also known as PARAFAC analysis [25,26], has been naturally related 
to angle estimation for arbitrarily spaced acoustic vector-sensor arrays at unknown locations [14]. 
However, the PARAFAC angle estimation solution is usually non-unique when the coherent sources 
exist. The PARALIND model [27,28] is a generalization of PARAFAC suitable for solving problems 
with linear dependent factors where PARAFAC analysis will fail to provide meaningful results. Our 
work links the coherent angle estimation problem to the PARALIND model, and proposes a 
PARALIND decomposition-based coherent angle estimation algorithm for arbitrary arrays, which can 
be regarded as an extension of the work presented in [14]. Reference [27] proposed the PARALIND 
model for application in biology and chemistry; the present paper expands this model to the acoustic 
vector-sensor array signal processing problem to estimate coherent DOA and automatically achieve 
paired two-dimensional angle estimations, which is an innovation. 

Although the ESPRIT algorithm [7] and our algorithm can be used for DOA estimation for 
arbitrarily spaced acoustic vector-sensor arrays, there are some differences between our paper and 
Reference [7]. The latter proposed an ESPRIT algorithm for DOA estimation for arbitrarily spaced 
three-dimensional arrays of vector hydrophones, but it fails to work well for coherent sources. Our 
work exploits the PARALIND decomposition approach to estimate 2D-DOA in arbitrarily spaced 
acoustic vector-sensor arrays with unknown locations, and our algorithm is suitable for coherent sources.  

The present paper is structured as follows: Section 2 develops the data model for arbitrarily spaced 
acoustic vector-sensor arrays at unknown locations; Section 3 establishes our PARALIND 
decomposition-based coherent 2D-DOA angle estimation algorithm in addition with the identifiability 
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issues and complexity analysis; In Section 4, simulation results are presented to verify effectiveness of 
the proposed algorithm, while the final conclusions are made in Section 5. 

2. Data Model 

We assume that a total of K narrowband plane waves impinge on an array equipped with M acoustic 
vector sensors, which are all located at arbitrary unknown three dimensional positions as shown in 
Figure 1. We define the location of the mth vector sensor as rm = (xm, ym, zm).  

Figure 1. The structure of acoustic-vector sensor array [14]. 

φk

ϕk

 
We also assume the signals in the far-field. K sources, including K1 incoherent sources and K-K1 

coherent sources, are considered. Assume that the noise is additive white Gaussian, which is 
independent of the sources. The kth signal arrives from direction (φk, ϕk), where φk and ϕk respectively 
stand for the azimuth angle and the elevation angle. Let θk = [φk, ϕk]T as the 2D-DOA of the kth source. 
According to [2], the output at the acoustic vector sensors array can be expressed as: 

( )( ) ( )( ) ttt = +H A Γsx no  (1)

where A = [a(θ1), a(θ2),…, a(θK)] is an M × K matrix composed of K receive steering vectors.  
s(t) = [s1(t), s2(t),…, sK(t)]T is a column vector consisting of amplitudes and phases of the K1 incoherent 
sources. Γ is the correlated matrix with K × K. n(t) is the received additive white Gaussian noise 
vector. H = [h1, h2,…, hK] in which: 

1
cos cos
sin cos

sin

k k
k

k k

k

φ ϕ
φ ϕ

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

h  (2)

Therefore, the output of J snapshots can be given by: 

1 2[ ( ), ( ), , ( )]Jt t t=X x x xL  (3)

X can be compactly expressed as: 

( )= +H AX ΓS No  (4)

where S = [s(t1), s(t2),…, s(tJ)], N = [n(t1), n(t2),…, n(tJ)] is an 4M × J matrix composed of J snapshots 
of received additive white Gaussian noise. 
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3. The Coherent Two-Dimensional Angle Estimation  

3.1. PARALIND Decomposition  

Define T=Y X% , according to the signal model in Equation (4), Y% can be expressed as: 

( )( ) TT T= +Y ΓS H A N% o  (5)

According to [27], least fitting for the signal model in Equation (5) amounts to: 

( )
, , ,
min ( ) T

F

T−
Γ S H A

Y ΓS H A% o  (6)

