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Abstract: We propose a fully automated algorithm that is able to select a discriminative 
feature set from a training database via sequential forward selection (SFS), sequential 
backward selection (SBS), and F-score methods. We applied this scheme to microcalcifications 
cluster (MCC) detection in digital mammograms for early breast cancer detection. The 
system was able to select features fully automatically, regardless of the input training 
mammograms used. We tested the proposed scheme using a database of 111 clinical 
mammograms containing 1,050 microcalcifications (MCs). The accuracy of the system 
was examined via a free response receiver operating characteristic (fROC) curve of the test 
dataset. The system performance for MC identifications was Az = 0.9897, the sensitivity 
was 92%, and 0.65 false positives (FPs) were generated per image for MCC detection. 

Keywords: mammography; clustered microcalcification; texture features; support  
vector machines 
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1. Introduction 
 

Cancer is one of the major causes of death in the World. There are many types of cancers, and its 
rates of occurrence differ, not only between men and women, but also between geographical areas. 
Breast cancer is the most common type of cancer among women in many developed countries [1]. Like 
most cancers, breast cancer has a high mortality rate, but is difficult to diagnose before the 
development of signs or symptoms. Early diagnosis and treatment plays an important role in improving 
survival rates and prognoses. For this reason, regular mammography and sonography screenings are 
recommended for women over forty years of age [2]. 

For the early detection of breast cancer, mammography is considered to be more effective than 
other imaging modalities at recognizing the typical sign of cancer—microcalcifications (MCs)—in the 
breast tissue. The appearance of MCs in a clustered distribution is considered to be a strong indicator 
of malignancy [3,4]. After a verification biopsy, there is a 15–34% chance of a malignant lesion 
developing in the MC tissue [5,6]. Clinically, clustered microcalcification is a meaningful indicator for 
breast cancer during mammography [7]. However, experts encounter a number of problems when 
manually reading mammograms: (1) dense breasts can cause low contrast between MCs and normal 
tissue, which results in reading difficulties, and (2) there exists a risk that radiologists might miss some 
subtle abnormalities. Moreover, analyzing a large number of mammograms generates a heavy 
workload for radiologists. Therefore, having a CADe system is helpful in clinical settings. 

Computer-aided detection systems were developed to assist radiologists in reading mammograms 
many years ago. The first CADe system received FDA approval in 1998 [8]. Clinically, radiologists 
often use a CADe system to detect lesions and then make diagnoses. The system is considered to be a 
promising approach that may improve the sensitivity of interpreting mammograms [9–11]. In addition, 
CADe systems reduce radiologists’ reading loads. CADe systems that are combined with 
mammography machines are expensive to upgrade [12], especially when the software is not optimized 
for use with certain imaging machines. For this reason, many researchers have proposed their own 
algorithms to detect MCCs, although most researchers and clinicians may have access to a CADe 
system. One of the recent streams of research involves using different imaging modalities 
(mammography and MRI) to increase the sensitivity of computer-aided diagnosis (CADx) [13]. 

Many previous studies have proposed different CADe systems for mammogram scanning. These 
systems can be grouped into two categories: supervised and unsupervised methods. Generally, 
supervised methods have some essential processes: 

• Detect the breast area; reduce the intensity resolution; 
• Use some pre-processing techniques such as enhancement or filtering to find suspected MCs; 
• Extract features from training sample sub-images; 
• Training a classifier to distinguish MCs from noise to find useful features. 

The first item is a pre-processing step that is not only able to enhance images, but also reduce the 
computation time required for the following steps. This step is needed because both the spatial 
resolution and intensity resolution of mammograms is large. However, the breast area might occupy 
only one-third to one-fourth of the entire mammogram. Pre-processing can be achieved via some basic 
image processing techniques. Rather than analyzing the whole image, applying classifications only to 
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MC candidates obtained from the pre-processing step can decrease computation complexity [14].The 
next three steps are also critical. Most state-of-art algorithms apply supervised methods [15,16] rather 
than unsupervised methods [17]. For this reason, we proposed a fully automated scheme for feature set 
selection from the training database and applied it to MCC detection. 

