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Abstract: All-solid-state sensors with polyvinyl chloride (PVC)-based membranes using 
off-the-shelf N-hydroxysuccinimide (NHS) and succinimide (Succ) ionophores were 
prepared using DOP (dioctyl phthalate) and NPOE (ortho-nitrophenyloctyl ether) as 
plasticizers. Good responses were obtained when NHS was used. The potentiometric 
response of the proposed electrode is independent of pH over the range 2–6. The electrode 
shows a fast response time of 0.25 s. The electrode exhibits a Super-Nernstian response, 
with 37.5 mV/decade, with a potentiometric detection limit of 4.4 µM. The proposed sensor 
revealed good selectivity towards a group of transition metal ions. 
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1. Introduction 

Copper is known to be an essential element for health, but even in low concentrations, copper ions 
are toxic to all organisms and its determination is an important analytical task [1,2]. The increased 
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accumulation of copper(II) in the environment from numerous industrial sources, poses a danger to 
public health [3]. Thus, the determination of trace amounts of copper(II) has become more and more 
important because of the increased interest in environmental pollution [4]. 

In order to estimate its deficiency or accumulation in various samples, sensitive, reproducible  
and accurate analytical methods are required [5]. Several methods including spectrophotometry [6,7] 
dispersive liquid–liquid microextraction [8,9], adsorptive stripping voltammetry [10], sequential injection 
analysis [11], high performance liquid chromatography [12], anodic stripping voltammetry [13,14] 
have been applied for the determination of copper(II) ions. Various copper(II) electrodes were 
developed using chalcogenide glass matrix [15–17]. Pyrrole [18], polyindole [19], salens [20], 
3,6,9,14-tetrathiabicyclo [9.2.1]tetradeca-11,13-diene [21], aza-thioether crowns [22], 4-phenyl- 
11-decanoyl-1,7-dithia-11-azacyclotetradecane-4-sulfide [23], 4-phenyl-4-sulfide-11-(1-oxodecyl)-1,  
7-dithia-11-aza-4-phosphacyclotetradecane [24], copper sulphide [25], 5,6,7,8,9,10-hexahydro-2H-
1,13,4,7,10-benzodioxatriazacyclopentadecine-11(4H,12H)-dione [26] were used as electroactive 
materials in different copper(II) selective membrane sensors. 

Solid-contact ion-selective electrodes can provide very low detection limits. Moreover, due to the 
fact that these electrodes do not require an optimization of the inner filling solution, the method 
presents new advantages such as good mechanical stability and simplicity [27–29], so different designs 
and/or disposable use are possible. Due to the need of selective and accurate determination of trace 
amounts of Cu(II) ions in water samples, many coordination compounds with high selectivity to metal 
ions have been used as ionophores, in the construction of copper-selective electrodes [30]. 

The metal-ligand interactions provide in consequence recognition mechanisms which can be used in 
the development of potentiometric sensors. It is well known that the nitrogen and oxygen donor atoms 
coordinate the transition metal ions to form metal complexes [31]. The ligands used in this study are 
involved for the first time in ion-selective electrodes development. The aim of this work was the 
preparation and testing of graphite-based epoxy electrodes [32] for the potentiometric determination of 
copper(II) ion. 

2. Experimental Section 

2.1. Materials and Measurements 

All the chemicals were analytical grade or higher quality. The solutions were prepared using  
doubly distilled water. The components for membrane preparations (bis(2-ethylhexyl) phthalate 
(DOP), o-nitrophenyloctyl ether (NPOE), potassium tetrakis(4-chlorophenyl) borate (KpClPB), sodium 
tetraphenylborate (NaTPB), tetrahydrofuran (THF) and high-molecular-weight polyvinyl chloride 
(PVC)) and were obtained from commercial sources (Fluka, Buchs, Switzerland), being used as 
received. For pH control, sodium hydroxide (0.1 M) and nitric acid (0.1 M) were used. The solutions 
for the potentiometric measurements were prepared using the nitrate salts of the given cations  
(Merck, Darmstadt, Germany) and bidistilled water. The materials used to prepare the solid electrical 
contact were the epoxy resin components: Araldite M, Araldite M hardener, Araldite M accelerator  
(all from Fluka), and graphite powder (BDH, London, UK) as conductive filler. 
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2.2. Equipment 