In a no-noise case, according to Equation (5), we have: 

1 2 3 4

1 2 3 4

[ , , , ]
[( ) ( ) , ( ) ( ) , ( ) ( ) , ( ) ( ) ]T T T T T T T TD D D D

=
   =
Y Y Y Y Y

ΓS H A ΓS H A ΓS H A ΓS H A
 (7)

where ( ) ( )T T J M
n nD ×= ∈Y ΓS H A C , n = 1,2,3,4.. Then we have: 

( ) ( )( ) ( ) ( ) ( ) ( )T T T T
n n nvec vec D D vec= = ⊗Y ΓS H A A H S Γ  (8)

According to [7], stacking these vectors leads to: 

11

2 2

3 3
4 4

(
(
(
(

( ))
) ( ) ( )) ( )
) ( )

T

T
T

T

T

vec
vec
vec
vec

D
D vecD
D

⎡ ⎤⊗⎡ ⎤
⎢ ⎥⊗⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⊗⎢ ⎥⎢ ⎥ ⊗⎣ ⎦ ⎣ ⎦

Y
Y
Y
Y

A H S
A H S ΓA H S
A H S

 (9)

Equation (9) can be expressed compactly as: 

( ) ( ) ( )T Tvec vec⎡ ⎤= ⊗⎣ ⎦Y H A S Γo  (10)

According to Equation (10), we can obtain: 

( ) ( ) ( )T Tvec vec
+

⎡ ⎤= ⊗⎣ ⎦ YΓ H A So  (11)

For attaining vec(ΓT), then Γ can be easily updated via transforming the column vector to its 
original column-wise matrix. 

According to Equation (6), the least square (LS) update for ST is given by: 

( )( )( ) TT
+

=S Y ΓH Ao  (12)

According to Equation (7), we have:  
4 4 4

* * *

1 1 1

( ) ( ) ( )( ) ( ) ( )H H T T T T
n n n n n n

n n n

D D D
= = =

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑Y Y Y ΓS H A A H ΓS ΓS H A
 (13)

A has full column rank, so we can acquire A* via: 
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( ) ( )

14 4
* * *

1 1

14 4
*

1 1

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

H T T
n n n n

n n

H T T H
n n

n n

D D D

D

−

= =

−

= =

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞       = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

A Y ΓS H H ΓS ΓS H

Y ΓS H ΓS ΓS H He

 (14)

Similarly, we have: 
* *( ) ( ) ( ) ( )T T

n nD=ΓS Y A ΓS ΓS H A A  (15)

Extracting the diagonal elements of the matrices in two sides of the equation, we get: 

( ) ( ) ( ) ( )1 * * 1( ) ( ) ( ) ( )T T
n ndiag diag D− −=ΓS Y A ΓS ΓS A A He  (16)

Then we get: 

( ) ( ) ( )( ) ( )11 * 1 *( ) ( ) ( ) ( )T T
n ndiag D diag

−− −=H ΓS ΓS A A ΓS Y Ae  (17)

The matrix H can be straightforwardly obtained via diag−1(Dn(H)), n = 1,2,3,4. 
According to Equations (11), (12), (14), and (17), we can show PARALIND algorithm applied in 

the data model established in this paper in detail as follows: 
According to Equation (11), the update for ˆ( )Tvec Γ  is given by: 

ˆ ˆˆ ˆ( ) ( ) ( )T Tvec vec
+

⎡ ⎤= ⊗⎣ ⎦ YΓ H A S %o  (18)

where Y% is the noisy signal. Ĥ , Â , and ˆ TS  are the previously obtained estimates of H, A, and ST, 
respectively. According to Equation (12), the LS update for ST is obtained via: 

( )( )ˆ ˆˆˆ( )
T

T
+

=S Y ΓH A% o  (19)

where Ĥ , Â , and Γ̂ are the previously obtained estimates of H, A, and Γ, respectively. According to 
Equation (14), the update for A* is shown as: 