The most common features used for MC detection can be roughly divided into two categories. One 
category is morphological features such as area, shape, compactness, etc. The other category is textural 
features [18,19]. The limitation of using morphological features depends on the image’s spatial 
resolution [20] and the robustness of the MC segmentation algorithms [21]; the more precise the 
extraction of the MC shape, the better the classification performance. However, in some of our cases, 
the contrast between MCs and the surrounding tissues was very low, and it was difficult to segment 
MCs clearly, especially in younger women who have more dense breasts. For this reason, the 
morphological features proposed in [21] were inappropriate for MC detection in our test cases. Instead, 
the shape information was used during the knowledge-based classification as a noise reduction 
procedure in our study. In contrast, textural feature analysis seemed to be able to alleviate the MC 
segmentation problem, likely because it can capture textural changes in the MCs’ surroundings. 

The significance of this study is that we proposed a scheme that is able to automatically select 
discriminate features via SFS, SBS, and F-score methods. This scheme was applied to MC 
identification and MCC detection in digital mammograms. The structure has four stages, briefly 
described as follows. In the first stage, the mammogram was filtered so that only suspicious MC 
candidates remained. To do so, a hybrid filter consisting of a wavelet filter, a top-hat filter, and  
15 Laws filters was applied to alleviate the problem of low contrast between MCs and surrounding 
breast tissue. This filtering not only lessened the low contrast problem but also reduced the tremendous 
computation time because only high-frequency components remained for further processing. In the 
second stage, all candidates were examined by a knowledge-based classifier to reduce the number of 
false positives (FPs). Furthermore, the remaining candidates were classified by support vector 
machines (SVM) via a set of features after an automatic feature selection, in which the optimal 
parameter sets for SVM were also determined. Finally, we clustered individual MCs to MCCs and 
marked the identified MCCs on the images as a result. 

The rest of this paper is organized as follows: Section 2 introduces our mammogram database and 
methods of pre-processing, filtering, feature extraction, automatic feature selection, training, and 
classification. Our experimental results are shown in Section 3. We then discuss our method and 
methods from other groups in Section 4. Finally, the conclusions are provided in Section 5. 
 
2. Methods 
 
2.1. Datasets and Ground Truth 

 
Fifty-two patients (cases) with clinical reports were collected, from which a total of 111 digital 

mammograms were acquired. The image gray-level resolution was 14-bit per pixel. Each patient had at 
least one craniocaudal (CC) view and one mediolateral oblique (MLO) view. All the mammograms, 
which were representative images containing MCCs, were acquired from China Medical University 
Hospital. The patient mammograms were selected by two radiologists, who selected mammograms 
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that they both agreed contained precisely recognizable MCs. Patients whose mammograms were not 
able to be identified consistently by these two radiologists were excluded. To establish ground truth, all 
mammogram readings were performed by these two experienced radiologists independently. One 
radiologist was a senior clinician who has worked in this area for over ten years. The other radiologist 
was young and has worked more than two years. In each mammogram, a rectangle (or some 
rectangles) was drawn to enclose the MCCs, and a point was manually marked in the center of each 
MC. The rectangles were drawn as small as possible to cover the MCCs. The manually identified MCs 
were set as the gold standard used as the ground truth to which the automated results were compared.  

To make a statistical analysis, we used 2-fold cross-validation [22,23] to test our algorithm.  
The dataset was randomly separated into two subsets. One subset containing 26 cases (more than  
50 images) was used as the training dataset, and the remaining 26 cases (more than 50 images) were 
grouped into the test subset. The validation scheme is shown in Figure 1. We used 2-fold  
cross-validation instead of other methods such as 10-fold cross-validation because it could estimate the 
system performance more reliably.  

Figure 1. Two-fold cross-validation test. 

 

2.2. Image Pre-Processing, Filtering, and Feature Extraction 

Figure 2 shows a flowchart of the proposed method. The details of each procedure are discussed in 
the following subsections. 
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Figure 2. A flowchart of the proposed method. 

