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Abstract: This article reviews the development of a new category of motion sensors including 

linear and angular accelerometers and seismometers based on molecular electronic 

transducer (MET) technology. This technology utilizes a liquid not only as an inertial 

mass, but also as one of the main elements in the conversion of mechanical motion into 

electric current. The amplification process is similar to that in a vacuum triode. Therefore, 

it is possible to achieve signal amplification close to 10
8
. Motion sensors demonstrating 

wide frequency and dynamic range and sensitivity that are one to two orders of magnitude 

better than MEMS devices of the same size have been developed. 
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1. Introduction 

Motion sensors, including accelerometers and gyroscopes, provide measurement of movement in at 

least six degrees of freedom. The simplest way to do motion sensing is with a solid-state mass-spring 

system, creating a damped simple harmonic oscillator. The movement of the solid-state proof mass can 

be measured with respect to displacement, velocity, or acceleration by suitable mechanical-electrical 

transducers. Efforts to miniaturize linear accelerometers and gyroscopes for inertial systems are mostly 

concentrated around Micro-Electro-Mechanical Systems (MEMS) technology. Similarly, in terms of 

OPEN ACCESS 



Sensors 2013, 13 4582 

 

 

design, fabrication, and readout, accelerometers and gyroscopes are the current leaders in 

commercially successful MEMS technology. Among a variety of transduction mechanisms underlying 

solid-state MEMS motion sensors, the most successful types are based on capacitive transduction due 

to the simplicity of the sensor element itself, no need for exotic materials, low power consumption, and 

good stability with respect to temperature. Although capacitive transducers have a characteristic 

nonlinear capacitance vs. displacement response, feedback is commonly used to convert the signal to a 

linear output. MEMS motion sensors in combination with other sensors, such as compass, pressure 

sensor, and GPS, have created a consumer electronics sensing package that works as the intelligent 

interface for users to interact with their electronics and, further on, with external environments, and 

have reasonable performance with low cost CMOS-compatible silicon microfabrication technology. 

However, in addition to high-volume consumer electronics markets requiring low-to-medium 

performance motion sensors, there are huge markets for high-performance motion sensing devices, 

with applications designed for military inertial navigation/guidance, high-resolution seismic sensing 

and high-g sensors. The key requirements for these high-performance applications include small size, 

wide bandwidth, low noise floor, low cross-axis sensitivity, low drift, wide dynamic range, high shock 

survivability, and low power consumption. There has been plenty of work done along the direction of 

scaling down the device size while maintaining low noise, high sensitivity and high resolution using 

MEMS techniques [1–3]. However, the design and fabrication of these solid-state MEMS devices are 

complicated, which can result in low reliability, low reproducibility, and high cost. More importantly, 

they have yet to prove satisfactory for specific applications, especially in low frequency seismic 

sensing, because of the inherent limitation of the working mechanism of the solid-state mass-spring 

system. For some applications they also have limited successes due to their fragility to high shocks. 

As opposed to a solid inertial mass, a molecular electronic transducer (MET) is sensitive to the 

movement of a liquid electrolyte relative to fixed electrodes. METs are part of a third class of 

fundamental electronic devices, characterized by charge transfer via ions in solution—hence the name 

―Solion‖. This is in contrast to solid-state electronics (charge transfer by electron/hole pairs in a solid 

conductor or semiconductor) and vacuum tubes (charge transfer by free electrons in an ionized gas or 

vaccum). Solion technology was first developed in the 1950s by US-Navy sponsored research. Early 

applications of Solion devices were for detection of low-frequency acoustic waves, either in the form 

of an infrasonic microphone or limited-band seismometer [4–7]. Significant work on Solion motion 

detectors was continued in Russia, where the term ―Molecular Electronic Transducer‖ was introduced 

to describe such a device [8]. Inspired by the exceptionally high rate of mechanical signal conversion 

to electric current in MET involving mass and charge transport, pioneering MET studies [9–15] 

provide an alternative paradigm in the development of motion sensors in wide variety of applications 

including nuclear explosion monitoring and seismic sensing in planetary exploration [16–18]. The 

advantages of MET motion sensors include their small size, lack of fragile moving parts (thus high 

shock tolerance), high sensitivity and low noise especially at low frequencies, and independence of the 

response on installation angle. 
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2. Molecular Electronic Transducer-Principle of Operation  