( ) ( )
14 4

* *

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )H T T H
n n

n n

D
−

= =

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑A Y ΓS H ΓS ΓS H H% e  (20)

where nY%  denotes the noisy signal. Ĥ , Ŝ , and Γ̂ are the previously obtained estimates of H, S, and Γ, 

respectively. According to Equation (17), the update for Dn(H) is: 

( ) ( ) ( )( ) ( )1
1 * 1 *ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T

n ndiag D diag
−

− −=H ΓS ΓS A A ΓS Y A%e  (21)

where Â , Ŝ , and Γ̂ are the previously obtained estimates of A, S, and Γ, respectively. Finally, the 
update of H , noted as Ĥ , can be straightforwardly obtained via ( )1 ˆ( )ndiag D− H , n = 1,2,3,4. 

Define ˆ ˆˆ ˆ( ) ( )T T= −E Y ΓS H A% o , where Â , Ĥ , Ŝ , and Γ̂  present estimates of A, H, Γ and S, 
respectively. The sum of squared residuals (SSR) in PARALIND model is defined as 

1 1

J MN
jij i

SSR e
= =

=∑ ∑ , where eji is the (j, i) element of the matrix E. According to Equations (18), (19), 

(20) and (21), the matrices A, H, Γ, and S are updated until the SSR ≤ 10−8, finally we obtain Â , Ĥ , 
Ŝ , and Γ̂. 
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3.2. Uniqueness of PARALIND Decomposition  

According to [27], we derive the uniqueness of PARALIND decomposition in an acoustic  
vector-sensor array. The signal matrix in Equation (7) can be transformed to another equivalent matrix 
via column and row exchanging, which can be expressed as: 

1 2

1 2

[ , , , ]
[ (( ) ) , (( ) ) , , (( ) ) ]

J
T T T T T T

JD D D
=

   =
Z Z Z Z

H ΓS A H ΓS A H ΓS A
L

L
 (22)

The two slices Zi and Zj (i ≠ j) in Equation (22) are represented as:  

(( ) )T T
i i ED= =Z H ΓS A HS ; (( ) )T T

j j ED= =Z H ΓS A HΛS  (23)

where SE = Di((ΓS)T)AT, and Λ = Dj((ΓS)T)Di
−1((ΓS)T). Then we form the following matrix: 

i
E

j

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

Z H
S

Z HΛ
 (24)

H being full row rank assures that ( )span span
⎛ ⎞⎡ ⎤

= ⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

H
U

HΛ
, where U consists of largest K left singular 

vectors of the matrix i

j

⎡ ⎤
⎢ ⎥
⎣ ⎦

Z
Z

. The matrix U can be denoted as: 

1

2

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

U H
U T

U HΛ
 (25)

where T is a nonsingular matrix. Construct auto and cross correlation matrices as follows: 

1 1 1
H H H= = =R U U T H HT GT  

2 1 2
H H H= = =R U U T H HΛT GΛT  

(26)

where G = THHHH, R1 and R2 are full rank. According to Equation (26), we obtain: 
1

2 1
− =R R G GΛ  (27)

Λ and G consist of the eigenvalues and the corresponding eigenvectors of the matrix R2R1
−1. Λ is 

unique, and G is recovered with the scale ambiguity and permutation ambiguity. Then T = G−1R1,  
H = U1T−1, SE = H+Zi, AT = Di

−1((ΓS)T) SE. 
Notably, scale ambiguity and permutation ambiguity are inherent to the separation problem. 

However, the scale ambiguity can be resolved easily by normalization, while the existence of 
permutation ambiguity is not considered for angle estimation. 

3.3. Two-Dimensional Angle Estimation 

By imposing PARALIND decomposition for the received data matrix, we get the estimate of matrix 

1 2
ˆ ˆ ˆ ˆ[ , , , ]K=H h h hL . According to Equation (2), ˆ

kh  can be expressed as: 

ˆ ˆˆ ˆ ˆ ˆ[1, cos cos , sin cos , sin ]T
k k k k k kφ ϕ φ ϕ ϕ=h  (28)
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where ˆ
kh  is the normalized kth column vector of the estimated Ĥ . Then the elevation angle estimate 

of kth source can be easily obtained via: 
1 ˆˆ sin ( (4))k kϕ −= h  (29)

Finally, the azimuth angle estimate of kth source can be attained via: 

( )ˆ ˆ ˆ(2) (3)k k kangle jφ = +h h  (30)

Obviously, the azimuth angle and elevation angle are automatically paired. We also obtain the 
estimate of the correlated matrix Γ from the PARALIND decomposition, because Γ is a matrix whose 
elements are 0 or 1, so we can easily decide it by a decision function to obtain accurate estimated Γ̂. 

