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Abstract: Sensor nodes in wireless sensor networks are easily exposedto open and

unprotected regions. A security solution is strongly recommended to prevent networks

against malicious attacks. Although many intrusion detection systems have been developed,

most systems are difficult to implement for the sensor nodes owing to limited computation

resources. To address this problem, we develop a novel distributed network intrusion

detection system based on the Wu–Manber algorithm. In the proposed system, the algorithm

is divided into two steps; the first step is dedicated to a sensor node, and the second step

is assigned to a base station. In addition, the first step is modified to achieve efficient

performance under limited computation resources. We conduct evaluations with random

string sets and actual intrusion signatures to show the performance improvement of the

proposed method. The proposed method achieves a speedup factor of 25.96 and reduces

43.94% of packet transmissions to the base station comparedwith the previously proposed

method. The system achieves efficient utilization of the sensor nodes and provides a

structural basis of cooperative systems among the sensors.

Keywords: network intrusion detection system; multiple pattern matching; distributed

computing; Wu–Manber; Snort
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1. Introduction

Sensor nodes are widely used in various applications such asair pollution monitoring, forest fire

detection, and anti-theft system. [1]. The advances in the technology of micro-scale electronic

devices have enabled the development of tiny sensors that are inexpensive, consume low power, and

multifunctional [2]. In addition, the improvement of the wireless communications technology has

provided an untethered data communication protocol over a short distance. These technologies enable

a number of sensor nodes to perceive and collect data from theexternal environment. Wireless sensor

networks (WSNs) are utilized for various monitoring work including the long-term monitoring of harsh

environments; thus the nodes should be sustained for a long time with a limited battery and respond well

to external changes [3,4].

However, the WSN is vulnerable to many malicious attacks called network intrusions. This is

because the sensor nodes utilize wireless communications and are deployed in open environments such

as mountainous and urban terrains. There is a possibility ofobtaining physical access to the sensor

networks and intercepting the data from the networks [5]. At worst, the intrusions could be extremely

dangerous because the WSN that monitors chemical gases or battlefields could be malfunctioning [6].

Managing a WSN is demanding work because of network intrusions, especially denial-of-service

(DoS) attacks [6]. Intrusion detection systems can be easily made ineffective because the attacks contain

messages that are similar to regular client requests. Many DoS attacks exist in each network layer, and

resources are rapidly exhausted, disrupted, or even destructed by these simple and repeated attacks [6].

Furthermore, networks are easily exposed to the attacks because the networks normally deal with too

many nodes to be controlled independently, and each node hasrestricted hardware resources to prevent

the attacks [7,8]. Consequently, each compromised sensor node might accidentally deliver harmful data

to the central server when the node is compromised by malicious patterns. To prevent attacks, efficient

security solutions for the sensor nodes are needed to maintain the reliability of the networks.

Network intrusion detection system (NIDS) has been proposed to prevent the sensor networks from

network-based malicious attacks. Each attack is analyzed as one of the many malicious signatures

(patterns) and summarized by pattern data groups. From the pattern groups, the system avoids damage

from the same or similar attacks. Using a pattern-matching algorithm that uses the intrusion pattern sets,

the system can analyze incoming packets and filter out malicious attacks [1,3,9]. However, few studies

on pattern-matching algorithms for sensor nodes have been conducted because most sensor nodes have

constrained resources for low power.

In this paper, we propose a novel security solution for sensor networks by modifying the traditional

Wu–Manber (WM) pattern-matching algorithm. Because the sensor node has limited performance,

memory size, and power, a full implementation of a general pattern-matching algorithm on each node

is difficult. To solve this issue, the algorithm is divided into two major steps: a shifting step and an

exact pattern-matching step. The two steps are allocated respectively to the sensor node and the base

station according to the demands of memory allocation and computing power. The modified shifting

step is optimized for limited resources and is executed by the sensor node. The base station in the

cluster-based structure is authorized to execute exact matching, which is difficult to process on the sensor
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node. Transmitted packets with searched results for each sensor node are processed by the base station.

By answering each node with the result, cooperative patternmatching can be achieved.

We represent a framework between the sensor node and base station that can perform distributed

intrusion detection with the WM algorithm. We conduct evaluations of the framework and analyze the

results. The results show that the framework achieves a performance improvement for both the sensor

node and the base station. The results allow the base stationto process a large number of sensor nodes

more efficiently.

The rest of this paper is organized as follows. First, we introduce background information about

the various methods of detecting network intrusions in sensor nodes and related work in Section2. In

Section3, the framework for network intrusion detection is introduced. Then, we explain the proposed

algorithm in Section4, which is a cooperative WM algorithm to develop the resources of both the sensor

node and the base station. We evaluate the performance of thework in Section5. Finally, conclusions

with plans for future work are discussed in Section6.