The emf measurements were performed with by a self-made data acquisition system consisting of 
32 input channels equiped with differential instrumentation amplifiers (INA116, Burr-Brown, Tucson, 
AZ, USA) which adapted the impedance for each sensor. The emf measurements were performed 
against a double junction Ag/AgCl reference electrode (Thermo Orion 90-02-00, Waltham, MA, 
USA). Each channel was noise-shielded with its signal guard. The output of each amplified channel 
was filtered with a second order low pass active filter centered at a 2 Hz frequency and connected to an 
Advantech PC-Lab 813 A/D conversion card installed in a PC. The readings were acquired by using 
custom software developed by our group in Microsoft QuickBasic Version 4.5. For the pH adjustment, 
a Crison 2002 pH-meter (Crison, Barcelona, Spain) with a combination pH electrode (Ingold model 
10/402/3092, Crison, Barcelona, Spain) was used. 

2.3. Electrode Preparation 

The potentiometric sensors used were all-solid-state ion selective electrodes (ISEs) with a solid 
electrical contact made from a conductive composite [32]. The epoxy mixture, used as supporting 
conductor, was obtained by mixing Araldite M, the hardener and the accelerator in mass ratios of 
1:1:0.05. This resulting paste was mixed with graphite powder 1:1 mass ratio and then was introduced 
in the electrode body [33]. After curing, in the electrode body was made a cavity of 0.3 mm depth. The 
ion selective membrane solution was obtained combining plasticizers (63.3%), ionophores (1.9%), 
KTpClPB (approx. 0.5% ) and PVC (30.7%) in THF (3 mL). Drops of this cocktail were deposited on 
the electrodes surface with a micropipette and let dry for 24 h. After this time, THF was evaporated 
and transparent membranes were obtained. Prior to first use, the prepared electrodes were conditioned 
in a 0.1 M Cu(II) solution for 24 h. 

2.4. Characterization of the Sensors 

ISEs were characterized for both considered cations by separate calibration procedures. They 
consisted in the recording of ISE potentials after cumulative microadditions of considered ions. The 
sensitivity corresponded to the slope of the linear response against the ion activity’s logarithm. The ion 
activity coefficients in solution were calculated according to the Debye-Hückel formalism [34]. The 
ISEs lower detection limit (DL) was taken at the point of intersection of the two asymptotic behaviours 
of the calibration curve, as recommended by IUPAC [35]. 

3. Results and Discussion 

The main analytical parameters of the electrodes including the detection limit, the linear response 
range, the pH effect, the response time and the selectivity to other ions were evaluated. 

The potentiometric response of all solid state contact Cu(II)-selective electrodes prepared with DOP 
and NPOE was evaluated in the concentration range of 10−8 to 10−2 M, against a double distilled  
water blank. 
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∆Emfs were plotted against log of activities of the Cu(II) ions, as shown in Figure 1. The sensitivity 
values were considered to be the slopes of the linear portion of the calibration graph, at a correlation 
coefficient R2 > 0.99. 

Figure 1. Potential response toward Cu(II) ions of the electrodes with the four potentiometric 
membranes evaluated. 

 

When the membrane based on succinimide–DOP was used, the potential remained linear in the 
concentration range 10−4–10−1 M and a slope of 20.9/decade was observed. The summary of results for 
the different membranes tested is displayed in Table 1. 

Table 1. Performance characteristics of Cu(II) selective sensors, formulated in this work 
and from the literature. 