3.4. The Procedures of the Proposed Algorithm 

Till now, we have achieved the proposal for the proposed coherent 2D-DOA estimation algorithm 
for the acoustic vector-sensor array. We show major steps of the proposed algorithm as follows: 

Step 1: Obtain Y% from the received data matrix X, and then initialize for the matrices H, A, Γ, 
and S. 

Step 2: According to Equations (18), (19), (20) and (21), update the matrices H, A, Γ, and S until 
810SSR −≤ , finally obtain the corresponding estimated Ĥ , Â , Γ̂, and Ŝ . 

Step 3: Estimate the two-dimensional DOA through Equations (28)-(30), then obtain accurate 
estimate Γ̂ by decision. 

In our algorithm, the complexity of each iteration is O(4MJ(2K2K1
2 + 2KK1 + 2K + K1) + 4M(2K1

2 + 
K2 + KK1 + 2K) + K2(5J + M + 22) + K3K1

3 + 2K3+ K1
3 + 5KK1J). The average number of iterations 

required for our PARALIND decomposition algorithm is about a dozen. 

Remark A: Our algorithm obtains the estimate of correlated matrix Γ from PARALIND decomposition, 
even for partly coherent sources, the correlated matrix Γ can be acquired as well. 

Remark B: The PARALIND decomposition brings the same permutation ambiguity for the estimated 
Ĥ , Â , and Γ̂, so the elevation and azimuth angles and the correlated matrix are automatically paired. 

Remark C: If the number of sources K is unknown, it can be estimated by performing SVD for a slice 
Zi in Equation (22) and finding the number of largest singular values. 

3.5. CRB and Advantages of the Proposed Algorithm 

According to [29], we can derive the CRB of coherent angle estimation for the acoustic  
vector-sensor array with unknown locations as: 

{ }
2 1

Re ( )
2
σ −⊥⎡ ⎤= Π⎣ ⎦eH T

GCRB
J

D D P  (31)

where 2σ stands for the covariance of the noise and J denotes the number of snapshots: 
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1 1

1 1

, , , , ,K K

K Kφ φ ϕ ϕ
⎡ ⎤∂ ∂ ∂ ∂= ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

u u u uD L L with (:, )k k=u Q and =Q H Ao , 
0

0

⊥

⊥

⊥

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q

G

Q

Π
Π

Π
O  with 

( ) 1

4
H H

M

−⊥ = −QΠ I Q Q Q Q , s s

s s

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

P P
P

P P
 with 

1
( ) ( ) /J H

s j jj
t t J

=
=∑P b b  and ( ) ( )j jt t=b Γs . 

The advantages of the proposed algorithm can be presented as follows, which can be verified by the 
simulation results in Section 4: 

(1) The proposed algorithm is effective for coherent and incoherent two-dimensional angle 
estimation. 

(2) The proposed algorithm does not require precise knowledge of the characteristics of the 
receiver array. 

(3) The proposed algorithm can archive automatically paired angles and the corresponding 
correlated matrix. 

(4) The proposed algorithm has much better angle estimation performance than conventional 
FBSS-ESPRIT algorithm which only works for uniform array. 

(5) The proposed algorithm has considerably performance for angle estimation of closely 
spaced sources. 

4. Simulation Results 

In most of the following simulations, we assume that there are 3 sources in which only source 1 and 

source 3 are coherent, namely the correlated matrix is 
1 0 T     1⎡ ⎤

= ⎢ ⎥0   1   0⎣ ⎦
Γ .  

