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Abstract: This article reviews the development of a new category of motion sensors including 
linear and angular accelerometers and seismometers based on molecular electronic 
transducer (MET) technology. This technology utilizes a liquid not only as an inertial 
mass, but also as one of the main elements in the conversion of mechanical motion into 
electric current. The amplification process is similar to that in a vacuum triode. Therefore, 
it is possible to achieve signal amplification close to 108. Motion sensors demonstrating 
wide frequency and dynamic range and sensitivity that are one to two orders of magnitude 
better than MEMS devices of the same size have been developed. 
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1. Introduction 

Motion sensors, including accelerometers and gyroscopes, provide measurement of movement in at 
least six degrees of freedom. The simplest way to do motion sensing is with a solid-state mass-spring 
system, creating a damped simple harmonic oscillator. The movement of the solid-state proof mass can 
be measured with respect to displacement, velocity, or acceleration by suitable mechanical-electrical 
transducers. Efforts to miniaturize linear accelerometers and gyroscopes for inertial systems are mostly 
concentrated around Micro-Electro-Mechanical Systems (MEMS) technology. Similarly, in terms of 
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design, fabrication, and readout, accelerometers and gyroscopes are the current leaders in 
commercially successful MEMS technology. Among a variety of transduction mechanisms underlying 
solid-state MEMS motion sensors, the most successful types are based on capacitive transduction due 
to the simplicity of the sensor element itself, no need for exotic materials, low power consumption, and 
good stability with respect to temperature. Although capacitive transducers have a characteristic 
nonlinear capacitance vs. displacement response, feedback is commonly used to convert the signal to a 
linear output. MEMS motion sensors in combination with other sensors, such as compass, pressure 
sensor, and GPS, have created a consumer electronics sensing package that works as the intelligent 
interface for users to interact with their electronics and, further on, with external environments, and 
have reasonable performance with low cost CMOS-compatible silicon microfabrication technology. 
However, in addition to high-volume consumer electronics markets requiring low-to-medium 
performance motion sensors, there are huge markets for high-performance motion sensing devices, 
with applications designed for military inertial navigation/guidance, high-resolution seismic sensing 
and high-g sensors. The key requirements for these high-performance applications include small size, 
wide bandwidth, low noise floor, low cross-axis sensitivity, low drift, wide dynamic range, high shock 
survivability, and low power consumption. There has been plenty of work done along the direction of 
scaling down the device size while maintaining low noise, high sensitivity and high resolution using 
MEMS techniques [1–3]. However, the design and fabrication of these solid-state MEMS devices are 
complicated, which can result in low reliability, low reproducibility, and high cost. More importantly, 
they have yet to prove satisfactory for specific applications, especially in low frequency seismic 
sensing, because of the inherent limitation of the working mechanism of the solid-state mass-spring 
system. For some applications they also have limited successes due to their fragility to high shocks. 

As opposed to a solid inertial mass, a molecular electronic transducer (MET) is sensitive to the 
movement of a liquid electrolyte relative to fixed electrodes. METs are part of a third class of 
fundamental electronic devices, characterized by charge transfer via ions in solution—hence the name 
“Solion”. This is in contrast to solid-state electronics (charge transfer by electron/hole pairs in a solid 
conductor or semiconductor) and vacuum tubes (charge transfer by free electrons in an ionized gas or 
vaccum). Solion technology was first developed in the 1950s by US-Navy sponsored research. Early 
applications of Solion devices were for detection of low-frequency acoustic waves, either in the form 
of an infrasonic microphone or limited-band seismometer [4–7]. Significant work on Solion motion 
detectors was continued in Russia, where the term “Molecular Electronic Transducer” was introduced 
to describe such a device [8]. Inspired by the exceptionally high rate of mechanical signal conversion 
to electric current in MET involving mass and charge transport, pioneering MET studies [9–15] 
provide an alternative paradigm in the development of motion sensors in wide variety of applications 
including nuclear explosion monitoring and seismic sensing in planetary exploration [16–18]. The 
advantages of MET motion sensors include their small size, lack of fragile moving parts (thus high 
shock tolerance), high sensitivity and low noise especially at low frequencies, and independence of the 
response on installation angle. 