Membrane 
Sensitivity 
(mV/dec) 

Detection 
Limit (M) 

Working 
Concentration 

Range (M) 

pH Working 
Range 

Response 
Time (s) 

Lifetime 
(Months)

N-hydroxy-succinimide-DOP 24.23 4.8 × 10−6 10−4 to 10−2 2–6 1 s 3 
N-hydroxy-succinimide-NPOE 37.46 4.4 × 10−6 10−4 to 10−2 2–6 0.25 s 3 

Succinimide-DOP 20.90 9.6 × 10−6 10−4 to 10−2 2–6 1 s 3 
Succinimide-NPOE 25.35 7.3 × 10−6 10−4 to 10−2 2–6 1 s 3 

Reference [36] 29.2 3.6 × 10−6 10−5 to 10−2 3.5–6.5 18 s - 
Reference [37] 30.0 3.0 × 10−6 10−5 to 10−1 1–3 8 s 4 
Reference [38] 29.6 2.4 × 10−6 10−5 to 10−1 3–5 30 s 3 

The combination of N-hydroxysuccinimide with NPOE plasticizer in particular shows a  
super-Nernstian slope of 37.5 mV/decade. This super-Nernstian slope could be explained by poor 
permeability and incomplete permselectivity of the membrane matrix for the copper ions. Another 
explanation can be that the different slope arises from the different stoichiometry of complexation 
reaction between Cu(II) and the ligand, or in the mixed equilibrium between chloride and ligand 
complexation of Cu(II). The first explanation seems more probable than the second one, since the same 
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behavior is expected for both NHS and S ligands. In any case, the higher value of slope does not 
hinders in any way the determination of copper(II) ions in aqueous media. 

The potential response of the proposed electrodes shows a linear response to the Cu(II) 
concentration in the range of 10−5 to 10−2 M. These characteristics together with the low detection limit 
make our formulation interesting among other recently reported Cu(II) ionophore-based sensors  
(see Table 1). Another advantage of the ligands involved in this study is that they are readily  
available commercially and rather cheap in comparison with other ligands utilized in previously  
published papers. 

3.1. Effect of pH 

The influence of pH on the potential response of the proposed sensors was studied over the pH 
range 2–12 (adjusted with HNO3 or NaOH) at two Cu(II) ion concentration values, 1.0 × 10−3 and  
1.0 × 10−4 mol·L−1. Obvious changes of the potential values with the pH value are noticed, as presented 
in Figure 2 for a concentration value of 10−3 mol·L−1. A similar behavior, but with less effect by the pH 
change, was observed for the lower concentration. Essentially, the potentials remain unchanged in a 
pH range from 2 to 6 (Figure 3), which is considered to be the working pH range of the developed 
Cu(II) selective electrode. An increase of the potential could be explained due to the formation of 
hydroxyl complexes of Cu(II) in solution, while, at the lowest pH, certain protonation of the ligand can 
be ascertained. This usable pH range can be highlighted as one of the widest available among different 
ionophore-based Cu(II) sensors (Table 1). 

Figure 2. Effect of the pH on the response of the electrodes at 1 × 10−3 M  
Cu(II) concentration. 

 

The sensitivity values were calculated by substracting the emf values corresponding to the 
investigated values of the Cu(II) concentrations, 10−3 and 10−4 M, at different, well established pH 
values. The sensitivity plot against pH for the investigated ligands is plotted in Figure 3. 
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Figure 3. Effect of pH on the observed sensitivities for the four membranes evaluated. 
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3.2. Response Time 

The response time is an important factor for an ion-selective electrode [39]. The dynamic response 
time was evaluated while changing the concentration of Cu(II) in solution over a concentration  
range from 10−6 to 10−2 mol·L−1, by measuring the potentials with the automatic data acquisition  
system (Figure 4). 

Figure 4. Dynamic response of N-hydroxysuccinimide–NPOE membrane electrode, with 
one decade step changes of concentration (10−6 to 10−2 M). 
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In all cases, the response was very fast, not showing any time lag, which can be considered as an 
exponential charging time transient. For this reason, the response time of the developed ISEs  
was estimated to be ca. 0.25 s, additionally pointing out the rapid complex formation. Again, the 
prepared sensors show one of the fastest response rates among comparable ionophore-based Cu(II)  
sensors (Table 1). 
  