Figure 1 illustrates the basic concept of a MET sensing element, consisting of an electrochemical 

cell with two anode-cathode pairs. An electrolyte-filled channel allows the electrolyte to move 

inertially along the channel’s length. Four electrodes configured as anode-cathode-cathode-anode 

(ACCA) separated by dielectric layers span the width of this channel. Holes through the electrodes 

allow the flow of electrolyte. Each anode-cathode pair is an electrochemical cell, in which charges are 

transferred between anode and cathode by ions in the electrolyte. Traditionally, standard machined 

platinum (Pt) mesh is used to make the electrodes, and plastic or ceramic grids produce the dielectric 

inter-electrode spacers [19]. This approach is convenient to quickly produce samples, but significantly 

limits the possible range of the geometrical parameters of the cell and consequently the optimization 

possibilities of the sensing cell. Meanwhile making sizes of elements of the cell smaller expands the 

frequency range and decreases convection produced noise inside the sensitive cell. An alternative 

approach to build the sensing element is to use (MEMS) techniques, which have reduced the internal 

dimensions of MET electrodes close to 1 µm, improved the sensitivity and reproducibility [18].  

Figure 1. Schematic of the basic MET sensing element. 

 

The sensing mechanism of the MET is based on using of the electrochemical cell where reversible 

chemical reactions transfer charge between anode and cathode via electrolyte ions in solution. Typically, 

MET uses concentrated iodine-iodide electrolyte containing potassium iodide (KI) or lithium iodide (LiI) 

and a small amount of elemental Iodine (I2) [20]. In the presence of iodide, iodine turns into a soluble 

compound, tri-iodide, as follows [20]: 

        
  (1) 

when the electrodes are biased and thus current passes through the electrochemical cell, the following 

reversible active electrochemical reactions occur on the electrodes:  

On cathodes, reduction of tri-iodide:  

  
          (2) 

The reverse reaction takes place on anodes:  

          
  (3) 
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The electrical current through the solid/liquid interface becomes possible because of the tri-iodide 

ions presence in the solution. That’s why this component of the solution is called active. According to 

Equation (2), the interface charge transfer is associated with generation and absorption of the tri-iodide 

ions on the electrode surface. So the electrical current through any electrode can be related to the flux 

of active ions toward or backward of the electrode according to the following:  

              

 

 
(4) 

where D is the diffusion coefficient, с is the concentration of the active charge carriers, q is the charge 

transferred across the interface in single electrochemical reaction (two times absolute values of the 

electron charge in our case), n is a unit vector normal to the surface of the electrode, integration is 

done over S, electrode surface area. Here only diffusion is considered as mechanism responsible for the 

active ions transport in the electrolyte volume. The migration is not included due to the screening of 

the electrical field in the highly concentrated electrolyte and the convection does not contribute to 

charge transfer through the electrode surface due to zero-velocity condition on the solid surface. 

The operation principle of MET can be described as follows: when electric voltage is applied to the 

system, electrochemical current (background current) appears, regardless of the presence of 

mechanical motion of the electrolyte. As the inter-electrode voltage is increased, the reaction rates on 

the electrodes increase too. Finally, in the situation when any tri-iodide ion arrives the cathode 

immediately participates in the electrochemical reaction in Equation (2), further increase of the voltage 

does not change the current and the saturation regime occurs. In this regime the cathode current is sensitive 

to variation of volumetric transport of tri-iodide ions. Anode current variations follow the cathode ones, 

keeping the electrolyte uncharged. In the presence of a mechanical motion input, electrolyte starts 

moving due to inertia, and convective transport of ions changes the electrode current according to the 

mechanism described above. The difference of the cathode currents in two anode-cathode pairs is 

employed as the output signal for a MET motion sensor. Although each electrode current is non-linear 

with respect to fluid velocity, the combined output of both cathodes is linear for a very wide range of 

fluid velocities. Mathematically, the sensor’s output current is given by [20]: 

                            

   

            

   

 
(5) 

where     ,     are the currents through the surface of the corresponding cathodes,    ,     are the 

surface areas of the corresponding cathodes. 