2. Molecular Electronic Transducer-Principle of Operation  
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The electrical current through the solid/liquid interface becomes possible because of the tri-iodide 
ions presence in the solution. That’s why this component of the solution is called active. According to 
Equation (2), the interface charge transfer is associated with generation and absorption of the tri-iodide 
ions on the electrode surface. So the electrical current through any electrode can be related to the flux 
of active ions toward or backward of the electrode according to the following:  

ܫ ൌ ,ܿ׏ሺරሺݍܦ ሻ݀ܵௌܖ  
(4)

where D is the diffusion coefficient, с is the concentration of the active charge carriers, q is the charge 
transferred across the interface in single electrochemical reaction (two times absolute values of the 
electron charge in our case), n is a unit vector normal to the surface of the electrode, integration is 
done over S, electrode surface area. Here only diffusion is considered as mechanism responsible for the 
active ions transport in the electrolyte volume. The migration is not included due to the screening of 
the electrical field in the highly concentrated electrolyte and the convection does not contribute to 
charge transfer through the electrode surface due to zero-velocity condition on the solid surface. 

The operation principle of MET can be described as follows: when electric voltage is applied to the 
system, electrochemical current (background current) appears, regardless of the presence of 
mechanical motion of the electrolyte. As the inter-electrode voltage is increased, the reaction rates on 
the electrodes increase too. Finally, in the situation when any tri-iodide ion arrives the cathode 
immediately participates in the electrochemical reaction in Equation (2), further increase of the voltage 
does not change the current and the saturation regime occurs. In this regime the cathode current is sensitive 
to variation of volumetric transport of tri-iodide ions. Anode current variations follow the cathode ones, 
keeping the electrolyte uncharged. In the presence of a mechanical motion input, electrolyte starts 
moving due to inertia, and convective transport of ions changes the electrode current according to the 
mechanism described above. The difference of the cathode currents in two anode-cathode pairs is 
employed as the output signal for a MET motion sensor. Although each electrode current is non-linear 
with respect to fluid velocity, the combined output of both cathodes is linear for a very wide range of 
fluid velocities. Mathematically, the sensor’s output current is given by [20]: 

௢௨௧ܫ ൌ ஼ଶܫ െ ஼ଵܫ ൌ ሺݍܦ  රሺܿ׏, ሻ݀ܵ஼ଶௌ಴మܖ െ රሺܿ׏, ሻ݀ܵ஼ଵௌ಴భܖ  
(5)

where  ܫ஼ଵ ஼ଶܫ ,  are the currents through the surface of the corresponding cathodes, ܵ஼ଵ , ܵ஼ଶ  are the 
surface areas of the corresponding cathodes. 

2.1. Transfer Function  

A signal conversion in MET motion sensor can be considered as a superposition of two processes: 
first, input motion is converted to fluid motion of the electrolyte by mechanical system. Next, the 
electrolyte’s velocity is measured by the electrochemical system, resulting in an output current of the 
sensor. Therefore, the frequency-dependent transfer function of the entire device can be written as: ܪሺ߱ሻ ൌ ௘௖ሺ߱ሻ (6)ܪ௠௘௖௛ሺ߱ሻܪ
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where ܪ௠௘௖௛ሺ߱ሻ describes the mechanical response of the fluidic system, which in the case of linear 
MET sensor, is analogous to a solid-state damped, driven harmonic oscillator. In this sense, the 
restoring force to the liquid inertial mass is provided by the rubber membranes which are located at the 
two ends of the channel to seal the electrolyte, and the damping force is caused by hydrodynamic 
resistance of the electrolyte as it flows through the sensing element. The equation that governs motion 
of the electrolyte can therefore be expressed as: ݀ଶܸ݀ݐଶ ൅ ܴ௛ܵ௖௛ܮߩ ݐܸ݀݀ ൅ ܮߩ݇ ܸ ൌ െܵ௖௛ܽ (7)

where V is the volume of fluid passing through the channel, a is the external acceleration, Rh is the 
hydrodynamic resistance which is solely determined by the channel geometry in laminar flow 
condition, k is the coefficient of volume stiffness and depends only on the characteristics of the 
membrane, ߩ  is the density of the electrolyte, Sch is the cross-section area of the channel and L 
represents the length of the channel, filled with electrolyte. By transforming Equation (7) to the 
frequency domain, the magnitude of the transfer function of the fluid mechanical motion in frequency 
domain can be obtained as follows: |ܪ௠௘௖௛ሺ߱ሻ| ൌ ฬܳሺ߱ሻܽሺ߱ሻฬ ൌ ඨሺܮߩ ௖௛ሻଶܵܮߩ ሺ߱ଶ െ ߱଴ଶሻଶ߱ଶ ൅ ܴ௛ଶ