The sources are located at angles (φ1,ϕ1) = (−15°, 10°), (φ2,ϕ2) = (25°,20°), and (φ3,ϕ3) = (35°,30°), 
respectively. M, J, and K denote the number of receive sensors, snapshots, and sources, respectively. 
We present 1000 Monte Carlo simulations to assess the angle estimation performance of the proposed 
algorithm. Define root mean squared error (RMSE) as follows:  

1000 2 2
, ,1

1

1 1 ˆ ˆ( ) ( )
1000

K

k l k k l kl
k

RMSE
K

φ φ ϕ ϕ
=

=

= − + −∑ ∑  (32)

where φk and ϕk denote the perfect azimuth and elevation angle of kth source, respectively. ,k̂ lφ  and 

,ˆk lϕ  are the estimates of φk and ϕk d in the lth Monte Carlo trail. 
In order to present the angle estimation performance comparison of the proposed algorithm and 

FBSS-ESPRIT algorithm, we assume that the acoustic vector-sensor array is a uniform linear array 
(ULA) in Figures 2 and 3. Figure 2 depicts the two-dimensional angle estimation with M = 12, J = 100,  
K = 3, and SNR = 15 dB. It illustrates that our algorithm is effective for paired two-dimensional angle 
estimation using ULA. Figure 3 presents the angle estimation performance comparison of the proposed 
algorithm, FBSS-ESPRIT algorithm, and CRB with M = 12, J = 100, and K = 3. It is shown that our 
algorithm possesses much better angle estimation performance than the FBSS-ESPRIT algorithm in 
the ULA situation. 
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Figure 2. Angle estimation of our algorithm for ULA in SNR = 15 dB (M = 12, J = 100, 
and K = 3). 

 

Figure 3. Angle estimation performance comparison for ULA (M = 12, J = 100, and K = 3). 

 

The following Figures 4–8 are for the case of arbitrarily spaced acoustic vector-sensor arrays 
subject to unknown locations, and we assume that the column full rank receive direction matrix is 
generated randomly. Figure 4 presents the two-dimensional angle estimation of the proposed 
algorithm with M = 12, J = 100, K = 3, and SNR = 5 dB, and Figure 5 depicts the angle estimation 
with M = 12, J = 100, K = 3, and SNR = 15 dB. Figures 4 and 5 illustrate that our algorithm is 
effective for paired two-dimensional angle estimation using arbitrary acoustic vector-sensor arrays. 
Figure 6 presents the angle estimation performance comparison of the proposed algorithm and CRB 
with M = 12, J = 100, and K = 3, while Figure 7 depicts the angle estimation performance 
comparison with M = 10, J = 50, and K = 3. 
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Figure 4. Angle estimation of our algorithm in SNR = 5 dB (M = 12, J = 100, and K = 3). 

 

Figure 5. Angle estimation of our algorithm in SNR = 15 dB (M = 12, J = 100, and K = 3). 

 

Figure 6. Angle estimation performance comparison (M = 12, J = 100, and K = 3). 

 

Figure 8 depicts the proposed algorithm estimation performance with different J (M = 12, and  
K = 3). It illustrates that the estimation performance becomes better in collaboration with J increasing 
and the proposed algorithm is effective in small snapshots. Figure 9 shows angle estimation performance 
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of the proposed algorithm with different K (M = 12 and J = 100). It is indicated that the angle estimation 
performance of our algorithm is gradually improving as the number of sources is reduced. 

Figure 7. Angle estimation performance comparison (M = 10, J = 50, and K = 3). 

 

Figure 8. Angle estimation performance of our algorithm with different J. (M = 12, and K = 3). 

 

Figure 9. Angle estimation performance of our algorithm with different K (M = 12, and J = 100). 

 
We assume two coherent closely spaced sources located at angles (φ1,ϕ1) = (0°,30°),  

(φ2,ϕ2) = (2°,28°). Figure 10 displays angle estimation of closely spaced sources exploiting the 
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proposed algorithm with M = 12, J = 100, K = 2, and SNR = 15 dB. It implies that our angle algorithm 
has considerably good performance for angle estimation of closely spaced sources. 

Figure 10. Angle estimation of our algorithm for closely spaced sources. 