2.1. Transfer Function  

A signal conversion in MET motion sensor can be considered as a superposition of two processes: 

first, input motion is converted to fluid motion of the electrolyte by mechanical system. Next, the 

electrolyte’s velocity is measured by the electrochemical system, resulting in an output current of the 

sensor. Therefore, the frequency-dependent transfer function of the entire device can be written as: 

                     (6) 
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where          describes the mechanical response of the fluidic system, which in the case of linear 

MET sensor, is analogous to a solid-state damped, driven harmonic oscillator. In this sense, the 

restoring force to the liquid inertial mass is provided by the rubber membranes which are located at the 

two ends of the channel to seal the electrolyte, and the damping force is caused by hydrodynamic 

resistance of the electrolyte as it flows through the sensing element. The equation that governs motion 

of the electrolyte can therefore be expressed as: 

   

   
 

     

  

  

  
 

 

  
        (7) 

where V is the volume of fluid passing through the channel, a is the external acceleration, Rh is the 

hydrodynamic resistance which is solely determined by the channel geometry in laminar flow 

condition, k is the coefficient of volume stiffness and depends only on the characteristics of the 

membrane,   is the density of the electrolyte, Sch is the cross-section area of the channel and L 

represents the length of the channel, filled with electrolyte. By transforming Equation (7) to the 

frequency domain, the magnitude of the transfer function of the fluid mechanical motion in frequency 

domain can be obtained as follows: 

            
    

    
  

  

  
  
   

  
      

   

     
 

 

(8) 

where      
     

  
 is the volumetric flow rate. 

       in Equation (4) describes the ability of the electrochemical system to detect electrolyte 

motion as a function of frequency. A simple model for        was derived analytically by Larcam [7], 

having a form of:  

          
    

    
   

 

    
 
  

  
 

(9) 

where C (A/(m
3
/s)) is the conversion factor of the electrochemical cell,         is the diffusion 

frequency and d is the inter-electrode distance. In-depth characterization of the above electrochemical 

subsystem is based on the analytical and numerical solution of the following partial differential 

equations [11,15,21–24]: 

 
 
 

 
   

  

  
                  

      
  

  
               

  

(10.1) 

(10.2) 

(10.3) 

Equation (10.1) is the time domain Navier-Stokes equation describing momentum balances, where 

  denotes the density        ,   is the velocity      ,   denotes dynamic viscosity       , and P 

equals pressure      . Equation (10.2) is the continuity equation for incompressible flow. The 

boundary conditions include a known pressure difference which drives the flow through the channel 

and the velocity is zero at the wall. Equation (10.3) is the diffusion-convection Nernst-Planck equation 
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showing the tri-iodide transport balance. Usually, on cathodes, zero concentration condition is used, which 

corresponds to the saturation current regime described above. Dielectric surfaces are considered as non-

penetrable for the ions (zero flow condition). For anodes, fixed concentration condition is frequently 

used, although this sort of condition can’t be considered as well-founded. The problem of the correct 

formulation of the boundary condition on anode is discussed in [24]. Fortunately, the boundary condition 

on anodes has little effect on cathodes currents difference which is used as the system output signal. 