Sensors 2013, 13 4373 
 

 

3.3. Selectivity 

The selectivity coefficient of the proposed electrodes was evaluated by using the fixed interference 
method (FIM) and it was determined from the potential measurements of solutions containing a fixed 
constant activity of the interfering ion (10−4 mol·L−1) and varying activity of primary ion [40]. 

The selectivity coefficient is calculated from the following equation: 
/*

, /( ) i jz zpot
i j i jK a a=  (1)

where ai, aj = the activities of primary ion and respective of interfering ion; zi, zj = their  
respective charges. 

In the procedure followed a fixed concentration of interfering ions (1.0 × 10−4 mol·L−1) and a 
varying concentration of Cu(II) ion was used. The results of the interference study are summarized on 
Table 2, where the data from other research on Cu(II) ion selective electrodes were included, for the 

sake of comparison.
 

 

Table 2. Selectivity coefficients of PVC membranes evaluated in this work. 

Membrane 
logkCu,X 

Ca2+ Co2+ Ni2+ Zn2+ Pb2+ 
N-hydroxysuccinimide-DOP −1.06 −1.26 −1.19 −0.73 −0.81 
N-hydroxysuccinimide-NPOE −2.41 −3.55 −1.49 −2.06 −0.59 
Succinimide-NPOE −1.78 −0.89 −0.91 −0.59 −0.070 
Succinimide-DOP −0.25 −1.039 −1.030 −0.32 −0.071 
Reference [36] −1.21 −1.09 −1.12 −1.09 - 
Reference [37] −1.09 - - −0.15 −0.79 
Reference [38] 0.032 0.044 0.35 0.019 0.04 

The electrodes with NPOE-plasticized copper(II) ion-selective membrane electrode showed better 
selectivity coefficients for different cations than that with DOP-plasticized membrane electrode. This 
suggests that the coordination of copper(II) ion by the ionophores can be related to the plasticizer type. 
It is also generally accepted, that NPOE plasticizer obtains improved performance for bivalent cation 
membranes. Especially, the N-hydroxysuccinimide-NPOE displayed better selectivity, improving with 
one order of magnitude or more the calculated selectivity coefficients. 

From the selectivity coefficients it can be observed that the electrode membrane presents better 
selectivity to copper(II) ion than to the other cations. This demonstrates that the electrode membrane 
coordinates stronger the copper(II) ions. 

It can be observed that the ligand containing nitrogen and oxygen atoms as coordination centers 
generated quite selective ionophores in NPOE-plasticized PVC membranes for copper(II) ion. 

The stability of the developed sensors was tested by measuring the electrode potential as a function 
of time, by checking both the detection limits and the slopes of the calibration curve. A series of 
calibrations were carried out over a few weeks in Cu(II) solution. The long-term stability of the  
copper(II) electrode was excellent, with no significant change in the working range and slope observed 
after three months of use. After two weeks, the electrodes responses were at a level of 98% and after 
one month at around 96% of the initial values. 

,Cu Xk
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The repeatability of the ion selective electrode was investigated by measuring the response of a 
specific electrode several times under the same set of conditions. The copper(II) ion selective electrode 
was tested for eight consecutive days and displayed good repeatability in a range of ±0.3 mV. The 
RSD value for N-hydroxysuccinimide–NPOE membrane was 1.64%. The slope of calibration curve 
obtained for this electrode was found to decrease slightly after several uses, which may be attributed to 
surface contamination. 

4. Conclusions 

Solid-contact potentiometric Cu(II) selective sensors were developed by incorporating off-the-shelf 
N-hydroxysuccinimide and succinimide ionophores in a PVC matrix, using DOP (dioctyl phthalate) 
and NPOE (ortho-nitrophenyloctyl ether) as plasticizers. The best performances were obtained for the 
N-hydroxysuccinimide version. The sensors work in a wide pH range 2–6 with a response time of less 
than 1 second. The main advantages of the developed electrodes can be summarized as: very fast 
response time, low cost, long life time and wide working pH range. Beside these characteristics, the 
electrodes are very easy to prepare, show low detection limits, good reproducibility, repeatability,  
and selectivity for Cu(II) over some metal ions, which recommend its use for a wide range of  
analytical applications. 
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