2. Background

This section introduces an NIDS that is developed to detect or prevent various network intrusions.

The WM pattern-matching algorithms used to detect intrusion signatures are also introduced.

2.1. Network Intrusion Detection System

Network intrusions refer to malicious attacks such as attempting DoS attacks, intercepting packet

payloads, and cracking target nodes. These intrusions are detected and prevented by a security

technology called intrusion detection [10]. NIDS is a complete system equipped with the intrusion

detection technology. The system consists of all devices and information about the networks, such as

host, routers, and monitoring results [1].

Detecting intrusions such as DoS is difficult to implement because most intrusions pretend that they

are general packets. Moreover, many intrusions have polynomial characteristics and are not easily found

by comparison with specific patterns. The implementation ofan NIDS is difficult because the detection

algorithm should not disturb its own intended flow of sensingwork.

The intrusion detection systems are classified into misuse detection and anomaly detection

systems [3,11]. A misuse detection system uses pattern-matching algorithms with predefined patterns

called intrusion signatures. Most of the signatures were obtained by an empirical method. In other

words, the signatures are created by obtaining the common context of payloads that are revealed as

attacks. Firmly constructed databases of these signaturescan prevent network devices from the same

attacks again. However, this algorithm is unsuitable for the detection of newly introduced or polymorphic

intrusions because only known patterns can be detected. A heuristic matching method that allows

wild-card characters is used to supplement misuse detection [12].

Implementing a misuse detection system in sensor nodes has been studied in several previous works.

Because the nodes have limited resources, many researchersintroduced outlier detection systems that

deploy additional distributed monitoring nodes containing larger resources than the others [8,13]. The

outlier nodes only conduct intrusion detection work, and deliver the detection result to the base station
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and other sensor nodes. Aminet al. proposed a robust intrusion detection system (RIDES) thatunified

detection schemes, including the signature-based detecting system and anomaly detecting system [14].

The algorithm converted a packet’s payloads to signature codes based on Bloom filters. Baig introduced

five phases for detecting intrusions, including pattern recognition and feedback of the results [4].

An anomaly detection system recognizes normal activities in the networks. Comparing received

packets with these activities, malicious intruders can be detected by the system. The system can find

deliberately modified or unknown signatures that are difficult to detect by misuse detection systems.

However, it is still difficult and time-consuming to determine a profile of the normal activities [7]. The

profile is determined by input data, output results, data types, and labels. Stochastic approaches are

generally used to set the profile [15].

Anomaly detection systems have also been regarded as one of the many intrusion detection systems.

Distributed intrusion detection systems (IDSs) that have asystematic anomaly-detecting process were

developed [16,17]. Similar to outlier systems, additional agents such as gateways are dedicated to

execute the intrusion detection schemes. An intrusion alert function based on anomaly detection was

also introduced [11]. The system can validate signals among the sensor networksusing these functions.

In addition, packet traffic can be a criterion for detecting an anomaly in networks. A matching algorithm,

which regards observed packet traffics as specified patterns, was also proposed [15,18].

Snort is one of the well-known IDSs based on a hybrid algorithm that uses both misuse detection

and anomaly-based inspection [19]. Snort has rule sets that define malicious attacks. Each rule contains

information about a protocol, port number, and context of the packet. The rule sets support regular

expressions that contain wild-card characters, and the sets require the algorithm to perform both signature

and heuristic matching. Many researchers have conducted studies to accelerate and optimize the rule

set finding mechanisms such as pattern-matching algorithms[9,20,21]. However, these efforts are still

difficult to implement in sensor networks because the schemes should be modified for the constrained

resources of the sensor node.

2.2. Multiple Pattern Matching Algorithm

A string-matching algorithm is a process of searching string subsets in a specific sentence called a

text. The algorithm is used for finding words in a web page or a textbook, DNA pattern recognition,

and network intrusion detection. This classical algorithmhas issues of both memory efficiency

and performance.

The WM algorithm is a powerful pattern-matching algorithm that can detect multiple patterns

simultaneously [22]. This algorithm is one of the classical multiple pattern matching algorithms

improved from the Boyer–Moore algorithm [23]. In addition, the WM algorithm is a shift-or algorithm

using a hash table and prefix table that seeks a substring of the text to determine the shift amount. The

substring, normally called a block, has two or three sequential characters [22]. These characters form

the criterion for the shift amount. Referring to the hash- (i.e., the shift) table indexes, the algorithm

obtains the shift amount from the table entries. Zero-shifting entries mean that the substring is a suffix

of the pattern sets and have a chance to be matched with the patterns. The prefix table gives additional

information about prefix subsets of the patterns to match allcharacters. In this way, the algorithm can
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skip two or more characters in the text. The skipping method enables the algorithm to find multiple

patterns at once and increases the searching speed. Snort uses a modified version of Wu–Manber [24].