Several theoretical analyses have been conducted on the electrochemical system frequency response 

at both low and high frequencies [11,21,22]. At low frequencies, where diffusion length         

appears to be much higher than the characteristic dimension which is the inter-electrode spacing    of 

the four-electrode structure:  

 
   
           (11) 

Therefore, using Equation (8): 

    
   
           (12) 

As frequency increases, the sensitivity starts to decay as     becomes lower than the characteristic 

dimension of the electrode system   . For the mesh electrodes made with cylindrical wires, and 

       , the amplitude of cathode current yields: 

 
      
               (13) 

Therefore, using Equation (8): 

    
      
                   (14) 

2.2. Feedback Subsystem  

The feedback subsystem is added to allow an additional controllable force to act on the mechanical 

system. The feedback system herein introduces a layer of complexity into the overall system’s transfer 

function. The simplified block diagram shown as Figure 2 illustrates how the input signal is 

manipulated by each subsystem. Text in blue describes the physical parameters being affected or 

measured in each step. The input signal is processed by the mechanical and electrochemical systems in 

order to produce the output signal, which is in turn used to adjust the mechanical system by the 

feedback system. The feedback current IFB is simply the output current modified by a feedback 

parameter F. Finally, the effect of the feedback is applying to the inertial mass with additional 

counterforce, opposite to inertial force, and consequently effectively decreasing the input acceleration. 

In the feedback system described above, a higher output signal gives negative feedback impeding fluid 

flow, thereby increasing the dynamic range of measurable signals. Moreover, this could be used to 

adjust sensitivity frequency response, allowing desired signals in certain bandwidth. 
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Figure 2. A block diagram of MET motion sensor including feedback subsystem. 

 

2.3. Noise  

The main contributors to the self-noise of the MET sensor are the thermohydrodynamic self-noise, 

convection-induced self-noise, and geometry noise [10,25]. 

2.3.1. Thermohydrodynamic Self-Noise 

The thermohydrodynamic self-noise is generated from the fluctuations of the pressure difference on 

both sides of the channel of MET sensor. In units of input acceleration, this noise spectral density is 

frequency independent: 

      
        

    
 (15)  

where   is the absolute temperature,    is Boltzmann’s constant,   is the electrolyte density,   is the length 

of the transducer channel,    is the hydrodynamic impedance of the transducer which is given by: 

   
   

   
 (16)  

where r is the radius of the circular cross-section of the channel and   is the viscosity of the fluid. It 

can be seen that the lower    , higher   and   result in lower thermohydrodynamic self-noise. For a typical 

MET sensor with                   and            , the theoretical thermohydrodynamic 

self-noise is         .  

2.3.2. Convection-Induced Self-Noise 

The convection-induced self-noise is the result of the natural convection of the liquid [25]. Even if 

the liquid as a whole is stable, small local variations of the liquid density produce flows in the liquid. 

These flows generate an additional noise in the MET cell output current. This process is difficult to 

describe analytically. However, numerical modeling and experimental results can provide enough data 

to calculate the convection self-noise and can be used to predict its value for any specific configuration 

of the MET cell. In general, the value of the convection induced self-noise depends on the Rayleigh 

number (Ra) of the electrolyte. It has been proven both experimentally and numerically that the 

convection self-noise decreases as Ra decreases. Lower Ra corresponds to a lower electrolyte 

concentration and smaller typical dimensions of the elements of the transducer cell. On the other hand, 

Ra cannot be too small because that would correspond to a very small size for the transducer cell and 
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very small concentration of the electrolyte, which usually means high hydrodynamic impedance (high 

thermohydrodynamic noise) and low sensitivity of the transducer, respectively.  

2.3.3. Geometry Self-Noise 

The geometry self-noise is proportional to the electrochemical part of the transfer function of MET 

transducer. To calculate the geometry self-noise, the following equation can be used: 

       
    

  
  
       (17) 

where   
    is the averaged electrochemical part of the transfer function,   is the transducer conversion 

coefficient from output noise current to input noise velocities, and   is an empirical coefficient. The 

geometry noise is the dominant one at very low frequency.  

2.3.4. Shot Noise 

The shot noise of the MET sensor is given by the following formula: 

      
   

 
 (18) 

where   is the quiescent current passing through the cell,   is the transducer conversion coefficient,   

is the absolute value of the charge passing through the electrode boundary in the elementary chemical 

reaction on the electrode. In the electrochemical system usually used in MET transducer,   equals 2 , 

where   is the absolute value of the charge of the electron. 

2.3.5. Electronic Self-Noise 

Electronic self-noise of MET sensor comes from the signal conditioning electronics, including the 

current to voltage converter and filters. The filters have unity gain in the proposed instrument pass 

band and do not contribute to the electronic self-noise. The equivalent input-referred electronic noise 

can be written as follows: 

      
  
    

  
 
   

 
    

 

  
 

(19)  

where   is the resistor in the feedback of the operational amplifier used to convert the current into 

voltage,   is the impedance of the MET cell,   
  and   

  are voltage and current noise spectrum density 

of the operational amplifier, respectively. To decrease the electronic self-noise, the transducer should 

have a high impedance and conversion factor. Also, low-noise operational amplifiers should be used. 

In all MET devices, the electronic self-noise contributes at relatively high frequencies. 

Figure 3 shows the measured noise spectrum from a high-performance MET seismometer  

(CME-6211) in comparison with two high-performance, industry-grade broadband seismometers, the 

Streckheisen STS-2 and Trillium T240 units. The experiment is conducted at the Incorporated 

Research Institutions for Seismology (IRIS), Program for Array Seismic Studies of the Continental 

Lithosphere (PASSCAL) instrument center and EarthScope USArray array operations facility. The 
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noise performance of the MET sensor is very similar with those high-performance devices up to 

periods of 60 seconds, demonstrating the feasibility of MET technology for broadband seismology.  

Figure 3. Noise performance of a MET seismometer (CME-6211) in comparison with  

high-performance, industry-grade broadband seismometers. Red: MET seismometer  

CME-6211; Blue: Streckheisen STS-2 broadband seismometer; Green: Trillium T240 

broadband seismometer. 

 

3. Different Types of MET Motion Sensor 

Motion sensors based on MET technology include linear and angular accelerometers, rate sensors, 

gyroscopes and seismometers. Linear MET sensors can be configured for both horizontal and vertical 

sensing, as shown in Figure 4(a and b).  

In conventional MET sensors, platinum mesh and porous dielectric are adhesively bonded to form 

the electrodes and insulator layers illustrated in Figure 1. In addition to the sensing element,  

highly-flexible rubber membranes are manually assembled at the two ends of the channel to seal the 

electrolyte, providing restoring force for the mechanical subsystem. Examples of the performance 

parameters for commercially available MET linear seismic sensors are listed in Table 1. MTSS 1001 is 

a single-axis, ultra-compact, high gain, 1-Hz seismic sensor. MTSS 2003 contains three orthogonal 

oriented MTSS 1001 seismic sensors. It is probably the world smallest tri-axis 1-Hz seismometer. 

CME-6211 is a high performance MET seismometer, which is mentioned above. EP-300 is a very 

broadband seismometer by eentec [26]. 
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Figure 4. Schematic of different type of MET motion sensor.  

 

Table 1. Current performance parameters for linear MET seismic sensors.  

Performance MTSS 1001 MTSS 2003 EP-300 CME-6211 

Frequency range 1–300 Hz 1–300 Hz 0.0167–50 Hz 0.0167–50 Hz 

Sensor Noise 50 ng/    50 ng/    10 ng/    10 ng/    

Conversion Factor 300 V/(m/s) 300 V/(m/s) 2,000 V/(m/s) 2,000 V/(m/s) 

Dynamic Range >110 dB >110 dB 150 dB at 1 Hz 135 dB 

Non-linearity  <0.2%  <0.2%  Not specified <1% 

Orientation Any direction Any direction  Any direction 

Weight 180 g 250 g 9.5 kg 7.5 kg 

Temperature  ―−40–+65 °C‖ ―−40 – +65 °C‖ −12 – +55 °C‖ −40 – +75 °C‖ 

Power <80 mW <250 mW <250 mW <250 mW 

Figure 5 shows an assembled 3-axis linear MET seismometer including two orthogonal horizontal 

sensors and one vertical sensor, along with the sensing circuits.  