 
(8)

where ܳሺݐሻ ൌ ௗ௏ሺ௧ሻௗ௧  is the volumetric flow rate. ܪ௘௖ሺ߱ሻ in Equation (4) describes the ability of the electrochemical system to detect electrolyte 
motion as a function of frequency. A simple model for ܪ௘௖ሺ߱ሻ was derived analytically by Larcam [7], 
having a form of:  |ܪ௘௖ሺ߱ሻ| ൌ ฬ ሺ߱ሻܳሺ߱ሻฬܫ ൌ ට1ܥ ൅ ሺ ߱߱஽ሻଶ 

(9)

where C (A/(m3/s)) is the conversion factor of the electrochemical cell, ߱ௗ ൌ  ଶ is the diffusion݀/ܦ
frequency and d is the inter-electrode distance. In-depth characterization of the above electrochemical 
subsystem is based on the analytical and numerical solution of the following partial differential 
equations [11,15,21–24]: 

۔ۖەۖ
ߩۓ ൬߲߲ݐܝ ൅ ሺܝ · ൰ܝሻ׏ ൌ െܲ׏ ൅ ׏ܝଶ׏ߤ · ܝ ൌ ݐ߲߲ܿ 0 ൅ ׏ · ሺെܿ׏ܦ ൅ ሻܝܿ ൌ 0  

(10.1)

(10.2)

(10.3)

Equation (10.1) is the time domain Navier-Stokes equation describing momentum balances, where ߩ denotes the density ሺ݇݃/݉ଷሻ, ܝ is the velocity ሺ݉/ݏሻ, ߤ denotes dynamic viscosity ሺܲܽ ·  ሻ, and Pݏ
equals pressure  ሺܲܽሻ . Equation (10.2) is the continuity equation for incompressible flow. The 
boundary conditions include a known pressure difference which drives the flow through the channel 
and the velocity is zero at the wall. Equation (10.3) is the diffusion-convection Nernst-Planck equation 
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showing the tri-iodide transport balance. Usually, on cathodes, zero concentration condition is used, which 
corresponds to the saturation current regime described above. Dielectric surfaces are considered as non-
penetrable for the ions (zero flow condition). For anodes, fixed concentration condition is frequently 
used, although this sort of condition can’t be considered as well-founded. The problem of the correct 
formulation of the boundary condition on anode is discussed in [24]. Fortunately, the boundary condition 
on anodes has little effect on cathodes currents difference which is used as the system output signal. 

Several theoretical analyses have been conducted on the electrochemical system frequency response 
at both low and high frequencies [11,21,22]. At low frequencies, where diffusion length ߣௗ ൌ ඥܦ ߱⁄  
appears to be much higher than the characteristic dimension which is the inter-electrode spacing  ݀ of 
the four-electrode structure:  ܫ ன՜଴ሱۛ ሮ Q · const (11)

Therefore, using Equation (8): ܪሺ߱ሻ ఠ՜଴ሱۛ ሮ ݐݏ݊݋ܿ · ߱ (12)

As frequency increases, the sensitivity starts to decay as ߣௗ  becomes lower than the characteristic 
dimension of the electrode system  ݀ . For the mesh electrodes made with cylindrical wires, and  ߱ ب ܦ ݀ଶ⁄ , the amplitude of cathode current yields: ܫ ఠب஽ ௗమ⁄ሱۛ ۛۛ ۛۛ ሮ ܳ · ߱ିଷ/ଶ (13)

Therefore, using Equation (8): ܪሺ߱ሻ ఠب஽ ௗమ⁄ሱۛ ۛۛ ۛۛ ሮ ݐݏ݊݋ܿ · ߱ିହ/ଶ (14)