Figure1(a)shows a simple example for finding patterns using the WM algorithm. Let us first assume

that there are only two patterns to search: “UNIVERSITY” and“LONDON”. The WM algorithm first

constructs the shift and hash tables from the patterns before it starts the actual matching operation.

Because the shortest pattern “LONDON” has six characters, the minimum lengthm is set as 6. To make

an appropriate shift table amongm characters, the pattern “UNIVERSITY” is also considered asthe first

six letters “UNIVER.” Assuming that the block sizeB is 2, we can make the shift table based on the two

patterns. For example, the subsets “ER” and “ON” are zero-shifting entries and “VE” and “DO” indicate

the shift value as 1. The pointer of the text string is continuously shifted by the entries of the shift table

until the pointer reaches the end of the text string.

Figure 1. Shifting examples using the WM algorithm. (a) The shifting processes; (b) The

two tables of WM.

(a) (b)

Figure1(b)shows both the suffix and prefix tables established by the two patterns in Figure1(a). The

algorithm first looks at block “NI” of the text, and the shift table indicates the algorithm shifts three

characters. Then, the shift value of the next block “ER” is zero. In this case, the algorithm returns to

m− B = 4 characters and takes another block of that position called the prefix block. The prefix block

“UN” is also matched with the prefix table. Therefore, the algorithm starts to compare the text with the

entire pattern and finds that the string matches one of the given patterns. The other case is shift-table

mismatching. When mismatching occurs, the shift table indicates a full shift that can be derived bym

andB asm − B + 1 characters. In this figure, the block should be shifted to fivecharacters. Then, the

block (i.e., “YO”) also leads to shift five characters. For the next case, the pointer indicates “DO” and

eventually finds out the pattern “LONDON”.

The patterns are always detected, although the algorithm skips two or more characters. For example,

the third case (i.e., “YO”) in the Figure1(a) leads to shift five characters. For the next case, the pointer

indicates “DO” and eventually finds out the pattern “LONDON”. Because the amount of the full shift

is restricted bym, the pointer never misses the directly followed patterns. However, the algorithm

improperly finds short-sized pattern sets for the same reason.
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3. Sensor Node-Based NIDS Frameworks

In this section, we introduce an NIDS framework modified for small-sized sensor nodes. This

section first introduces the computation offloading method from a resource-constrained sensor node to

a resource-rich base station. This section also describes MinWM (Minimized Wu–Manber algorithm)

optimized for each device. MinWM uses a process dividing scheme and makes two nodes to manage the

shift table and prefix table independently. Packet transmission management among the network is also

discussed briefly where sensor nodes determine whether a packet is a malicious attack or not.

3.1. Networked Sensor Platform

The main objective of the node is to deliver gathered sensinginformation such as light, temperature,

radio frequency, and vibration to central hosts called basestations. The base station creates valuable

information from the gathered data. In this way, we can applya cluster-based sensor system to observe

large-scale natural phenomena and develop unmanned management systems of specific regions (e.g.,

industrial management and urban air-pollution observation).

The sensor nodes are low-power and low-performance devicesbecause they are not connected with

external wires and operate on internal battery power. Generally, a node has 64 KB memory and a

micro-controller below 16 MHz frequency. Therefore, only light-weighted process that utilizes minimal

resources can be implemented on the devices. Moreover, the detecting process should not disrupt the

periodic sensing works (i.e., the process should be terminated in a short time). Highly time and resource

demanding process cannot be executed on the sensor nodes.

The framework based on MinWM is similar to other cooperativeNIDS [8,14]. Both the nodes and the

base stations take different jobs according to their hardware resources. The objective is to improve the

overall performance of the NIDS and to decrease unnecessarynetwork transmission. As we mentioned,

the sensor node should not perform entire signature matching. Instead, the pattern matching algorithm

should be modified to reduce resource usage. The strategy of MinWM is to divide the WM algorithm

into table-matching and actual-matching steps. This approach allows the node to implement WM-based

detection systems and utilizes the base station to boost thethroughput of the entire detection process.

Figure 2 shows an example of the system model based on the multiple networked sensors. Each

node is assigned to certain regions and gathers external sensing information for predefined purposes.