Figure 4(c) shows the schematic of configuration of a rotary MET sensor. If an angular acceleration 

is applied as shown by rounded arrow, the electrolyte flows through the sensitive element. This is 

another application of the technology. Currently the MET angular sensor is probably the only 

technology which commercially delivers highly sensitive rotational seismometers with a very low  

self-noise. Table 2 shows the key performances of current commercially available rotational 

seismometers (METR-03 and R2) [27,28].  
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Figure 5. An assembled 3-axis linear MET seismometer including two orthogonal 

horizontal sensors and one vertical sensor, along with the sensing circuits.  

 

Table 2. Current performance parameters for MET rotational seismometers. 

Performance METR-03 R2 

Output angular rate angular rate 

Noise at 1 Hz  

           

     

                 

Full Scale Range 0.1       0.3       

Bandwidth 0.033-100 Hz  0.033 -50 Hz 

Operating Temperature range −40 – +75 °C −40 – +75 °C 

The key advantages of MET sensors from other inertial sensors include, but are not limited to:  

(1) The inertial mass is a liquid (electrolyte solution flowing through the transducer) and no 

moving mechanics subject to wear out and possible damage, which makes the performance 

more reliable and enables inherent ability to withstand high shock forces.  

(2) The sensitivity of this sensor does not depend on the direction of sensitivity axis in space.  

(3) High sensitivity and low self-noise at low and ultra-low frequency ranges or even DC with the 

liquid inertial mass, properly selected parameters of the transducer and the proper structural design. 

Despite the rather high output parameters obtained, the conventional MET devices developed and 

produced at present have a number of faults that ultimately limit their application range. The main ones 

are as follows:  

(1) High cost of transducer manufacturing;  

(2) High scatter of parameters of manually produced transducers resulting in the necessity of 

individual tuning of the corresponding electronics for each sensor, which also increases the cost 

of the device;  

(3) Early decrease in sensitivity of the sensor in the high–frequency range; 
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(4) Very limited possibilities to optimize the cell parameters to decrease the instrument self-noise.  

These shortcomings can be overcome by introducing MEMS microfabrication techniques to build the 

MET sensing element, as shown in Figure 6 [18], which reduces the MET cell size and produced the 

internal dimensions close to 1 µm. The use of MEMS allows batch fabrication, thereby lower the cost, 

improves the sensitivity and reproducibility of the device, and has reached 1 micro Gee noise level.  

Figure 7 details the fabrication processes. A silicon wafer with a low-pressure chemical vapor-deposited 

(LPCVD) silicon nitride (SiN) layer on top forms the substrate of the device. Four electrodes are  

10 nm/200 nm Ti/Pt layers deposited by an E-beam evaporator and followed by lift-off. Each electrode is 

separated by a 1 µm plasma-enhanced chemical vapor-deposited (PECVD) SiN layer and branches to a 

separate contact pad used for electrical connection to the external circuitry. Finally, focused ion beam (FIB) 

and deep reactive ion etching (DRIE) are used to drill the holes and etch backside silicon respectively to 

form the channels. Optical and SEM images of the fabricated single-50 µm-diameter-channel device are 

shown in Figure 6(c and d). 

Figure 6. Fabricated MEMS MET seismometer. (a) assembled MET sensing cell,  

(b) sensor circuits and protection cell, (c) unpackaged MEMS MET core, and (d) Zoom-in 

view of the MET sensing element from scanning electron microscopy (SEM) showing 

stacked alternating platinum (electrodes) and silicon nitride (dielectric spacers).  

 

The self-noise spectrum density achieves                    at 1 Hz for the current device, 

and the sensitivity achieves               [18]. Figure 8 shows the spectrum density of a fabricated  

single-50 μm diameter-channel MEMS MET seismometer in comparison with a commercialized 

seismometer CMG-40T (Guralp Systems Ltd.). 
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Figure 7. Fabrication process of the MEMS MET seismometer core. 

