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Abstract: This study presents a novel application of near infrared (NIR) spectral 
linearisation for measuring the soluble solids content (SSC) of carambola fruits. NIR 
spectra were measured using reflectance and interactance methods. In this study, only the 
interactance measurement technique successfully generated a reliable measurement result 
with a coefficient of determination of (R2) = 0.724 and a root mean square error of 
prediction for (RMSEP) = 0.461° Brix. The results from this technique produced a highly 
accurate and stable prediction model compared with multiple linear regression techniques. 
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1. Introduction 

Various statistical analyses have been applied to the measured spectra for the intrinsic quality 
assessment of fruits to produce higher efficiency prediction algorithms. The current study presents a 
novel application of near infrared (NIR) spectral linearisation in quantifying soluble solids content 
(SSC) of carambola (starfruit, Averrhoa carambola) fruits. The spectral linearisation technique was 
originally applied by Omar and MatJafri [1] in monitoring apple and pear decay, as well as by  
Omar et al. [2] in quantifying glucose and fructose aqueous solutions. The results from this study are 
compared with that obtained from multiple linear regression (MLR) to prove the efficiency of the new 
technique. MLR is one of the established spectral evaluation techniques, and has been widely applied 
in spectroscopic analysis for fruit quality measurement. For example, Temma et al. [3] and  
Ventura et al. [4] applied MLR for SSC measurement in apples, Abebe [5] for SSC measurement in 
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watermelon, Jaiswal et al. [6] for SSC and pH measurement in mangoes, and Jha et al. [7] for SSC and 
pH measurement in banana. The spectral linearisation technique compares the spectral linearity at a 
predefined range with the actual SSC values measured using a refractometer, unlike MLR, which uses 
selected wavelengths for prediction algorithm development. In the current study, the NIR wavelength 
range used for spectral linearisation analysis was between 940 nm and 1,025 nm. This entire selected 
wavelength range is within the strong water absorbance curve. Water spectrum, with peak absorption 
at 970 nm, was due to the second O–H stretching band overtone [8,9]. According to Tsenkova [10] and 
Buning-Pfaue [11], water is the main problem in spectroscopy analysis of other molecules in biological 
systems. However, new studies on the behaviour of water in biological and aqueous systems have been 
conducted [12]. Aquaphotimics is a new research field that describes the dynamic spectroscopy of 
biological and aqueous systems based on water behaviour [10]. The current study implements this 
concept by interpreting SSC value through the changes in water absorbance patterns. Meanwhile, 
wavelengths between 900 nm and 930 nm are important for SSC measurement [13], where the 
wavelength at 910 nm is related to the third C-H stretch overtone [14]. The application of spectral 
linearisation in quantifying the SSC of carambola has produced the highest accuracy for a prediction 
model compared with the results analysed using the MLR technique. 

2. Materials and Methods 

NIR spectra used in this study were measured using a Jaz Spectrometer (Ocean Optics Inc., 
Dunedin, FL, USA), with effective wavelengths between 700 and 1,100 nm and optical resolution of  
~0.3 to 10.0 nm (FWHM). A tungsten halogen lamp with spectral emissions between 360 nm to  
2,000 nm was used as light source. Two measurement techniques were used in to compare and define 
the measurement technique that can generate the most reliable prediction model. The first technique is 
reflectance measurement using a standard reflectance probe with six illumination fibers around one 
read fiber. Each fiber has a core diameter of 600 µm. The second technique is interactance mode, 
where the light source and detector are positioned next to each other so that the light due to specular 
reflection cannot directly enter the detector. By definition, in the reflectance measurement, the field of 
view of the light detector includes parts of the fruit surface directly illuminated by the source while in 
the interactance measurement; the field of view of the detector is separated from the illuminated 
surface by a light seal in contact with the fruit surface [15]. The fiber configurations for reflectance 
and interactance calibration are shown in Figure 1. The emitting fiber bundle from the reflectance 
probe was used in the interactance configuration, whereas the retrieving fiber was left unused. The 
resultant light signal retrieved from the fruit was collected using a single-core fiber with a core 
diameter of 600 µm, which was placed parallel to the reflectance probe. During the calibration 
measurement, the interactance probe was located about 5 cm perpendicular to the top surface of the 
white diffuse reflectance standard, as shown in Figure 1(b). The probe was located directly on top of 
the fruit sample during the fruit sample measurement for both measuring techniques. 
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Figure 1. Probe configuration for (a) Reflectance calibration setup (b) interactance 
calibration setup. 

 

Two data sets were retrieved from different sides of each carambola sample. One set was used for 
calibration algorithm development and the other was used as prediction sample set. The SSC of 
carambola juice was measured using the PAL-3 refractometer (Atago, Co., Tokyo, Japan), with a 
measurement range of 0° Brix to 93° Brix, a resolution of 0.1° Brix, and an accuracy of ±0.2° Brix. 
Table 1 list the characteristics of the carambola samples. The entire experiment was conducted in a 
constant laboratory temperature of 23° Celsius. 

Table 1. Carambola samples used in the experiment. 

Sample 
Range 

n Weight (g) SSC (° Brix) 
Carambola (B10) 50 95.45–206.19 5.8–9.4 

3. Results and Discussion 

Figure 2 shows the NIR spectra obtained through the reflectance and interactance measurement 
techniques from an intact carambola sample with 7.2 °Brix of SSC. The wavelength of 920 nm was the 
starting point, where the water absorbance increased rapidly until reaching the peak (bottom 
reflectance) at about 975 nm. A wavelength of 1,020 nm lies halfway before the NIR moved out from 
the water absorbance curve at a longer wavelength. Interactance technique has clearly shown the water 
absorbance curve on the NIR spectrum compared to reflectance technique. This is the main reason 
interactance technique has produced a much higher correlation in predicting carambola SSC. 

In finding the best range of wavelength to perform spectral linearisation, a brief statistical approach 
has been conducted on interactance spectra. Figure 3 show the coefficient of determination obtained 
when spectral linearisation was performed using different range of wavelength in calibrating 
carambola SSC. From the wavelength ranges selected for the analysis, wavelengths between 940 nm 
and 1,025 nm produced the best calibration accuracy (R2 = 0.769). Hence, detailed study on the 
development of algorithm in predicting carambola SSC has been conducted by using this  
wavelength range. 
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Figure 2. NIR reflectance and interactance spectra of an intact carambola. 

 

Figure 3. Calibration accuracies from different range of wavelength conducted on 
interactance spectra. 

 

Figures 4 illustrate the technical method of spectral linearisation on reflectance and interactance 
spectra. Both figures show that the spectra from the low SSC sample (unripe fruit) was located 
completely above the reflectance from the sample with high SSC (overripe fruit). The spectra pattern 
indicates that this scenario results from the combination of specular and diffuse reflectance from the 
samples with different surface firmness levels. Fully ripened fruits with softer surfaces allow more light 
penetration through the sample, hence, reducing the reflectance simultaneously at all wavelengths. 

Carambola with lower SSC value exhibited a steeper spectral absorbance curve compared with 
those with higher SSC (Figure 4). SSC (in °Brix) is the percentage of sugars and other soluble solids in 
water, therefore, a steeper absorbance curve refers to higher water content per aqueous fruit sample 
volume (juice). Spectral steepness is directly associated with the absorbance curve linearity; thus, 
allowing SSC to be evaluated quantitatively through a technique called spectral linearisation. Spectral 
linearisation is defined by the value of the linear coefficient of determination, R2 generated from each 
spectrum. For instance, the linearity of reflectance spectrum increased from 0.0962 to 0.2245 with 
increased SSC from 5.8° Brix to 9.1° Brix. 
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Figure 4. Spectra for two different levels of carambola SSC measured through  
(a) Reflectance (b) Interactance. 

 
(a) 

 
(b) 

Equations (1) and (2) explain the relationship between spectral linearity obtained from the 
calibration data set and carambola SSC through reflectance and interactance spectra, respectively. This 
step evaluates the ability of the developed algorithms in producing consistent measurement accuracy 
levels. The interactance technique produces significantly higher linear coefficient of determination  
(R2 = 0.769) and lower root mean square of error (RMSEC = 0.422° Brix) compared with the 
reflectance technique (R2 = 0.614; RMSEC = 0.545° Brix): 

SSC (° Brix) = 5.05 + 17.2 (R2
940-1025) (1)

SSC (° Brix) = 2.66 + 80.9 (R2
940-1025) (2)

The relationship between the predicted and actual carambola SSC via the interactance technique  
is illustrated in Figure 5. The interactance measurement technique sustains high accuracy levels  
in predicting carambola SSC with R2 = 0.724 and root mean square error of prediction  
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(RMSEP) = 0.461° Brix, whereas the reflectance technique produces poor prediction accuracy with  
R2 = 0.459; RMSEP = 0.645° Brix. 

Figure 5. Prediction of carambola SSC through interactance spectral linearisation. 

 

Table 2. Results obtained through MLR on visible and NIR spectroscopy data. 

Wavelength (nm) Spectral Treatment Methods 
Calibration Prediction 

R2 RMSEC R2 RMSEP 

940–1,025 Spectral Linearisation 
Reflectance 0.614 0.545 0.459 0.645 
Interactance 0.769 0.422 0.724 0.461 

450, 470, 580, 615, 650, 
670, 730, 740, 911, 950, 970 

Multiple Linear 
Regression 

Reflectance 0.860 0.369 0.656 0.515 
Interactance 0.782 0.460 0.702 0.479 

493, 548, 562, 702, 953 
First Derivative + 

Savitzky-Golay, Multiple 
Linear Regression 

Reflectance 0.562 0.606 0.346 0.709 

Interactance 0.739 0.468 0.659 0.513 

In the application of interactance spectral linearisation for carambola SSC measurement, the 
technique significantly improved the NIR ability to quantifycarambola SSC. The improvement was 
from the developed high accuracy prediction model compared with those conducted through MLR, an 
established statistical method for spectroscopy analysis. Table 2 shows the two other sets of results 
which were obtained using the MLR technique and also MLR technique with first derivative and 
Savitzky-Golay smoothing technique on visible and NIR spectroscopy data. Data are usually 
derivatized to remove background noise from spectra, for example specular light reflection [16]. 
Besides, Savitzky-Golay smoothing is also one of the methods often used to eliminate noises from 
spectra [17]. Visible wavelengths were included in the comparative analysis because NIR data alone 
does not produce any significant results (R2 < 0.4). The failure analysis of NIR interpretation using 
conventional MLR is expected due to high specular reflectance from the glossy fruit surface. The 
calibration results using MLR showed even better linearity compared with the spectral linearisation 
technique, having prediction results with much lower accuracy. 
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4. Conclusions 

This study successfully highlighted the importance of spectral linearisation as an alternative 
technique in quantifying SSC of carambola fruits. Only the interactance measurement technique 
managed to generate a reliable prediction algorithm with R2 = 0.724 and RMSEP = 0.461° Brix; 
producing higher prediction accuracy compared with MLR. The application of MLR in this study 
requires the addition of visible wavelength ranges to generate a useful prediction model. Future 
research using the spectral linearisation technique should focus on the development of a mathematical 
representation of the technique and the application of this technique on different fruit types with larger 
sample size; particularly those with broader SSC ranges. 
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