For a certain time period, the nodes have transmitted the data to the assigned base station for

summarization of the sensing works. Meanwhile, the base station of a particular region is responsible

for collecting data and managing sensors in the same region.The packet from each base station to a

top monitoring server represents the summarized sensing data of their own regions. Because of this

cluster-based structure, the general analysis at the top monitoring server is simplified by these

base stations.

The intrusion detection systems based on the Snort signature-set checks additional information of

incoming packets such as port numbers and protocol types besides the payloads. In other words, the

system only inspects the payload of an incoming packet when the packet comes through a specific port

number and protocol type corresponding to the signatures. The packet’s payload is checked by both

the shift table and the prefix table before transmitting the sensing data. The result of the inspection is
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inserted into the original payload. The base station is responsible for the remaining detection work (i.e.,

the exact matching). Using the additional data from the sensor node, the attack attempts can be quickly

determined by the base station, which has more computing resources than the sensor nodes. The sensor

nodes and base stations notify other nodes of an intrusion ifthe packet is revealed as a malicious attack.

Each sensor node has the same algorithm for consistent intrusion detection. Figure3 shows how the

general WM steps are divided and performed by the sensor nodes and the base stations.

Figure 2. The system model of the networked sensor platform.

Figure 3. The division of processes of the distributed WM algorithm.

To process the work efficiently, MinWM is based on a sensing work provided by TinyOS’s library.

The overall process of the system is shown in Figure3. The sensor nodes transmit the packet that contains

the original data and locations of suspicious attacks. The base station operates the actual matching
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schemes using the location data set by each node. The result is also transmitted to the sensor nodes that

suspect attacks. The informing step is a simple broadcasting step; however, other traceback mechanisms

can be applied to improve network safety [25,26].

3.2. Intrusion Detection Schemes

The sensor node checks the existence of intrusions within the time period. Comparing substrings

of the payload with shift-table entries, the node can examine substrings with high speed. We focus

on the DoS rules among the Snort signatures because being exposed to DoS attacks can lead to a

dangerous situation for the WSNs [6]. The table that was created by the content fields of the rules

contains information about the amount of shifts. The skipped characters are irrelevant to the matching

suffixes [27]. The shifting also indicates that suffix matching may existat the shifting point. The

algorithm searches the prefix table only if the shift table indicates a zero-valued entry. This skipping

method helps the sensor node to finish searching the context in time despite its limited resources.

The prefix table represents the string’s prefix portions of the NIDS content source. The prefix table

rechecks a suspicious payload that indicates zero entries.In general, the exact-matching step occurs

when the signature satisfies the conditions of the two tables. The second table can reduce incidences of

warning alert messages and increases the matching accuracynotably.

The sensor node does not contain entire signatures owing to two reasons. The first reason is that the

exact-matching step requires a large portion of the WM algorithm’s execution time. The substrings are

compared with all characters in the signatures that have thesame suffixes and prefixes. Considering

the extremely constrained computation power, this processis too slow to be executed while maintaining

the periodic sensing process. Secondly, the sensor node does not have sufficient space to keep entire

signatures. A low-end sensor node is known to be unsuitable to deal with general patterns without

modifying the signatures [28]. Instead of processing all signatures on the sensor node, we mark the

location of a suspicious string as a bookmark and pass it to beprocessed by the base station. Only one

byte in size is sufficient to represent a bookmark in the packet because the general packet size is less

than 128 bytes. The bookmark can also represent both suffix and prefix information because the block

size and minimum length of the signatures are defined in advance.

The base station receives packets that contain the insertedlocation information (i.e., the bookmarks)

from multiple nodes. Using the bookmarks, MinWM checks suspicious signatures marked by the sensor

nodes to determine whether the packets are actual attacks ornot. The suffix and prefix information

substrings are sent to the base station in the form of bookmarks. This approach reduces the time to

find matching candidates. In addition, MinWM also skips the step where the suffix and prefix tables

are compared, which is already executed on the sensor nodes.As a result, the MinWM framework can

achieve higher throughput than processing the entire WM algorithm at the base station. A more powerful

aspect is that MinWM can even skip the whole-detection stepsif the payload checked by the node does

not contain any bookmarks. Therefore, reducing the load of the base station helps in processing a large

number of sensor nodes efficiently. While the prefix and suffixtables are simply utilized for each sensor

node, the base station only focuses on complete signatures.In this way, both the sensor nodes and the

base stations can achieve the objectives of memory efficiency and performance.