 

2.2.1. Inverted Logarithmic Transform (ILT) and Breast Region Detection 

To avoid the impact of manufacturers’ proprietary pre-processing steps, we used raw images as the 
sources. In the clinic, mammograms are usually viewed as an inverse of the raw image. The raw 
images were transformed from 14 to 12 bits, and then the images were negatively transformed to fit 
clinical reading conditions by applying an inverted logarithmic transformation (ILT) [24]. This step 
not only reduced the intensity resolution but also enhanced the image [25]. The algorithm was 
performed on the 12-bit images after the ILT transform. The details of ILT were presented in [24].  

After image transformation, the breast region was determined to speed up the later computations. 
To do so, a binarization procedure was applied. The threshold value was automatically determined 
using Otsu’s method [26], which minimizes the within-class variance. Next, region growing [25] was 
performed. The largest region was considered to be the breast region, and the remaining regions were 
ignored to reduce the computation load. 

2.2.2. Image Filtrations: Top-Hat, Wavelet, and Laws 

Two popular filtrations were utilized. Top-hat filtration was used to alleviate the uneven background 
problem, whereas wavelet filtration was used to obtain high-frequency components (i.e., MCs). 

Top-hat. Top-hat filtering was used to segment spot-like objects with an uneven background 
intensity [14]. It is a mathematical gray-level morphology technique: 

P = I − [(I⊙S) ⊕S] (1)

where: 
P: resultant image; 
I: input image (transformed image);  



Sensors 2013, 13 4860 
 

 

S: structure element, disk shape, radius is 7 pixels; 
⊙: morphological erosion operation; and 
⊕: morphological dilation operation. 
After the image subtraction operation, the peaks (MCs and noises) from the input image were easier 

to detect. 

Wavelet. Discrete wavelet transformation is a popular technique for feature extraction in many  
areas [27]. The area of a single MC is small and usually has greater contrast than the surrounding 
background. Therefore, MCs have relatively high-frequency components in wavelet decomposition. 
This difference could provide valuable information to distinguish MCs from other tissues. To obtain 
the high-frequency components and the positions of MCs, we removed the low-frequency components 
and then reconstructed the image. To do so, we used a two-level two-dimensional (2D) wavelet 
transformation [19,28]. 

The input image was decomposed row-by-row and column-by-column using the one-dimensional 
wavelet transform. This step yielded four quarter-sized sub-bands, and the lowest frequency sub-band 
was further decomposed. The Daubechies’ four-coefficient (DAUB 4) filter was more “spike-like” and 
needed less computation time than the other Daubechies’ wavelet filters [19,28].  

Two-level DAUB 4 filters were applied to the images after ILT transform. Subsequently, seven 
sub-bands could be obtained. We eliminated the lowest frequency sub-band on the second level and 
then reconstructed the filtered image. In this way, we preserved the useful information regarding MCs 
and removed the low-frequency components. Thus, the uneven background and low-contrast problems 
were alleviated by the top-hat and the wavelet filters, respectively. 

Laws. We applied Laws filters to produce 15 Laws [29] images for further textural feature 
extraction [21,29]. The 15 Laws images were a composition of different low-pass, band-pass, and 
high-pass filters named as follows: LL, EE, SS, RR, WW, LE, LS, LR, LW, ES, ER, EW, SR, SW and 
RW. For instance, LL was a resultant image filtered by a low-pass filter in the x-direction and then a 
low-pass filter in the y-direction. These filters were created by five basic kernels as follows: 

          L  =  [  1   4   6   4   1  ] 
          E  =  [ −1  −2   0   2   1  ] 
          S  =  [−1   0   2   0  −1  ] 
          W  =  [−1   2   0  −2   1  ] 
          R  =  [  1  −4   6  −4   1  ] 

Therefore, LE refers to a resultant image filtered (via a convolution calculation) by a mask 
generated by the vector outer product L ⊗ E. 

2.2.3. Textural Feature Extraction (GLCM) 

The gray-level co-occurrence matrix (GLCM) [30] is a well-known and popular technique for 
extracting texture information from images. The GLCM element Pθ,d(i,j) represents the joint 
probability of the occurrence of gray levels i and j for a pixel pair separated by a distance d with an 
angle θ. There were many features listed in the literature that could be used to extract information from 
co-occurrence matrices. In this study, we used 14 features (with d = 1 and θ = 0°, 45°, 90°, and 135°) 
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shown in Table 1 [30,31] and extracted information from a sub-image of size 16 × 16 centered on the 
suspected MC [14,24]. 

Table 1. Fourteen textural features were extracted from GLCM [30]. 

1 Contrast 6 Prominence 11 Sum average 
2 Homogeneity 7 Inverse difference moment 12 Sum entropy 
3 Energy 8 Entropy 13 Difference entropy 
4 Correlation 9 Intensity 14 Difference variance 
5 Shade 10 Sum of squares variance   

To obtain as much textural information as possible, we applied top-hat, wavelet, and Law’s filters 
to the ILT images. Including the ILT image itself, textural information from these 18 resultant images 
(named as feature images) were extracted via the 14 features (each one had four angles) calculated 
from their corresponding GLCM. Thus, we generated a total of 56 (=14 × 4) textural features to 
represent a feature image. 

2.3. Detection of MC Candidates 

After image filtration (top-hat and wavelet), the candidates, including MCs and noise, could be 
detected. This filtration step was to limit the classification only to the candidates rather than analyze 
the whole breast region, which helped to reduce the computation time and decrease the false positive 
rate. The detection of MC candidates for top-hat- and wavelet-filtered images differed. A knowledge-
based classification procedure was followed after these two filtrations. 

Top-hat-filtered image: Our goal was to segment individual MC candidates. After top-hat filtration, 
the Otsu method was again used to find the threshold value on the filtered images. However, this 
threshold value was not used to produce a binary image but to decrease the gray level of the whole 
image and set any gray-values under this threshold to zero. This step was performed as follows: 

⎩
⎨
⎧

−
<

=
     otherwise  ),(

),( if               0
),('

TyxI
TyxI

yxI  (2)

The Sobel and Canny edge detection techniques were then applied to detect the MC edges 
individually [14]. After edge detections, a flood-filling operation was used to fill all objects with 
closed contours for both results generated by the Sobel and Canny operators. Subsequently, these two 
filled binary images underwent a morphological open operation to break off connective candidates. 
Then, to reduce the number of false negatives (FNs), these two images were subjected to a logical OR 
operation to produce a new binary image. The reason for using two types of edge detection methods 
was based on the fact that we had observed that no single method could detect all of the MCs. 
However, this dual detection resulted in another problem: the number of candidates was significantly 
increased. To control the number of candidates, the above procedures were performed iteratively via 
either increasing or decreasing the threshold value until the number of candidates was within a 
predefined range. This procedure is shown in the left column in Figure 3. After this process, a binary 
image was obtained, which was regarded to be MC candidates. 
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Wavelet filtered image: The detection of MC candidates from the wavelet-filtered image occurred 
through a similar process. The reconstructed image preserved high-frequency components, which were 
regarded to be MCs and noise. The iterative thresholding technique described in the right column of 
Figure 3 was performed on the reconstructed image. The predefined range for the number of candidate 
were set empirically by [450, 550] and [350, 400] for top-hat- and wavelet-filtered images, 
respectively. This process also produced a binary image. Ultimately, these two binary images  
(top-hat- and wavelet-filtered images) were combined via a logical OR operation. This image was a 
candidate mask indicating where the candidates were located. 

Figure 3. The flowchart of MC candidate detection in the top-hat- and wavelet-filtered images. 
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Figure 3 is the flowchart illustrating the process of generating a MC candidate mask using top-hat 
and wavelet filtering. After the candidate mask was made, a knowledge-based classification step 
followed to remove some FPs. Then, feature extractions were performed only on the remaining 
candidates so that the computation time could be considerably reduced. 