 
For non-coherent sources, the proposed algorithm becomes the PARAFAC algorithm [14]. In  

non-coherent sources, we compared our algorithm against the ESPRIT algorithm [7] and CRB.  
Figure 11 presents angle estimation performance comparisons with K = 3, M = 8 and L = 150. It is 
indicated our algorithm has better DOA estimation performance than the ESPRIT algorithm [7].  

Figure 11. Angle estimation performance comparison for non-coherent sources. 

 

5. Conclusions 

In the present paper we have expanded the PARALIND model, originally applied to biology and 
chemistry, to acoustic vector-sensor array signal processing. The PARALIND model is used for 
coherent 2D- DOA estimation for arbitrarily spaced acoustic vector-sensor arrays subject to unknown 
locations. We have derived the PARALIND decomposition and its uniqueness in acoustic  
vector-sensor arrays, which is convenient for simulation, performance analysis and further study. Our 
algorithm obtains automatically paired 2D-DOA estimation and the correlated matrix of the sources. 
Compared with the FBSS-ESPRIT algorithm which only works for uniform arrays, our algorithm has 
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much better angle estimation performance. Furthermore, our algorithm has considerably good 
performance for angle estimation of closely spaced sources. 

Acknowledgments 

This work is supported by China NSF Grants (60801052), Jiangsu Planned Projects for Postdoctoral 
Research Funds (1201039C), China Postdoctoral Science Foundation (2012M521099), Open Project 
of Key Laboratory of Underwater Acoustic Communication and Marine Information Technology 
(Xiamen University), Hubei Key Laboratory of Intelligcnt Wireless Communications (IWC2012002), 
the Aeronautical Science Foundation of China(20120152001), Qing Lan Project  and the Fundamental 
Research Funds for the Central Universities (NS2013024, NZ2012010, kfjj120115, kfjj20110215). 

References 

1. Sun, G.; Li, Q.; Zhang, B. Acoustic vector sensor signal processing. Chin. J. Acoust. 2006, 25,  
1–15. 

2. Nehorai, A.; Paldi, E. Acoustic vector-sensor array processing. IEEE Trans. Signal Process. 1994, 
42, 2481–2491. 

3. Sun, G.; Yang, D.; Zhang, L. Maximum likelihood ratio detection and maximum likelihood DOA 
estimation based on the vector hydrophone. Acta Acustica 2003, 28, 66–72.  

4. Hawkes, M.; Nehorai, A. Acoustic vector-sensor beamforming and Capon direction estimation. 
IEEE Trans. Signal Process. 1998, 46, 2291–2304.  

5. Chen, H.; Zhao, J. Wideband MVDR beamforming for acoustic vector sensor linear array.  
IEE Proc. Radar Sonar. Navig. 2004, 151, 158–162.  

6. Hochwald, M.; Nehorai, A., Identifiability in array processing models with vector-sensor 
applications. IEEE Trans. Signal Process. 1996, 44, 83–95. 

7. Wong, K.T.; Zoltowski, M.D. Closed-form underwater acoustic direction-finding with arbitrarily 
spaced vector hydrophones at unknown locations. IEEE J. Ocean. Eng. 1997, 22, 566–575.  

8. Wong, K.T. Zoltowski, M.D. Extended-Aperture underwater acoustic multisource 
azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. 
IEEE J. Ocean. Eng. 1997, 22, 659–672.  

9. He, J.; Jiang, S.; Wang, J.; Liu, Z. Direction finding in spatially correlated noise fields with 
arbitrarily-spaced and far-separated subarrays at unknown locations. IET Radar Sonar Navigat. 
2009, 3, 278–284.  

10. Wong, K.T.; Zoltowski, M.D. Root-MUSIC-based azimuth-elevation angle-of-arrival Estimation 
with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Trans. Signal Process. 
1999, 47, 3250–3260. 

11. Wong, K.T.; Zoltowski, M.D. Self-Initiating MUSIC-based direction finding in underwater 
acoustic particle velocity-field beamspace. IEEE J. Ocean. Eng. 2000, 25, 262–273. 