Sensors2013, 13 4006

3.3. Packet Transmission Management

The detection results of the packet are sent to the sensor nodes that previously transmitted the

packet. Considering the broadcast capabilities of the sensor nodes, a traceback for the network intrusion

is emphasized. The sensor nodes that transmit the intrusions are distinguished and managed by the

intrusion system according to the policy of the system. Traceback mechanisms have been studied by

other researchers [25,26]. A small portion of trace information is inserted into the node, and the system

is prepared to trace the information using the bloom filter, although a simple traceback mechanism is

assumed in the MinWM framework.

Figure4 shows the message format of MinWM. This is the format of a TinyOS 2.x message and

ZigBee protocol [19]. The format mainly consists of five categories: AM packet, header, packet payload,

footer, and metadata. The AM packet represents the categoryof the packet and its destination nodes.

The header field contains the overall information about a packet, such as the source address, length, and

packet groups. The footer field has cyclic-redundancy-checking (CRC) parity data to verify the contents

of the packet. The metadata field contains additional information for the networks. The “dest addr” in

the AM packet contains the address of the node that should receive the packet. For example, the address

“FF FF” indicates a broadcasting mode, which means that the packet is transmitted to all nearby nodes.

Figure 4. The packet format for the wireless sensor network.

Figure5 indicates the overall message transmissions to conduct pattern matching between the sensor

nodes and the base station. The payload data is transmitted by the encapsulated packet. Although the

general WM system needs only the data field “string” in the packet payload to process the sensing data,

additional fields that occupy small payload sizes are added.As we discussed in Sections2.2 and3.2,

the sensor node compares the string field with the suffix and prefix tables. If a suspicious substring is

detected, the position of the suffix is written on the checkerarray, and the total number of intrusion

candidates is written on the counter field. The base station examines the partial substrings of the packet’s

payload using the bookmark data. The size of the packet is sufficient enough to contain the two additional

fields because the ZigBee protocol provides a bandwidth of upto 20 KBps [2]. In addition, the data is

compatible with other systems because the system uses general packet structures with minor conversions.
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Figure 5. The packet messages between sensor nodes and a base station.

Distributed sensor nodes and the centralized base station notify each other of the classification of the

transmitted packet. In other words, the packet of the sensornodes contains additional information about

checking status, including warnings of the intrusions. Thepacket of the base station has the results of

intrusion detection and actual alerts of intrusions. An additional field “mode” makes each node recognize

the status of incoming packets. After each detection step isfinished, the status is determined and written

at the one-byte field data. The field is also used for the network management methodology consisting of

two or more sensor nodes. According to the network policy, each node and base station can notify each

other of the current detection status of the packet. Becausethe field represents a total of 256 different

states, the field can be used for the MinWM framework with a large number of sensors.

4. Modified Tables of the Wu–Manber Algorithm

Each sensor node commonly has two tables created by substrings of intrusion signatures. However,

the tables based on the original WM algorithm cannot be used owing to two limitations: the structure of

Snort signatures and restricted resources of the sensor nodes. In this section, we discuss the problems

and novel solutions for the sensor nodes and the base station. We first minimize the shift and prefix

tables to allocate them into the memory of the sensor node. Each entry of the tables is classified by

single characters to reduce the required memory size. In addition, we prepare an additional scheme to

deal with specific patterns that are difficult to implement.

4.1. One-Character Classification

Snort has recommended using the WM algorithm to find intrusions because it has an advantage in

memory efficiency as compared with other pattern-matching algorithms [19]. However, the memory

requirements of the algorithm are still too large to reside in the memory of the sensor node. Generally,

the suffix and prefix tables of the WM algorithm use combinations of multiple characters to allocate the

addresses of each entry. The address is derived from arithmetic equations of the characters as a block.

The optimalB is known to be eitherB = 2 or B = 3 [22]. The system requires an additional one byte

of data for every entry to represent a total ofC = 256 different expressions. Although we setB = 2, the

shift table requires the memory size to beCB × 1 = 64 KB. Considering that almost all sensor nodes

have a memory size of less than 64 KB, the table cannot be allocated without modification.
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Instead of using multiple character combinations, we propose tables based on single characters, i.e.,

B = 1. In this case, the required memory size of each table isCB×1 = 256 bytes, which is significantly

smaller than the memory size using multiple character combinations. However, the reduction of block

size can cause significant performance degradation becausethe shift amount is also decreased by the

block entries. A smaller table size contains a smaller resolution for detection clues. In other words, the

suffix table has only 256 combinations of shifting information if the table consists of single character

entries. As a result, the shift entry is forced to have smaller shifting amount. Still, this table-based

approach shows better throughput than other algorithms based on single-character comparison owing to

the skip method.

