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Abstract: The effects of the SnO2 pore size and metal oxide promoters on the sensing 
properties of SnO2-based thick film gas sensors were investigated to improve the detection 
of very low H2S concentrations (<1 ppm). SnO2 sensors and SnO2-based thick-film gas 
sensors promoted with NiO, ZnO, MoO3, CuO or Fe2O3 were prepared, and their sensing 
properties were examined in a flow system. The SnO2 materials were prepared by calcining 
SnO2 at 600, 800, 1,000 and 1,200 °C to give materials identified as SnO2(600), 
SnO2(800), SnO2(1000), and SnO2(1200), respectively. The Sn(12)Mo5Ni3 sensor, which 
was prepared by physically mixing 5 wt% MoO3 (Mo5), 3 wt% NiO (Ni3) and SnO2(1200) 
with a large pore size of 312 nm, exhibited a high sensor response of approximately 75% 
for the detection of 1 ppm H2S at 350 °C with excellent recovery properties. Unlike the 
SnO2 sensors, its response was maintained during multiple cycles without deactivation. 
This was attributed to the promoter effect of MoO3. In particular, the Sn(12)Mo5Ni3 
sensor developed in this study showed twice the response of the Sn(6)Mo5Ni3 sensor, 
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which was prepared by SnO2(600) with the smaller pore size than SnO2(1200). The 
excellent sensor response and recovery properties of Sn(12)Mo5Ni3 are believed to be due 
to the combined promoter effects of MoO3 and NiO and the diffusion effect of H2S as a 
result of the large pore size of SnO2. 
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1. Introduction  

Hydrogen sulfide (H2S) is an unwanted and toxic by-product of the coal, coal oil, and natural gas 
industries [1]. When hydrogen sulfide is emitted into the atmosphere, it is converted to SOx, which is a 
precursor to acid rain [2]. Accordingly, there is increasing demand for sensing devices that monitor 
low H2S concentrations. Well-known materials used to detect H2S include BaTiO3 [3], SnO2-Pd [4], 
Ag-SnO2 [5], SnO2-Al2O3 [6], SnO2-CuO [7–11], SnO2-CuO-SnO2 [12,13], SnO2-ZnO-CuO [14] and 
SiO2-doped Cu-Au-SnO2 [15]. Among the sensors described in the literature, CuO-modified thin-film 
or thick-film SnO2 sensors are promising for the sensitive and selective detection of H2S [1].  

SnO2-based thick-film gas sensors have been used to detect toxic gases [16–28] on account of their 
high sensor response, simple design, low weight and low price. SnO2-based thick film gas sensors can 
achieve greater sensitivity to H2S through control of the particle size [17] and the addition of suitable 
promoters [13,14]. Wagh et al. reported that SnO2-ZnO-CuO thick-film sensors had significantly better 
response and recovery times than SnO2-ZnO or CuO doped SnO2 sensors [15]. Nevertheless, most 
studies on the sensing behavior of CuO-modified SnO2 thick-film gas sensors focused on 
concentrations of tens to hundreds of ppm. Until now, there have been very few studies of SnO2-based 
gas thick-film sensors for the detection of <1 ppm H2S.  

In our previous papers, we described a SnO2-based thick-film gas sensor promoted with MoO3 and 
NiO, which was developed for the detection of dimethyl methylphosphonate (DMMP) and 
dichloromethane [26–28]. During the course of this earlier study, NiO and MoO3 promoters were 
found to play important roles in the sensor response and the recovery of the SnO2-based sensor, 
respectively, for the detection of toxic organic compounds containing P and Cl [26–28]. In the case of 
H2S detection, a SnO2-based thick-film sensor promoted with NiO and MoO3 showed improved 
recovery properties [2]. Nevertheless, the response of this sensor was decreased by promoting MoO3 
despite the good recovery properties. Considering that the sensor response is an important factor in 
addition to the recovery properties, the improvement in the sensor response is necessary to develop a 
new SnO2-based thick-film gas sensor for the detection of <1 ppm H2S.  

The aim of this study was to improve the response of a SnO2-based thick-film gas sensor promoted 
with NiO and MoO3 developed in a previous study for the detection of H2S at concentrations of  
<1 ppm. Accordingly, this study examined the effects of promoters and the textural properties of SnO2 
on the sensing behaviors of SnO2-based thick-film sensors.  
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2. Experimental Section  

2.1. Preparation of the Materials and Sensors 

The SnO2 used as a source for the SnO2-based sensors was prepared from SnCl4 using a previously 
described ammonia-based precipitation method [2,26–28]. The products were calcined in a muffle 
furnace at various temperatures (600, 800, 1,000 or 1,200 °C). The SnO2-based materials were 
prepared by physically mixing two or three of the following promoters, NiO, ZnO, MoO3, CuO and 
Fe2O3, with SnO2. All products were calcined in a muffle furnace at 600 °C for 4 hours. The 
temperature ramp rate was 3 °C/min. The thick–film sensors were fabricated on an alumina substrate 
by screen-printing using a variety of physical mixtures, such as a SnO2-based powder and an organic 
binder (90% α-terpineol, Aldrich) [2,26–28]. The printed thick-film sensors were dried and calcined at 
600 °C for 1 hour. This paper describes the sensors as SnO2(600) or Sn(6)Mo5Ni3, where (600) 
represents the calcination temperature, Sn(6) represents SnO2 calcined at 600 °C, Mn5 and Ni3 
represent 5% MoO3 and 3% NiO, respectively, on a weight/weight basis.  

2.2. Sensor Testing System 

The sensing behaviors were examined in a flow system equipped with a 0.1 L chamber. The H2S 
gas was diluted with dry air to a concentration of <4.0 ppm. The total flow rate of the gas mixture was 
400 mL/min. H2S gas was injected into chamber for 10 minutes. In the present study, the sensor 
response was defined using the following equation:  

Sensor response (%) = [(Ra−Rg)/Ra] × 100 (1)

where Ra and Rg are the electric resistance in air and test gas, respectively. The sensor recovery was 
defined by the following equation:  

Recovery (%) = [(Sm−Sr)/Sm] × 100 (2)

where Sm and Sr represent the maximum sensor response over a period of 10 minutes and the minimum 
sensor response in air, respectively.  

2.3. Characterization of Materials  

The crystalline phases in the materials were identified by power X-ray diffraction (XRD; Philips, 
X’PERT) using Cu Kα radiation. The morphology of the SnO2 powder was observed by transmission 
electron microscopy (TEM; Hitachi, H-7100), and the textural properties of the materials were 
examined using an Hg porosimetry (Micromeritics, AutoPore IV 9500).  

3. Results and Discussion  

3.1. Effects of SnO2 Pore Size on Sensor Properties 

To examine the effects of the textural properties of SnO2 on the sensing properties,  
the SnO2 materials were prepared by calcining SnO2 at temperatures of 600, 800, 1000, and 1,200 °C 



Sensors 2013, 13 3892 
 

 

[affording materials identified as SnO2(600), SnO2(800), SnO2(1000), and SnO2(1200), respectively]. 
Figure 1 shows XRD patterns of the SnO2 materials. 

Figure 1. XRD patterns of SnO2 materials calcined at (a) 600; (b) 800; (c) 1,000; and  
(d) 1,200 °C; (◆) SnO2. 

 

Diffraction peaks were observed at 26.6, 33.8, 37.9, 51.8, 54.8, 61.9, 64.7, 65.9 and 71.3° 2θ, and 
the intensities of these diffraction peaks increased with increasing temperature, indicating an increase 
in the crystallite size and the crystallinity [29,30], but the structures of SnO2 were retained. To confirm 
these results, the sizes of the SnO2 crystallites were calculated from the XRD patterns using Scherrer’s 
equation Equation (3). As expected, the crystallite size of SnO2 increased from 19 to 54 nm with 
increasing calcination temperature (Table 1).  

t = (K·λ)/(Wsize·cosθ)=(0.9·λ)/(FWHM·cosθ) (3)

Table 1. Crystallite sizes calculated using XRD and TEM data. 

SnO2 materials 
XRD TEM 

Wave Length 
(nm) 

2θ 
(°) 

FWHM 
(cm3/g) 

Crystallite Size 
(nm) 

Crystallite Size
(nm) 

SnO2(600) 0.154 26.611 0.4095 19 10–20 
SnO2(800) 0.154 26.581 0.3104 26 25–30 

SnO2(1,000) 0.154 26.585 0.1690 47 40–50 
SnO2(1,200) 0.154 26.604 0.1488 54 50–70 

In a separate experiment, TEM images of these SnO2 materials were investigated. Table 1 lists the 
crystallite sizes obtained from TEM images, which concur with those determined by XRD. Table 2 
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lists the textural properties of SnO2 materials, as determined by Hg porosimetry. The surface areas 
decreased with increasing calcination temperature, whereas the average pore diameters increased, 
presumably because the pore diameter is dependent on the crystallite size.  

Table 2. Textural properties of the SnO2 materials produced by Hg porosimetry. 

SnO2 Materials Surface Area (m2/g) Pore Volume (cm3/g) Average Pore Diameter (nm)
SnO2(600) 24.8 0.4918 79 
SnO2(800) 16.4 0.5047 122 

SnO2(1000) 9.4 0.5226 222 
SnO2(1200) 8.0 0.6263 312 

Figure 2 shows the response curves, responses and 80% response times of SnO2(600), SnO2(800), 
SnO2(1000) and SnO2(1200) gas sensors at a H2S concentration of 1.0 ppm at 350 °C. The responses 
of the SnO2-based sensors increased in the following order: SnO2(600) < SnO2(800) < SnO2(1000) < 
SnO2(1200). The response time of the SnO2(1200) sensor was much shorter than that of the SnO2(600) 
sensor, even though sensor recovery was incomplete in air. These results mean that the response  
time decreases with increasing pore diameter, as shown in Table 1 and Figure 2(II), and the sensor 
response increases. However, the important point to note is the incomplete recovery of the sensors 
after the detection of H2S, despite the high sensor response. It is thought that this result is because 
sulfur compounds are adsorbed on the sensor’s surface, and that they progressively pollute the surface 
of tin dioxide. 

Figure 2. (I) Response curves, (II) responses, and (II) 80% response times of SnO2-based 
gas sensors, such as (a) SnO2(600); (b) SnO2(800); (c) SnO2(1000); and (d) SnO2(1200) at 
a H2S concentration of 1.0 ppm at 350 °C. 
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Figure 3 shows SEM images of the surfaces of the SnO2(600), SnO2(800), SnO2(1000) and 
SnO2(1200) thick-film sensors. The particle size of SnO2 increased with increasing calcination 
temperature in the following order: SnO2(600) < SnO2(800) < SnO2(1000) < SnO2(1200). Liu et al. 
reported that the sensor sample based on SnO2 nanocrystals produced by the gel combustion method 
had higher response and shorter response times, which might be due to the more porous  
nano-crystallinity (~50 nm in size) than the sample prepared from hydrothermal-synthesized SnO2 
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recovery properties were investigated at a H2S concentration of 1.0 ppm at 350 °C. The results 
obtained are summarized in Figure 4. The Sn(12)Zn5, Sn(12)Ni5 and Sn(12)Cu5 sensors showed a 
slight increase in the sensor response compared to the SnO2 sensor, but their recoveries were 
incomplete at 350 °C. On the other hand, Sn(12)Fe5 and Sn(12)Mo5 showed complete recovery, but 
exhibited much lower responses than the SnO2(1200) sensor. In particular, the Sn(12)Mo5 sensor 
showed a faster recovery time than the Sn(12)Fe5 sensor, and a response that was approximately 
42% higher than that of the SnO2(600)-based sensor containing 5 wt% MoO3 [Sn(6)Mo5]. The 
reason for excellent recovery properties of the Fe5 and Mo5 sensors is not clear yet, but it is thought 
that Fe2O3 and MoO3 promoters added to SnO2 play an important role in the desorption of sulfur 
compounds. To identify the effects of the promoters on the sensor response and recovery, the  
SnO2-based sensors promoted with various amounts of metal oxides (MoO3, NiO3, and ZnO) were 
examined at 1 ppm H2S and 350 °C. These results are shown in Figure 5. As shown by Figures 
5(b,c) and (d), the Sn(12)Mo5 sensor achieved a recovery of 100%, even though the sensor response 
was decreased by the MoO3 promoter. Previous studies found that NiO plays an important role in 
enhancing the sensor response of the SnO2-based sensor promoted with MoO3 for the detection of 
dimethyl methylphosphonate (DMMP) and dichloromethane [23,24]. In the present study, the sensor 
response for the detection of H2S was increased by NiO (Figure 5). As expected, the Sn(12)Mo5Ni3 
sensor, which was promoted with both MoO3 and NiO, showed a sharp increase in the sensor 
response and maintained the sensor recovery properties (Figure 5(f)). In particular, the 
Sn(12)Mo5Ni3 sensor exhibited much higher sensor response and recovery than the Sn(6)Mo5Ni3 
sensor [2] (39.2% and 91%, respectively). These results are attributed to diffusion effects caused by 
the larger pore size of SnO2 and the promoter effects of NiO and MoO3. However, further study is 
required to verify the sensing mechanisms and the roles of NiO, ZnO, CuO, MoO3, and Fe2O3 
promoters in the sensor response and recovery properties. 

Figure 4. Response curves of the SnO2-based gas sensors promoted with various metal 
oxides at a H2S concentration of 1.0 ppm at 350 °C. 
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Figure 5. Responses and recoveries of the SnO2-based gas sensors promoted with various 
amounts of metal oxides at a H2S concentration of 1.0 ppm at 350 °C; (a) SnO2(1200);  
(b) Sn(12)Mo1; (c) Sn(12)Mo3; (d) Sn(12)Mo5; (e) Sn(12)Mo5Ni1; (f) Sn(12)Mo5Ni3; 
(g) Sn(12)Mo5Ni5; (h) Sn(12)Mo5Zn3; and (i) Sn(6)Mo5Ni3. 
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Figure 6 shows the response and recovery of the Sn(12)Mo5Ni3 sensor as a function of temperature 
at a H2S concentration of 1.0 ppm. The sensor response decreased slightly with increasing detection 
temperature, whereas the sensor recovery increased between 250 °C and 350 °C. Considering the 
sensor response and recovery, the optimum temperature for the detection of H2S was 350 °C. 

Figure 6. Responses and recovery of the Sn(12)Mo5Ni3 sensor as a function of the 
detection temperature at a H2S concentration of 1.0 ppm. 

 

Figure 7 shows the response of the Sn(12)Mo5Ni3 sensor at concentrations between 0.25 ppm and 
4 ppm at 350 °C. The response of this sensor increased almost linearly between 0.25 ppm and 4 ppm. 
The Sn(12)Mo5Ni3 sensor had a high sensor response of approximately 59% at low H2S 
concentrations of 0.25 ppm.  
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Figure 7. Response of the Sn(12)Mo5Ni3 sensor as a function of the H2S concentration. 

 

Figure 8 shows the repeatabilities of the SnO2(1200), Sn(12)Mo5Ni3, and Sn(6)Mo5Ni3 sensors at 
a H2S concentration of 1 ppm and 350 °C. The response of the SnO2(1200) sensor decreased gradually 
over multiple detection and recovery tests. On the other hand, the Sn(12)Mo5Ni3 sensor maintained its 
response over multiple tests without deactivation. The response of the Sn(12)Mo5Ni3 sensor was 
approximately double that of the Sn(6)Mo5Ni3 sensor. 

Figure 8. Repeatabilities of the (a) SnO2(1200); (b) Sn(12)Mo5Ni3; and (c) Sn(6)MoNi3 sensors. 

 

Figure 9 shows XRD patterns of Sn(6)Mo5Ni3 and Sn(12)Mo5Ni3 materials. Their XRD patterns 
showed MoO3 (JCPDS No. 89-7112), NiO (JCPDS No. 89-7390) and SnO2 (JCPDS No. 88-0287) 
phases. The diffraction peaks of these two materials were similar, as shown in Figure 9(a,b), which 
suggests that the observed enhancement in sensor response cannot be explained by structural 
differences alone. SEM images of the Sn(6)Mo5Ni3 and Sn(12)Mo5Ni3 sensors were observed at  
×50 K and these results were shown in Figure 10. There is no change in the morphologies of those 
sensors as compared with the SnO2(600) and SnO2(1200) sensors. Table 3 lists the textural properties 
of the Sn(6)Mo5Ni3 and Sn(12)Mo5Ni3 materials determined by Hg porosimetry. The mean pore 
diameter of Sn(12)Mo5Ni3 was approximately double that of Sn(6)Mo5Ni3 (Table 3). This means that 
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recovery at 350 °C and a maximum sensor response of 75%, and maintained a sensor response of 75% 
over many operating cycles without deactivation at a H2S concentration of 1 ppm and 350 °C. In 
addition, its response increased almost linearly between 0.25 and 1 ppm. Furthermore, the sensor 
exhibited a high response (59%) at a H2S concentration of only 0.25 ppm. In particular, the 
Sn(12)Mo5Ni3 sensor exhibited double the response of the corresponding Sn(6)Mo5Ni3 sensor, which 
was prepared by adding MoO3 and NiO to SnO2 calcined at 600 °C. These results are explained by the 
promoter effects of MoO3 and NiO, and the diffusion effects associated with a large SnO2 pore size.  
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