2.4. Knowledge-Based Classification (Noise Reduction) 

The output images resulting from the previous steps might contain many false positives (FPs, 
noise). This possibility was because the wavelet extracted high-frequency components without 
consideration of any shape information. The noise included breast border line sections, artificial 
markers, etc. According to their characteristics and shape information, a knowledge-based 
classification step was designed to remove as much noise as possible. The candidates were removed if 
they fit one of the following knowledge rules: 

• Size: if the candidate was larger than 100 pixels. Because the MC should be small, a large 
calcification might not be a typical symptom of malignancy. Some artificial markers used 
for localization were attached to a patient’s skin. These markers might cause false-positive 
candidates. These types of candidates were considered to be noise and were removed. 

• Shape: if the shape was line-like. This determination was performed by checking the  
width-to-height ratio of the candidate and checking its elongation and compactness. If the 
elongation was larger than 3.5 and if the compactness was less than 0.38, then the candidate 
was considered to be noise. These numbers were set empirically. The definitions for 
elongation and compactness are defined as follows: 

⎭
⎬
⎫

⎩
⎨
⎧

Δ
Δ

Δ
Δ=

x
y

y
x ,maxelongation  (3)

yx
area

Δ×Δ
=scompactnes  (4)

where Δx and Δy are the longest axes along the x- and y-direction (width and height) of the 
candidate, respectively. 

• Single candidate in a local area: this system should be able to identify a MC cluster but not a 
single MC. Consequently, any isolated MCs had to be ignored. If less than three candidates 
were located in a 1 cm2 [32] area, we defined it to be an isolated MC and simply removed 
the hit from the candidates. 

2.5. Automatic Optimal Feature Set Selection 

There were 18 total feature images: 15 from Laws filtering, one from wavelet filtering, one from 
top-hat filtering, and one from the ILT transform without any filtering. Each feature image resulted in 
56 features. Not all features performed well in MC detections. High-dimensional feature vectors 
imposed a high computational cost, as well as added a risk of over-fitting in classification [33]. 
Therefore, finding the most discriminatory feature set was important [34]. In this study, we used 
sequential forward search (SFS), sequential backward search (SBS) [35], and F-score [36] methods to 
select better features. SFS was a bottom-up search procedure beginning with an empty feature set and 
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ending when all features were added; one feature at a time was added to the current feature set [14,19]. 
SBS was the top-down counterpart of the SFS method. It started from the complete set of features and 
discarded the least discriminatory feature at each stage [16,19]. The F-score selection was a simple 
method that measured the discrimination of two sets having real numbers [37,38]. In the  
F-score selection procedure, the feature with the largest F-score was included in a feature set for the 
following selection among the remaining available features. 

The discriminatory ability of the features was determined by comparing the selection results to the 
ground truth using the mean square error (MSE) defined as follows: 

∑ = −= s
i ii cg

s
MSE 1

2)(1  (5)

where i was the ith pattern to be classified, s was the total number of test patterns, gi was the ground 
truth, and ci was the classified result. 

The 5-fold cross-validation from the training dataset was used to obtain an averaged MSE. A 
smaller MSE value meant a better feature set. Therefore, the feature subset that generated the 
minimum MSE was used for the training classifier. 

2.6. SVM: Optimal Parameter Determination 

SVM was capable of extracting the optimal solution with a small training set size. It was based on the 
principle of structural risk minimization, which aims to minimize the bound on the generalization error. 
Therefore, SVM tended to perform well when applied to data outside the training set [14,15,38,39]. 
The kernel function used here was the radial basis function (RBF). The formula for RBF is: 

( )2||||exp),( zxzxK −−= σ  (6)

Once a kernel function had been adopted, the kernel parameters (here σ), as well as the smoothing 
parameter C, could be investigated in the cost function to obtain an optimal classifier [33]. 