The prefix table can contain many more entries than the shift table can. The prefix table requires

2562 = 65536 = 64 KB memory size at maximum if all two-character combinationsappear among the

signatures. However, allocation of the maximum memory sizeis not always necessary. The required

memory size strictly depends on the number of signatures. Aswe mentioned in Section2.2, MinWM

examines the prefix table only if the suffix table indicates a zero shift. In addition, the prefix table can be

represented by linked lists of prefix substrings indicated by a pointer of the suffix entry. In this case, the

memory requirements of the prefix tables depend on the numberof prefix characters in the signatures.

In contrast to the original WM algorithm, MinWM on the sensornodes does not make a copy of the

matching candidates. MinWM simply records the positions ofmatching in the payload context to reduce

the size of the packet and provide efficient control for the exact matching executed on the base station.

The performance and memory requirements heavily depend on the number of signatures. Therefore,

a small number of packets are used to achieve high throughput. DoS signatures are suited for this

scheme because the number of rules is less than 100. Considering overlapped signatures in the rules,

this structure can allow the sensor node to provide a partialintrusion detection scheme with minuscule

resource consumption.

4.2. Short String Exceptions

The content fields of each rule are considered as the signatures. Because the length of the fields

is variable, generation of signature sets for all rules is difficult. Strings less than two characters long

significantly reduce the performance of the WM-based algorithm because the maximum shifting value

depends onm andB (i.e., m − B + 1). Only one signature that has one character prevents shifting by

more than one character.

To solve the problem, MinWM uses the structure of the Snort rules. In fact, the content fields shorter

than two-character strings provide additional position information to clarify the ambiguous strings.

Moreover, the position indicates either the exact or near position of the first letter in the string. Instead of

inserting the short signatures into the two tables, we make exceptions for the signatures. The additional

step is prepared to account for the exceptions before the algorithm executes the exact-matching step. In

the additional step, the algorithm verifies the exceptions at the string locations specified by the rules.

MinWM simply checks bytes in the location described in the exceptions and does not execute the whole

string-finding algorithm for the short patterns. Consequently, MinWM requires almost no additional



Sensors2013, 13 4009

resource and execution time. In addition, the signature sets without short patterns create small-sized

prefix tables and a shift table with the large shifts.

5. Evaluations

In this section, we only consider networks that consist of a single sensor node and a base

station because MinWM only considers implementing the distributed WM algorithm among two

nodes. Although the evaluations are conducted with two nodes, MinWM can be expanded to

multiple-node-based networks owing to the simplicity of the system. However, the networked system

should control the overall traffic transmitted by the nodes.Traffic management is already discussed in

Section3.3. We first explain the environment of the sensor nodes and thendiscuss the results in detail.

5.1. Experimental Environments

We conduct evaluations using a Kmote device, which is a typical low-end sensor node. The device has

an 8 MHz MSP430 microcontroller and a CC2420 radio chip that is compatible with other IEEE 802.15.4

(i.e., ZigBee) based devices. The microcontroller has 10 KB RAM and 48 KB flash memory. If the size

of each entry is set to 1 byte, the shift table requires only 256 bytes, and the table is sufficiently allocated

in the device. The size of the prefix table depends on the number of signatures in a node. Considering

the number of DoS signatures in Snort, the flash memory size sufficiently contains the prefix table.

In general, the misuse detection systems consider payload contents in target packets as strings. This is

due to that most malicious rules are defined in a form of strings and traditional string matching algorithms

can be effectively utilized to detect malicious data. Implementing a misuse detection system in sensor

nodes also applies this approach [4,14,18]. In fact, the MinWM framework also detects intrusion

signatures on the strings, which represent the payloads of incoming packets.

The MinWM framework uses a rule-based intrusion detection scheme, and Snort v2.9 DoS rule sets

are used for the target signatures. A total of 77 rules are selected and contained in the sensor nodes to

detect specific attacks. Generally, one rule in Snort consists of one or more string sets. The rule also has

information about the distances between two sets. MinWM considers each string set as a single pattern.

If one or more patterns are matched, the locations are recorded in the bookmarks and inserted into the

sending packet. From the packet, the original context and the added bookmark can be delivered to the

base station. Because the base station knows the locations of the suspicious strings, pattern sets that

contain wildcard characters are quickly determined by checking the distances of the matching patterns.

Strings below two characters are considered as exceptions,as described in Section4.2, and are processed

by the base station before exact matching.