2.2. Feedback Subsystem  

The feedback subsystem is added to allow an additional controllable force to act on the mechanical 
system. The feedback system herein introduces a layer of complexity into the overall system’s transfer 
function. The simplified block diagram shown as Figure 2 illustrates how the input signal is 
manipulated by each subsystem. Text in blue describes the physical parameters being affected or 
measured in each step. The input signal is processed by the mechanical and electrochemical systems in 
order to produce the output signal, which is in turn used to adjust the mechanical system by the 
feedback system. The feedback current IFB is simply the output current modified by a feedback 
parameter F. Finally, the effect of the feedback is applying to the inertial mass with additional 
counterforce, opposite to inertial force, and consequently effectively decreasing the input acceleration. 
In the feedback system described above, a higher output signal gives negative feedback impeding fluid 
flow, thereby increasing the dynamic range of measurable signals. Moreover, this could be used to 
adjust sensitivity frequency response, allowing desired signals in certain bandwidth. 
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very small concentration of the electrolyte, which usually means high hydrodynamic impedance (high 
thermohydrodynamic noise) and low sensitivity of the transducer, respectively.  

2.3.3. Geometry Self-Noise 

The geometry self-noise is proportional to the electrochemical part of the transfer function of MET 
transducer. To calculate the geometry self-noise, the following equation can be used: ۄݒۃଶ௙ ൌ ߚ 4݇஻ܴܶ௛ ݇௙തതതଶߙଶ (17)

where ݇௙തതത is the averaged electrochemical part of the transfer function, ߙ is the transducer conversion 
coefficient from output noise current to input noise velocities, and ߚ is an empirical coefficient. The 
geometry noise is the dominant one at very low frequency.  

2.3.4. Shot Noise 

The shot noise of the MET sensor is given by the following formula: ݒۃଶۄ௙ ൌ ܭܫݍ2  (18)

where ܫ is the quiescent current passing through the cell, ܭ is the transducer conversion coefficient, ݍ 
is the absolute value of the charge passing through the electrode boundary in the elementary chemical 
reaction on the electrode. In the electrochemical system usually used in MET transducer, ݍ equals 2݁, 
where ݁ is the absolute value of the charge of the electron. 

2.3.5. Electronic Self-Noise 

Electronic self-noise of MET sensor comes from the signal conditioning electronics, including the 
current to voltage converter and filters. The filters have unity gain in the proposed instrument pass 
band and do not contribute to the electronic self-noise. The equivalent input-referred electronic noise 
can be written as follows: 

௙ۄଶݒۃ ൌ ௙ଶܫ ൅ ௙ܷଶሺ 1ܴଶ ൅ 1|ܼ|ଶሻܭଶ  (19) 

where ܴ is the resistor in the feedback of the operational amplifier used to convert the current into 
voltage, ܼ is the impedance of the MET cell, ܫ௙ଶ and ௙ܷଶ are voltage and current noise spectrum density 
of the operational amplifier, respectively. To decrease the electronic self-noise, the transducer should 
have a high impedance and conversion factor. Also, low-noise operational amplifiers should be used. 
In all MET devices, the electronic self-noise contributes at relatively high frequencies. 

Figure 3 shows the measured noise spectrum from a high-performance MET seismometer  
(CME-6211) in comparison with two high-performance, industry-grade broadband seismometers, the 
Streckheisen STS-2 and Trillium T240 units. The experiment is conducted at the Incorporated 
Research Institutions for Seismology (IRIS), Program for Array Seismic Studies of the Continental 
Lithosphere (PASSCAL) instrument center and EarthScope USArray array operations facility. The 
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Figure 5. An assembled 3-axis linear MET seismometer including two orthogonal 
horizontal sensors and one vertical sensor, along with the sensing circuits.  

 

Table 2. Current performance parameters for MET rotational seismometers. 

Performance METR-03 R2 
Output angular rate angular rate 
Noise at 1 Hz 8ൈ 10ି଻ݏ/݀ܽݎଶ/√ݖܪ 

5 ൈ 10ି଻ݏ/݀ܽݎଶ/√ݖܪ 

Full Scale Range 0.1 ݏ/݀ܽݎ 0.3 ݏ/݀ܽݎ 
Bandwidth 0.033-100 Hz  0.033 -50 Hz 
Operating Temperature range −40 – +75 °C −40 – +75 °C 

The key advantages of MET sensors from other inertial sensors include, but are not limited to:  

(1) The inertial mass is a liquid (electrolyte solution flowing through the transducer) and no 
moving mechanics subject to wear out and possible damage, which makes the performance 
more reliable and enables inherent ability to withstand high shock forces.  