Training process: To obtain an optimal parameter set, we used a grid space of (C, σ) with log2 C Ԗ 
{−5, −3, ..., 15} and log2σ Ԗ 2 {−15, −13, ..., 3}. For each pair (C, σ) in the search space, we conducted 
5-fold cross-validation on the training set. Finally, we chose parameters with the lowest  
cross-validation error rate for SVM on each filtered image. All training sub-images were extracted 
from MC candidates. According to the ground truth, sub-images corresponding to true MCs were 
classed to “MC training set” (MC present), and the rest were classed to “normal training set” (MC 
absent). Because the “normal training set” had a larger number of images than the “MC training set,” 
we randomly selected training patterns from the normal training set. To control the number of FPs in a 
lower level which simultaneously achieving an acceptable sensitivity, the number of normal training 
patterns (MC absent) was five times [40] that of the number of MC training patterns (MC present). The 
optimal parameter set for each SVM was obtained by checking the accuracy of classification on the 
training dataset for each (i-th) MC candidate ( )(iMCcan ). However, for each SVM, we had 
classification results ( .18,...,2,1 },0or  1{)()( == jiC jSVM ) on the i-th MC candidate, meaning that there 
were 18 classification results for each MC candidate, resulting in possible inconsistencies. These 18 
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classification results had to be combined to generate a final decision. To perform the combination, we 
defined a decision rule as follows: 

⎪⎩

⎪
⎨
⎧ ≥= ∑ =

                     otherwise   False,
)( if    True, 

18
1j )( NiC(i) MC jSVM

can , (7)

where ‘true’ denoted that the i-th MC candidate was a true MC and N was a threshold. We found if  
N = 1, there were many FPs, and if N = 18, the sensitivity was too low. To study the relationship 
between N and sensitivity, a fROC curve was used, and its results are shown in Section 3.  

Test process: A total of 18 SVMs were trained, and their corresponding optimal parameter sets were 
obtained as described in the training process. The test dataset was pre-processed using the same 
procedures as in the training process, including ILT, wavelet, top-hat, and Laws filtering. Then, binary 
images containing MC candidates were obtained. The knowledge-based classification was followed to 
remove false positives. The remaining candidates were subjected to the textural feature extractions 
using the optimal feature selection method for each corresponding feature image found in the training 
process (marked gray in Table 2). These 18 feature images (extracted from 18 filtering images 
centered in each candidate) were classified by their corresponding SVMs, and each SVM gave a 
classification result for every individual candidate. The fROC curve was used to study the system 
accuracy and the false positive rate. 

Table 2. Performances of different selection methods with respect to 18 feature images in 
the training process. 

 ILT Top-hat Wavelet LL EE SS RR WW LE 
SFS 0.9758 0.9749 0.9719 0.9755 0.9686 0.9419 0.6749 0.8459 0.9820 
SBS 0.9745 0.9764 0.9729 0.9756 0.9707 0.9503 0.6866 0.8531 0.9816 

F-score 0.9737 0.9774 0.9726 0.9753 0.9730 0.9339 0.6758 0.8588 0.9751 
ALL* 0.9728 0.9775 0.9702 0.9748 0.9758 0.9295 0.6812 0.8403 0.9732 

 LS LR LW ES ER EW SR SW RW 
SFS 0.9882 0.9119 0.9646 0.9267 0.9014 0.9559 0.8422 0.9030 0.7529 
SBS 0.9896 0.9199 0.9619 0.9499 0.9010 0.9435 0.8465 0.9057 0.7408 

F-score 0.9874 0.8994 0.9634 0.9503 0.9019 0.9275 0.8339 0.9025 0.7408 
ALL 0.9878 0.9006 0.9570 0.9271 0.9022 0.9275 0.8339 0.9000 0.7408 
* ALL indicates that all 56 features were used in SVM; The numbers in the table represent the area under 
curve (Az) of ROC. 

2.7. Performance Evaluation  

Regarding the performance evaluation of MCCs, we applied the evaluation criteria proposed  
by [32]. Their two criteria are listed as follows.  

1. The ratio of the overlapping area made by the automatic detection and the ground truth made 
by professional physicians is greater than 50%, and the detected area is not larger than four 
times of the ground truth area.  

2. At least three MCs are detected within 1 cm2 of the nearest neighbor to form a MC cluster.  
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According to these criteria, we calculated the system sensitivity with respect to FPs per image to 
evaluate the performance of the proposed system. 