The base station processes not only the exceptions but also other regular expressions that are not

easily implemented on the sensor nodes. Specific signaturesin Snort are written in a Perl-compatible

regular expression syntax (PCRE) [29]. The signatures can be searched by the base station because

the base station has the resources to load the PCRE library. Aqueue structure is prepared to receive

multiple packets, and the structure helps the base station to use any parallelization techniques such as

multi-threaded computing.
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5.2. Performance Improvement of the Distributed DetectionSystem

The time complexity of the detection scheme is derived by theoriginal author of the WM algorithm.

The throughput of the algorithm is dependent onB, the total length of the textN , andm [22]. MinWM

needs time to construct the shift and prefix tables; however,we do not consider this in this evaluation

because the tables are predefined and loaded in the memory. Including the time to compute hash

functionsO(B), the complexity can be given byO(BN/m) [22]. RIDES, which uses bloom filters

to find signature codes, is presented for comparison with theproposed algorithm. RIDES represents

a complexity ofO(N + ǫ), whereǫ is the number of patterns [14]. As we mentioned in Section4.1,

the minimized block sizeB = 1 reduces the load to compute hash functions and increases theoverall

throughput. Considering another parameter set withm = 3, the algorithm theoretically shows better

throughput than RIDES.

Simple attack emulations are conducted on the sensor nodes as shown in Figure6. A target node

periodically sends the current temperature to the base station; the time interval is set as one second

in this evaluation, but it can be changed. We artificially generate attack signals that contain DDoS

signatures and insert them into the sensor node through wireless networks. A sensor node that receives

these signatures can detect them and make an alert signal. Inthe figure, only a certain part of payload in

the alert signal is presented: counter, suspicious data, and checker referred in Figure4. After the alert

signal is sent to the base station, the node stops sensing thecurrent temperature and waits for response

from the base station. The base station verifies the suspicious data on the alert signal and then reports

the result by sending the response signal. Under this emulation environment, we evaluate performance

of the proposed approach.

Figure 6. An intrusion emulation on the proposed sensor network.

Table1 indicates the elapsed time and power consumption of the two algorithms in the sensor node.

We have evaluated each test for 1,000 times and the average isrepresented in the table. We find that

MinWM detects DoS intrusions more efficiently than RIDES because of the structural advantages of

the approach. To find the number of intrusions, MinWM uses shifting techniques that can skip one

or more characters, while RIDES uses hash techniques derived by the Rabin–Karp algorithm [30].

RIDES is known to be suitable for finding large numbers of patterns because the algorithm simplifies the

exact-matching steps instead of applying the character-shifting schemes. In Table1, the searching speed

of RIDES remains constant while the searching speed of MinWMdecreases according to the number of

the bookmarks.
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Table 1. Required resources to examine a single packet.

MinWM RIDES

# of Bookmarks Time (ms) Power (µWs) Time (ms) Power (µWs) Speedup Ratio

0 0.204 1.51 39.533 128.08 193.79

5 0.417 3.08 39.547 128.13 94.84

10 1.106 8.16 39.436 127.77 35.66

15 1.248 9.21 39.562 128.18 31.70

20 1.408 10.39 39.550 128.14 25.96

The power consumption in Table1 is evaluated from the measured time and the power consumption

of the sensor node [31]. The sensor node that integrates MinWM consumes 1.51µWs to detect any DoS

attacks on a single packet when the number of bookmarks is zero. On the other hand, when using RIDES

to detect DoS attacks, the sensor node requires 128.08µWs energy. As a result, RIDES consumes up to

126.57µWs more energy for inspecting a single packet compared with MinWM.

Using a simple probabilistic approach, we evaluate the performance of MinWM. SettingΣ to be

the number of alphabets, a matching probability of only one pattern that equals the probability of zero

shifting is simply derived as(1/ΣB). In addition, no pattern is matched with a substring of the text if

actual shifting would occur. From the derivation, the non-zero shifting probability equals(1 − 1/ΣB)ǫ.

This equation shows that the performance is strongly related to the number of patterns to be detected.

Figure7 reveals the relationship between the signature size and thenon-zero probability. In the proposed

approach, each signature only requires one additional bytein the prefix table. Although the memory is

sufficient to contain all signatures in Snort, the general WMalgorithm restricts the appropriate number

of patterns. Only 500 signatures drop the non-zero probability below 20% and definitely decrease the

throughput of the algorithm. However, MinWM is still considered a reasonable method because the DoS

attack signatures are limited in number and overlap with each other. Moreover, the problems of detecting

a large number of patterns are solved by the distributed processing of multiple sensor nodes.