12. Wang, Y.; Zhang, J.; Hu, B.; He, J. Hypercomplex Model of Acoustic Vector Sensor Array with 
its Application for the High Resolution Two Dimensional Direction of Arrival Estimation. In 
Proceedings of IEEE Instrumentation & Measurement Technology Conference (IMTC’ 2008), 
Victoria, BC, Canada, 12–15 May 2008; pp. 1–5. 



Sensors 2013, 13 5316 
 

 

13. He, J.; Liu, Z.; Two-dimensional direction finding of acoustic sources by a vector sensor array 
using the propagator method. Signal Process. 2008, 88, 2492–2499. 

14. Zhang, X.; Li, J. Trilinear decomposition-based two-dimensional DOA estimation algorithm for 
arbitrarily spaced acoustic vector-sensor array subjected to unknown locations. Wirel. Pers. 
Commun. 2012, 67, 859–877. 

15. Liu, Z.; Ruan, X.; He, J. Efficient 2-D DOA estimation for coherent sources with a sparse 
acoustic vector-sensor array. Multidimens. Syst. Signal Process. 2013, 24, 105–120. 

16. Yuan, Y.; Zhang, B.; Fan, D.; Tong, G. DFT and PSD for Estimating DOA with an Active 
Acoustic Array. In Proceedings of IEEE International Conference on Automation and Logistics, 
(ICAL’2008), Qingdao, China, 1–3 September 2008; pp. 694–699.  

17. Arunkumar, K.P.; Anand, G.V. Multiple Source Localization in Shallow Ocean Using a Uniform 
Linear Horizontal Array of Acoustic Vector Sensors. In Proceedings of 2007 IEEE Intelligent 
Information Communication Technologies for Better Human Life (TENCON 2007), Taibei, 
Taiwan, 30 October–2 December 2007; pp. 1–4.  

18. Tam, P.K.; Wong, K.T. Cramer-rao bounds for direction finding by an acoustic vector sensor 
under nonideal gain-phase responses. IEEE Sens. J. 2009, 9, 969–982.  

19. Abdi, A.; Guo, H. Signal correlation modeling in acoustic vector sensor arrays. IEEE Trans. 
Signal Process. 2009, 57, 892–903. 

20. Hawkes, M.; Nehorai, A. Wideband source localization using a distributed acoustic vector-sensor 
array. IEEE Trans. Signal Process. 2003, 51, 1479–1491. 

21. Nan, Z.; Swee, C.C.; Chew, B.A.L. Vector hydrophone array development and its associated 
DOA estimation algorithms. Asia Pac. OCEANS 2006, 2006, 1–5. 

22. Marcos, S.; Marsal, A.; Benidir, M. The propagator method for source bearing estimation.  
Signal Process. 1995, 42, 121–138 

23. Shan, T.J.; Wax, M.; Kailath, T. On spatial smoothing for direction-of-arrival estimation of 
coherent signals. IEEE Trans Acoust. Speech Signal Process. 1985, 33, 806–811. 

24. Pillai, S.U.; Kwon, B. Forward/backward spatial smoothing techniques for the coherent signal 
identification. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 8–15. 

25. Kruskal, J.B. Three-way arrays: Rank and uniqueness of trilinear decompositions with application 
to arithmetic complexity and statistics. Linear Algebra Applicat. 1977, 18, 95–138,  

26. Vorobyov, S.A.; Rong, Y.; Sidiropoulos, N.D.; Gershman, A.B. Robust Iterative. Fitting of 
Multilinear Models. IEEE Trans. Signal Proces. 2005, 53, 2678–2689. 

27. Bro, R.; Harshmab, R.A.; Sidiropoulos, N.D.; Modeling multi-way data with linearly dependent 
loadings. J. Chemometr. 2009, 23, 324–340. 

28. Bahram, M.; Bro, R. A novel strategy for solving matrix effect in three-way data using parallel 
profiles with linear dependencies. Anal. Chim. Acta 2007, 584, 397–402. 

29. Stoica, P.; Nehorai, A. Performance study of conditional and unconditional direction-of-arrival 
estimation. IEEE Trans. Signal Process. 1990, 38, 1783–1795. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