3. Results 

Figure 4 shows our image before and after ILT. The raw image is not for clinical use. ILT could not 
only reduce the image depth from 14-bit to 12-bit but also did performed image enhancement in the 
breast region so that MCs could be viewed visibly. 

Figure 4. The image before and after ILT. (a) The raw image. (Image depth: 14-bit);  
(b) The ILT image (image depth: 12-bit). 

 

Figure 5 presents the image before and after filtering. Figure 5(a) is the ILT image without any 
filtering. Figure 5(b,c) are the filtering results from the top-hat and wavelet methods, respectively.  
The MCs were enhanced noticeably enhance in the resulting images, and other homogeneous regions 
were ignored. 
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Figure 5. The image before and after transformation and filtering. (a) The raw image;  
(b) The ILT image; (c) After top-hat filtering; (d) After wavelet filtering. 

 

Figure 6 illustrates the image results after Laws filtering.  

Figure 6. The results after Laws filtering. 
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Twenty-six cases contained more than 50 images in the training dataset were used for studying the 
performance of feature selection. The performance results of 18 different filtered images with respect 
to three different feature selection methods are shown in Table 2. To understand the effect of feature 
selection, we also used all features (56 features: listed in the fourth row in Table 2) to compare the 
three selection methods. The performance was evaluated by Az (area under curve) values. In Table 2, 
the Az values marked in gray represent the best results for each column. From Table 2, we noted that 
the texture features extracted from a LS image with SBS feature selection (in which 22 features were 
selected) achieved the best performance. The LE image with SFS (in which 14 features were selected) 
was the second best. The third best was the top-hat filtered image (in which all features were selected). 
Notably, there were only three out of eighteen cases for which the system achieved the best 
performance using all the features. In most situations, the performance was improved when feature 
selection was used. Our results have confirmed that a hyper-feature dimension risked over-fitting 
problems in classification [33]. Furthermore, the SFS and SBS methods appeared to be more effective 
than the F-score method. The optimal SVM parameters chosen for the 18 feature images are shown in 
Table 3. These parameters were obtained using the training dataset. The results demonstrate that different 
feature images had different optimal parameter sets for SVM. The optimal parameter sets were applied in 
the test dataset.  

Table 3. The optimal parameter sets of SVM with respect to the 18 feature images. 

Parameters ILT Top-hat Wavelet LL EE SS RR WW LE 
log2 C 13 9 2 14 5 12 14 13 15 
log2σ −12 −10 −7 −12 −10 −12 −12 −12 −13 

Parameters LS LR LW ES ER EW SR SW RW 
log2 C 3 6 2 13 8 7 8 14 11 
log2σ −7 −8 −6 −12 −12 −10 −10 −14 −11 

Figure 7. A GUI was designed for manual identification of MCs and MCCs. 
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In this study, a GUI (graphic user interface) was designed in the Matlab platform [41] to generate a 
gold standard. The manual identification of the MCs was performed by two independent radiologists. 
Using the GUI, the expert could identify individual points of MCs in the mammogram and drew a 
rectangle area to define a MC cluster manually, as shown in Figure 7. Another GUI program was 
developed for the process described in this paper to detect the MCs and further marked the clustered 
MCs fully automatically.  

Figure 8 shows the detected individual MCs marked by small squares. Figure 9 shows the detected 
MC cluster marked by rectangles. There are four rectangles in Figure 9, two of which were made 
manually and another two marked automatically. The automated results were very similar to the 
manually selected results. These two MCC were successfully detected and marked. 

Figure 8. The automated MC detection results. 

 

To study the relationship between N and sensitivity (Section 2.6), a fROC curve was used.  
Figure 10 shows the relationship between N and the sensitivity (and FPs) of the training dataset. There 
were 18 SVMs. If N = 1 then the system achieved 100% sensitivity; however, the FP rate was 3.4 per 
image. When N was increased, the sensitivity decreased and so did the number of FPs. Figure 10 is the 
fROC curve. This curve was generated by testing integer N in the range of [1,18]. We defined the 
following criterion to determine which N to use: the largest sensitivity whose FP is less than 1. In 
Figure 10, the optimal value was N = 4. 
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Figure 9. The automated MC cluster detection results. 