To verify the effect of the bookmarks, we have performed simple evaluations. A number of

strings are prepared and inserted into the process of the sensor node. As a result, the strings contain

information about the location of suspicious substrings (the bookmarks). The actual matching step is

executed using the bookmarks, and the throughput of the basestation is calculated by measuring the

processing time. To show the improvement, we measured the throughput of the general WM algorithm

with the same strings. The evaluations are conducted on an identical machine equipped with an

AMD Phenom II X4 955 processor running at 3.2 GHz and equippedwith 4 GB of DDR3 RAM. The

source patterns are string sets that are generated randomlywith a length of 50. The number of patterns is

varied to observe the performance of processing incessant data inflow. The throughput of two methods

is calculated by the processing time and total string sizes.
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Figure 7. The non-zero probability and required memory occupation for the patterns.

Figure 8 shows the average throughput of the two pattern sets. In MinWM, the suffix and prefix

matching steps are skipped by the bookmarks. MinWM only performs the entire pattern comparison

using the pre-written bookmarks. By comparing the results,MinWM shows faster detection time of

suspicious strings than the general WM algorithm. The figureindicates that MinWM is on average

4.76 times faster. The faster detection helps the base station to gather sensing information more

efficiently. The improved detecting performance also helpsto manage more sensor nodes. Considering

that many sensor nodes are typically utilized for large-scale sensing activities, higher density sensing

environments can possibly be provided by the increased capacity.

Figure 8. The average throughput of the two pattern sets in the base station.

The performance improvement is caused by the skipping schemes of the MinWM framework. The

entire suffix- and prefix-matching steps are skipped in the base station. Although the exact-matching step
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takes a large portion of the execution time, reducing the amount of memory access to shift characters

decreases the execution time. Furthermore, large numbers of payloads are considered as regular sensing

activities without detection by the base station. Table2 lists the average number of patterns that are

examined by the exact-matching step. Only 2.55% of the patterns is alerted by the sensor node, and

the rest is regarded as safe. Compared with the RIDES approach that we selected, fewer packets are

examined by the base station, although the rates for RIDES depend on the types of hash functions. The

results in the Table2 indicate that MinWM can reduce the incidence of entire matching execution. From

the analyses, the MinWM framework executes intrusion detection tasks more efficiently and has the

capability to protect large numbers of sensor nodes from malicious DoS attacks.

Table 2. The number of alerted patterns that require actual matching.

Patterns 50 100 500 1000 5000 10,000 50,000 100,000 500,000 1,000,000

MinWM

Average Counts 1.16 2.69 12.93 24.70 124.43 253.43 1275.40 2527.52 12680.77 25375.59

Rates(%) 2.3200 2.6900 2.5860 2.4700 2.4886 2.5343 2.5508 2.5275 2.5362 2.5376

RIDES

Average Counts 2.64 5.16 25.63 50.33 251.27 506.09 2513.65 5040.52 25194.83 50345.80

Rates(%) 5.2800 5.1600 5.1260 5.0330 5.0254 5.0609 5.0273 5.0405 5.0390 5.0346

6. Conclusions

In this paper, the concept of a distributed WM algorithm called MinWM has been introduced to

establish an NIDS for low-end sensor nodes. To solve the problem of constrained resources, the

WM algorithm is divided into two parts; the sensor nodes execute smaller part and the base station

executes the other. In addition, the sensor nodes use modified WM tables to reduce memory burden.

MinWM outperforms the general WM and RIDES approaches in a number of evaluations. One possible

explanation for these results is that the skipped shifting step occupies a large portion of the execution

time. The base station is more efficient if it executes only the actual matching step. However, the

evaluations were conducted for a limited range due to the restricted string pattern sets. MinWM may

be required to design systematic evaluations with actuallydeployed multiple sensor nodes and activities.

Nevertheless, the study is still valuable because the evaluations prove the efficiency of the proposed

structures and provide the basis for distributed work to prevent malicious attacks. We expect that the

MinWM framework can be implemented with the whole Snort signatures using a large scale distributed

system with more nodes.

This study provides an example of implementing high resource demanding work such as multiple

pattern-matching algorithms to constrained sensor devices. Making cooperative detection frameworks

among the different sensor nodes is possible because MinWM is developed from a standard sensing

framework. The MinWM framework can also be applied to any other compatible framework that

consists of a large number of sensor nodes utilized for many practical fields. In addition, the automated

intrusion defense agent can be implemented by enhancing thedetection functions on the base station.

To achieve these objectives, the study of effective communication frameworks among the sensors would
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be recommended to establish efficient network systems. Thisstudy provides a valuable resource for the

future study of cooperative systems among a large number of sensor nodes and base stations.
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