(2) The sensitivity of this sensor does not depend on the direction of sensitivity axis in space.  
(3) High sensitivity and low self-noise at low and ultra-low frequency ranges or even DC with the 

liquid inertial mass, properly selected parameters of the transducer and the proper structural design. 

Despite the rather high output parameters obtained, the conventional MET devices developed and 
produced at present have a number of faults that ultimately limit their application range. The main ones 
are as follows:  

(1) High cost of transducer manufacturing;  
(2) High scatter of parameters of manually produced transducers resulting in the necessity of 

individual tuning of the corresponding electronics for each sensor, which also increases the cost 
of the device;  

(3) Early decrease in sensitivity of the sensor in the high–frequency range; 
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of MET and advantages of silicon-based planar microfabrication technique with small size, low cost, 
outstanding precision and repeatability, the device employs a sub-microliter electrolyte droplet 
encapsulated in oil as the sensing body and MET electrodes as read-out mechanism. Figure 9 illustrates the 
device consisting of a planar four-electrode (anode-cathode-cathode-anode) MET cell located in a solid 
rectangular housing channel on a silicon substrate with LPCVD silicon nitride. Four electrodes made 
of 10 nm/100 nm Ti/Pt are deposited by E-beam evaporation and patterned with lift-off process. Then, 
surface modification is performed utilizing a hydrophobic thin film coating on top of the electrodes 
with proper patterning (hydrophilic spots surrounded by the hydrophobic areas). These hydrophilic 
spots anchor the droplets and the surrounding hydrophobic area acts as feedback system allowing the 
droplets to stabilize in the center hydrophilic spot in the case of high external acceleration input. 
Before final assembly of the device, a 0.8 µL concentrated iodine-iodide electrolyte droplet and a small 
amount of mineral oil are sequentially dispensed by micropipettes in the hydrophilic area covering 
platinum electrodes. The oil not only prevents the electrolyte droplet from evaporating (maintaining 
constant ion concentration), but also works as the elastic diaphragm to provide a restoring force. 
Finally, the glass housing channel is assembled. Figure 10 shows the measured sensitivity frequency 
response of a droplet based MET accelerometer with electrode width of  ݄ ൌ 100 μ݉, and spacing of ݀ ൌ 30 μm. The device achieves sensitivity of  10.8 ܸ/ܩ ሺܩ ൌ  ଶሻ at 20 Hz with nearly flatݏ/݉ 9.81
response over the frequency range of 1 െ 40 Hz and a low noise floor of 100 μݖܪ√/ܩ  at  20 Hz. 
Furthermore, the novel idea of using oil film as sealing diaphragm eliminates the complicated  
three-dimensional (3D) packaging used in both conventional and MEMS based MET sensors.  

Figure 9. Schematic of the droplet-based MET accelerometer, (a) An overview, (b) Optical 
image of the accelerometer core, (c) Zoom-in view of the droplet-covered electrodes. 
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Figure 10. Measured sensitivity frequency response of the droplet-based micro MET 
accelerometer. 

 

4. Conclusions 

In conclusion, molecular electronic transducers comprising a simple set of four-electrodes, a liquid-state 
electrolyte as inertial mass and housing show excellent ability to be applied in motion sensors, including 
linear/angular accelerometers, gyroscopes and seismometers. The combination of high sensitivity, 
large dynamic range, wide pass band, and low self-noise distinguishes MET sensors from conventional 
MEMS motion sensors. The unique principles behind MET sensors also contribute to small size, 
simple and low-cost fabrication, low power consumption, high shock sustainability and independence 
of installation angle. Deployment of MEMS microfabrication in building MET core sensing element, 
resulting in 1 µm internal dimension, improves the sensitivity and reproducibility of the device. The 
performance of MET sensors can be easily optimized for a variety of applications by adjusting the 
geometry or configuration of the sensing element, especially implementing MEMS. The mechanism of 
MET provides a new paradigm of next generation high performance liquid-state motion sensor. 
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