 

Figure 10. The fROC curve for the training dataset. 

 

There were more than 60 MCCs from more than 50 mammograms in the test dataset. To test the 
system performance we generated a fROC curve of the detection results using the test dataset  
(Figure 11). Based on the optimal parameters and settings determined in the training dataset, our 
system achieved 92% sensitivity with 0.65 FPs per image in the test dataset. 
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Figure 11. The fROC curve for the test dataset. 

 

4. Discussion 

We found that in our dataset some MC clusters were very small, with sometimes only three 
individual MCs in a cluster. Therefore, when one of the three MCs was misclassified by the proposed 
system, the cluster was not selected according to Kallergi’s criteria. This problem might most likely be 
one reason that the sensitivity was relatively lower than in [15]. However, our method still maintained 
an acceptable detection performance and low FP rate. Table 4 illustrates a comparison between 
different methods. According to Table 4, the proposed method outperformed the existing methods.  

Table 4. Comparison between different methods. 

 No. of 
Mammograms 

No. of 
Clusters 

No. of 
Cases 

Sensitivity Area Under 
the Curve 

False 
Positive 

Our 
method 

111 135 52 92% 0.99 
(MC) 

0.65 
per image 

Baum (*) 
2002 [42] 

187 N/A 63 87.3% 
 

N/A 0.61 
per image 

El-Naqa 
2002 [15] 

76 N/A N/A 94% N/A 1 
per image 

Cheng 
2004 [17] 

40 105 21 90.5% 
(95/105) 

N/A 1 
per image 

Wei 
2009 [16] 

200 N/A 104 N/A 0.82 N/A 

(*) Commercial product: Image Checker V2.3, R2 Technology, Los Altos, Calif. 

Another reason for FPs was the strict conditions of Kallergi’s criteria. Based on Kallergi’s criteria, 
if the automated marked area (MCC) was less than 50% of the manually marked area, then it was 
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counted as a FP, and the FN number was simultaneously increased by one because the MCC was not 
detected (see Figure 12). In Figure 12, two lower rectangles are drawn on the image. The smaller one 
was generated using automated MCC detection, and the larger one indicates the manually marked 
MCC. Because the automatically marked area was less than 50% of the manually marked area, it was 
counted as a FP even though MCC was correctly detected. Simultaneously, the FN was increased by 
one, which further reduced the sensitivity. However, we also identified a MCC that was not found  
(a FN), as denoted in Figure 12 by the upper rectangle. 

Figure 12. Examples of a false positive (lower rectangle) and a false negative  
(upper rectangle). 

 

El-Naqa [15] had 50,000 MC-absent training patterns. However, we used only five times the 
number of MC-containing training patterns (i.e., approximately 5,300 MC-absent patterns). Our 
system achieved good performance with lower FP. If we allowed the FP to be 0.8 MCC per image, 
then our system could achieve a sensitivity of 94.7%, as shown in Figure 11. The proposed system has 
made many efforts in optimization such as determining the optimal parameter sets of the SVMs and 
the optimal features in the corresponding feature images. Both processes were fully automated,  
which could be a reason that our system demonstrated better performance than the previous methods 
listed in Table 4. 
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5. Conclusions 

This study describes the development of a CADe system to detect MC clusters for early breast 
cancer detection. The textural features extracted from wavelet- and Laws-filtered images were useful 
in discriminating MCs from other normal tissues or noise. The SVM with the optimal parameter 
settings and automated feature selection method performed well for MC and MCC detection. The 
proposed system achieved an Az 0.9897 for MC detection and 92% sensitivity, with 0.65 FPs per 
image for MCCs. In the future, we will use mammograms from different modalities to evaluate the 
stability of our system. This system is helpful for clinical physicians in the routine work of 
mammogram screening to reduce their reading load. 
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