 

Figure 8. Spectrum density of a fabricated single-50 μm diameter-channel MEMS MET 

seismometer in comparison with a commercialized seismometer CMG-40T (Guralp 

Systems Ltd.). Red—CMG-40T, Green—MEMS MET seismometer. 

 

Figure 4(d) is an alternative sensing element configuration with planar electrodes. This structure is 

studied in [20] and it is shown that it has promising performance comparable with ring electrodes in 

open holes when the device size is reduced to micro-scale. This planar electrode structure is very easy 

to fabricate with standard photolithography technology, offering outstanding precision and 

repeatability. Furthermore, on the micro-scale, the relative flat and smooth surface will produce much 

less disturbance to the flow when there is electrolyte liquid motion under external acceleration than is 

found with the ring electrode structure. This configuration can be applied to both linear and angular 

MET motion sensors. An electrolyte droplet-based low frequency micro-accelerometer based on this 

planar electrode structure has been developed [29]. Inspired by the promising and unique performance 
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of MET and advantages of silicon-based planar microfabrication technique with small size, low cost, 

outstanding precision and repeatability, the device employs a sub-microliter electrolyte droplet 

encapsulated in oil as the sensing body and MET electrodes as read-out mechanism. Figure 9 illustrates the 

device consisting of a planar four-electrode (anode-cathode-cathode-anode) MET cell located in a solid 

rectangular housing channel on a silicon substrate with LPCVD silicon nitride. Four electrodes made 

of 10 nm/100 nm Ti/Pt are deposited by E-beam evaporation and patterned with lift-off process. Then, 

surface modification is performed utilizing a hydrophobic thin film coating on top of the electrodes 

with proper patterning (hydrophilic spots surrounded by the hydrophobic areas). These hydrophilic 

spots anchor the droplets and the surrounding hydrophobic area acts as feedback system allowing the 

droplets to stabilize in the center hydrophilic spot in the case of high external acceleration input. 

Before final assembly of the device, a        concentrated iodine-iodide electrolyte droplet and a small 

amount of mineral oil are sequentially dispensed by micropipettes in the hydrophilic area covering 

platinum electrodes. The oil not only prevents the electrolyte droplet from evaporating (maintaining 

constant ion concentration), but also works as the elastic diaphragm to provide a restoring force. 

Finally, the glass housing channel is assembled. Figure 10 shows the measured sensitivity frequency 

response of a droplet based MET accelerometer with electrode width of          , and spacing of 

       . The device achieves sensitivity of                         at       with nearly flat 

response over the frequency range of         and a low noise floor of            at       . 

Furthermore, the novel idea of using oil film as sealing diaphragm eliminates the complicated  

three-dimensional (3D) packaging used in both conventional and MEMS based MET sensors.  

Figure 9. Schematic of the droplet-based MET accelerometer, (a) An overview, (b) Optical 

image of the accelerometer core, (c) Zoom-in view of the droplet-covered electrodes. 
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Figure 10. Measured sensitivity frequency response of the droplet-based micro MET 

accelerometer. 

 

4. Conclusions 

In conclusion, molecular electronic transducers comprising a simple set of four-electrodes, a liquid-state 

electrolyte as inertial mass and housing show excellent ability to be applied in motion sensors, including 

linear/angular accelerometers, gyroscopes and seismometers. The combination of high sensitivity, 

large dynamic range, wide pass band, and low self-noise distinguishes MET sensors from conventional 

MEMS motion sensors. The unique principles behind MET sensors also contribute to small size, 

simple and low-cost fabrication, low power consumption, high shock sustainability and independence 

of installation angle. Deployment of MEMS microfabrication in building MET core sensing element, 

resulting in 1 µm internal dimension, improves the sensitivity and reproducibility of the device. The 

performance of MET sensors can be easily optimized for a variety of applications by adjusting the 

geometry or configuration of the sensing element, especially implementing MEMS. The mechanism of 

MET provides a new paradigm of next generation high performance liquid-state motion sensor. 
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