Sensors 2013, 13(4), 4029-4040; doi:10.3390/s130404029

A Support-Based Reconstruction for SENSE MRI

Brain Imaging Lab & MRI Unit, New York State Psychiatry Institute & Columbia University, New York, NY 10032, USA
* Author to whom correspondence should be addressed.
Received: 1 March 2013; in revised form: 22 March 2013 / Accepted: 22 March 2013 / Published: 25 March 2013
(This article belongs to the Special Issue Medical & Biological Imaging)
PDF Full-text Download PDF Full-Text [605 KB, Updated Version, uploaded 28 March 2013 18:06 CET]
The original version is still available [460 KB, uploaded 25 March 2013 15:39 CET]
Abstract: A novel, rapid algorithm to speed up and improve the reconstruction of sensitivity encoding (SENSE) MRI was proposed in this paper. The essence of the algorithm was that it iteratively solved the model of simple SENSE on a pixel-by-pixel basis in the region of support (ROS). The ROS was obtained from scout images of eight channels by morphological operations such as opening and filling. All the pixels in the FOV were paired and classified into four types, according to their spatial locations with respect to the ROS, and each with corresponding procedures of solving the inverse problem for image reconstruction. The sensitivity maps, used for the image reconstruction and covering only the ROS, were obtained by a polynomial regression model without extrapolation to keep the estimation errors small. The experiments demonstrate that the proposed method improves the reconstruction of SENSE in terms of speed and accuracy. The mean square errors (MSE) of our reconstruction is reduced by 16.05% for a 2D brain MR image and the mean MSE over the whole slices in a 3D brain MRI is reduced by 30.44% compared to those of the traditional methods. The computation time is only 25%, 45%, and 70% of the traditional method for images with numbers of pixels in the orders of 103, 104, and 105–107, respectively.
Keywords: parallel imaging; sensitivity encoding; magnetic resonance imaging; region of support; sensitivity maps; polynomial model; morphological operator

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Zhang, Y.; Peterson, B.S.; Dong, Z. A Support-Based Reconstruction for SENSE MRI. Sensors 2013, 13, 4029-4040.

AMA Style

Zhang Y, Peterson BS, Dong Z. A Support-Based Reconstruction for SENSE MRI. Sensors. 2013; 13(4):4029-4040.

Chicago/Turabian Style

Zhang, Yudong; Peterson, Bradley S.; Dong, Zhengchao. 2013. "A Support-Based Reconstruction for SENSE MRI." Sensors 13, no. 4: 4029-4040.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert