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Abstract: This work presents a heart sound biometric system based on marginal spectrum 
analysis, which is a new feature extraction technique for identification purposes. This heart 
sound identification system is comprised of signal acquisition, pre-processing, feature 
extraction, training, and identification. Experiments on the selection of the optimal values 
for the system parameters are conducted. The results indicate that the new spectrum 
coefficients result in a significant increase in the recognition rate of 94.40% compared with 
that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds 
from 40 participants. 

Keywords: heart sound identification system; EEMD; HHT; feature extraction;  
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1. Introduction 

With the rapid development of transportation, communication, and network technology in modern 
society, the scope of human activities is broadening, while the difficulty and importance of 
identification becomes increasingly prominent. Traditional identification methods are generally 
divided into two kinds: (1) items that people remember, such as user names, passwords, etc. and  
(2) items that people own, such as keys, identification cards, etc. The two types both have limitations 
in that they may be easily forgotten, lost, or imitated. Traditional identification techniques cannot meet 
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the higher security demands of a highly modernized society. Biological recognition technology refers 
to individual identification based on unique physiological or behavioral characteristics of the human 
body. Compared with traditional patterns such as password-based or ID card identification, biometrics 
technology has a high level of safety and reliability, thus making this technology an important 
international research field of significance in different application areas. 

As shown in Figure 1, physiological biometrics features commonly include fingerprints, face, hand 
geometry, eyes (retina and iris), palm prints, ear, tooth, wrist/hand blood-vessel texture, DNA, etc. 
Meanwhile, behavioral biometrics include signature, voice, walking gait, intensity of hitting the 
keyboard, etc. [1,2]. Each biometric technology has its advantages and disadvantages. Jain conducted a 
simple comparison of different biometrics technologies, and the results are shown in Table 1, where 
three degrees are used to measure the performance of various biometric features: H stands for high,  
M for medium, and L for low. 

Figure 1. Various biometric features. 

 

Table 1. Comparison of various biometric technologies’ performance. 

Biometrics Universality Distinctiveness Permanence 
Collectabilit

y 
Feasibility Acceptability Circumvention 

Hand vein M M M M M M L 

Walking gait M L L H L H M 

Odor H H H L L M L 

Ear M M H M M H M 

Finger geometry M M M H M M M 

Fingerprint M H H M H M M 

Face H L M H L H H 

Retina H H M L H L L 

Iris H H H M H L L 

Palm print M H H M H M M 

Voice M L L M L H H 

Signature L L L H L H H 

DNA H H H L H L L 
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Commercial biometric methods currently include the face, iris, fingerprint, voice, etc. These 
technologies have achieved initial applications, but are faced with many challenges in practical  
large-scale applications. The most prominent challenge is the issue of biometric security [3]. A 
fingerprint recognition system was once fooled successfully with fake fingers made of gelatin [4,5]. 
Moreover, the accuracy of an iris recognition system is also degraded when a printed iris image or a 
false iris is etched onto contact lenses. Voices could be imitated conveniently, and faces can be easily 
extracted from the user’s photo [6]. 

Heart sound is the reflection of the mechanical movement of the heart and cardiovascular system. 
This feature contains physiological and pathological information about the heart and various parts of 
the body. Compared with previous conventional biometrics features, heart sounds have unique 
advantages: (1) high security because an individual’s heart sounds cannot be faked; (2) easy to process 
because the heart sound is a one-dimensional signal with frequency components that exist mainly in 
the low-frequency range, thus making the signal processing simple; (3) high universality because every 
person has a beating heart. The unique physiological characteristics of heart sounds make them a 
promising identification technology [7]. 

Heart sounds include two parts. The first heart sound (S1) is mainly produced by the closure of the 
mitral and tricuspid valves. S1 has duration of 70 ms to 150 ms with a frequency of 25 Hz to  
45 Hz. The second heart sound (S2) is produced by the closure of the aortic and pulmonary valves. S2 
has a duration of 60 ms to 120 ms with a frequency of approximately 50 Hz [7]. A typical waveform of 
S1 and S2 is shown in Figure 2. 

Figure 2. Typical waveform of S1 and S2. 

 

Heart sound identification technology remains at an early research stage, but this technology has 
been receiving considerable attention. In 2007, Phua from the Singapore Institute of Communication 
Technology and Beritelli from the Italy University of Catania conducted a preliminary study of heart 
sound biometrics. One method included cepstrum analysis, followed by the extraction of spectral 
coefficients, and then the use of the classifiers of the Gaussian Mixture Mode (GMM) and Vector 
Quantization (VQ) for matching. The system’s performance in terms of accuracy identification rate 
could reach more than 95%, but the experimental sample was inadequate because the total sample size 
was only 10 [7]. Another method was based on an identification algorithm of heart sound’s Fourier 
spectrum, and the results show that the performance in terms of equal error rate (EER) can be reduced 
to 9% [8,9]. 
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A large number of studies have recently been developed on this field. In Jasper and Othman’s work, 
wavelet transform (WT) was used to analyze the signal in the time-frequency domain, and then the 
Shannon energy envelogram was selected as the feature set. Performance was found to be acceptable 
based on a database of 10 people [10], but as in [7], the sample size was inadequate. Bendary et al. [11] 
extracted three features: auto-correlation, cross-correlation, and cepstrum. The features were used as 
the feature set. Meanwhile, of the two classifiers used, i.e., mean square error (MSE) and K-nearest 
neighbor (KNN), KNN was proven to perform better than MSE. 

Tao et al. used the signals’ cycle-power-frequency drawing and improved the D-S information 
fusion method to realize identity recognition based on heart sounds [12]. Guo et al. used a feature set 
of linear prediction cepstrum coefficient (LPCC), the hidden Markov model (HMM), and wavelet 
neural network (WNN) to acquire the heart sound classification information and to realize identity  
recognition [13]. Cheng et al. presented a synthetic model of heart sounds and then used the heart 
sounds’ linear band frequency cepstrum (HS-LBFC) as a specified configuration with similarity 
distance to achieve recognition and verification [14]. The three methods are theoretically feasible but 
involve feature or model integration that can result in a more complicated implementation of the 
identification system. 

The primary studies on this novel biometric method are summarized in Table 2. Given that no 
standard database exists and because of the use of different performance metrics, the various 
performances cannot be compared. 

Table 2. Primary studies on heart sound biometrics. 

Author Year Database Size Feature Set Classification Identification Mode 
Phua et al. 2007 10 people LBFC MFCC VQ GMM Recognition 

Beritelli et al. 2007 20 people STFT Euclidean distance Verification 
Jasper et al. 2010 10 people Envelogram Euclidean distance Recognition 

Bendary et al. 2010 40 people 
Auto-correlation, 
Cross-correlation 

Cepstrum 
MSE KNN Recognition 

Tao et al. 2010 5 to 100 people 
Cycle Power 
Frequency 

- 
Verification 
Recognition 

Guo et al. 2010 80 people LPCC HMM WNN Recognition 

Cheng et al. 2012 12 people HS-LBFC similarity distance 
Verification 
Recognition 

Heart sound biometrics remains at the preliminary research stage with numerous unresolved issues: 
poor robustness under a noisy environment; the impact of heart diseases on identification accuracy; 
and non-comprehensive test samples. Meanwhile, accuracy improvement has not yet been explored, 
given that the auscultation changes in the location of this new biometric technology were mostly 
borrowed from other biometrics technologies such as speaker identification. 

Heart sound are typical non-stationary signals, but traditional signal processing methods such as 
Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), WT, etc. cannot easily process 
heart sounds. Thus, Norden Huang proposed a novel signal processing algorithm called the Hilbert-
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Huang transform (HHT) [15], which has been widely used in the frequency analysis of non-stationary 
signals and has been proven to be a powerful tool for non-stationary signal processing. 

In this paper, a method for the extraction of a novel feature, the marginal spectrum used in 
identification based on heart sounds, is presented. HHT consists of two main parts: Empirical Mode 
Decomposition (EMD), which can be replaced by Ensemble Empirical Mode Decomposition (EEMD), 
and Hilbert transform (HT). The basic procedure when using HHT to extract a non-stationary signal’s 
spectrum is as follows: first, the given signal is decomposed into several intrinsic mode functions 
(IMFs) by EEMD. HT is then applied to each IMF to obtain the corresponding Hilbert spectrum. That 
is, each IMF is expressed in the time-frequency domain, and then all the IMF’s Hilbert spectrum will 
be aggregated to derive the original signal’s Hilbert spectrum. Finally, the signal’s marginal spectrum 
is derived in the feature extraction stage. 

The remainder of this paper is organized as follows: Section 2 presents the theory of EMD, EEMD, 
and marginal spectrum. Section 3 describes the heart sound identification system, especially the 
extraction steps, in detail. The optimal system parameters are illustrated in Section 4 by experiments. 
Finally, Section 5 summarizes our conclusions. 

2. Basic Theory of HHT and Its Marginal Spectrum 

2.1. EMD 

Most non-stationary signals may contain more than one oscillation mode, which is why the HT of 
the original signal cannot produce an accurate instantaneous frequency of non-stationary signal. 
Empirical mode decomposition can adaptively decompose signal into a finite and often a series of 
small number of IMFs, which satisfy the following two conditions: 

(1) In the whole signal, the number of extrema and zero-crossings must be equal to or less than 
one. 

(2) At any point in the signal, the mean value of the envelope defined by the local maxima and that 
defined by the local minima must be zero. 

These two conditions guarantee the well-behaved HT. The IMFs represent the oscillatory modes 
embedded in signal. Applying HT to each IMF, the instantaneous frequency and amplitude of each 
IMF can be obtained which constitute the time-frequency-energy distribution of signal, called as 
Hilbert spectrum. Hilbert spectrum provides higher resolution and concentration in time-frequency 
plane and avoids the false high frequency and energy dispersion existed in Fourier spectrum. 

To obtain meaningful instantaneous frequency, the signal must be decomposed into a number of 
different IMFs by sifting process, which can be separated into the following steps: 

(1) All the local extrema are identified, and then all of the local maxima are connected by a cubic 
spline line as the upper envelope. 

(2) Similar to step1, all the minima are connected by a cubic spline line as the lower envelope. 
(3) The mean of the upper and lower envelopes is defined as m1, which is removed from the 

original signal x(t) to obtain h1: 

1 1( )h x t m= −  (1) 
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h1 should be an IMF because the construction of h1 satisfies all the above IMFs’ conditions. 
However, in the case of a dramatic change in the original signal, the cubic spline line often 
generates new extrema or moves the pre-existing extrema. Moreover, the cubic spline line still 
has some problems at both ends of the signal, and the boundary effect reduces the accuracy of 
the IMFs’ construction process. Thus, we need to repeat the above steps to obtain an exact 
IMF, that is, 

(4) When h1 does not meet IMF’s conditions, step (1) to (3) are repeated to obtain the mean 
envelope m11, and then h11 = h1 − m11 are used to determine whether the IMFs’ conditions are 
met. This process can be repeated up to k times to obtain h1k as an IMF. Designated as c1 = h1k, 
c1 denotes the first IMF component of the signal. 

(5) c1 is subtracted from the original signal, and the difference is the residue component r1: 

1 1( )r x t c= −  (2) 

where r1 is taken as the new original signal, and the second IMF component c2 can be obtained 
by using the above process. Thus, the above process is repeated n times to obtain n IMF 
components of the signal: 

1 2 2

2 3 3

1

.

.

.

n n n

r c r
r c r

r c r−

− =⎧
⎪ − =⎪⎪
⎨
⎪
⎪

− =⎪⎩

 (3) 

Eventually, the stopping rule is: (1) the component cn or the residue component rn is less than a 
predetermined threshold or (2) the residue component rn becomes a monotonic function, such that a 
new IMF cannot be obtained from it. Finally, the signal can be expressed as the sum of n IMFs and the 
residual component: 

1
( )

n

i n
i

x t c r
=

= +∑  (4) 

where c1, c2,…, cn represent the signal characteristics in the different time scales. These IMFs contain 
the signal of different frequency components from high to low, and each IMF includes a frequency 
band range that adaptively changes with a specific signal, which is one of the advantages of EMD. 
EMD does not use any pre-determined filter or function, which is a data driven method. 

2.2. EEMD 

Although EMD has numerous advantages in terms of the analysis of non-stationary signals, most 
signals are not always symmetrically distributed on the timeline, which may result in a condition 
wherein one IMF includes large-scale differences in signal components or wherein similar components 
exist in different IMFs. This condition is called as the mode aliasing phenomenon, which greatly 
affects signal analysis. To solve the mode mixing problem, a new method called EEMD was proposed 
by Huang in 2009 [16]. By using the Gaussian white noise’s characteristics of regular distribution in 
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the frequency domain, this method adds Gaussian white noise into the analyzed signal to make such 
signal continuous at different scales to avoid mode mixing. 

The principle of EEMD is very simple. All the processed signals can be decomposed into two parts: 
signal and noise. Each signal is independently observed to contain different noises. To provide a 
regular and relevant distribution size, white Gaussian noise is added to the signal. The additional noise 
will reduce the signal-to-noise ratio (SNR) and can help eliminate the aliasing mode. When the 
Gaussian white noise of regular distribution is added to the signal, different scales of the signal are 
automatically decomposed into the appropriate scales associated with the Gaussian white noise. 
Finally, the decomposition results are averaged to eliminate the added noise. The steps are shown as 
follows: 

A mean of zero standard deviation of a constant Gaussian white noise w(t) is added to the processed 
signal x(t) to obtain an new signal X(t), that is, X(t) = x(t) + w(t). EMD is applied to X(t) to obtain each 
IMF component cj and the residual component rn: 

1
( )

n

j n
j

X t c r
=

= +∑  (5) 

Different white noises wi(t) are added to the processed signal to obtain Xi(t) = x(t) + wi(t). The above 
steps are repeated to obtain the IMF’s component: 

1

( )
n

i ij in
i

X t c r
=

= +∑  (6) 

According to the principle that an unrelated random sequence’s statistic mean is zero, the 
corresponding IMF’s mean value is believed to eliminate the impact of the added Gaussian white 
noise, and the final IMFs is: 

1

1 N

j ij
i

c c
N =

= ∑  (7) 

where N denotes the total ensemble number. 
EEMD takes advantage of the statistical properties of noise and the decomposition principle of 

EMD, thus making it a suitable binary filter for arbitrary data. Model aliasing can also be solved 
effectively by adding white noise. 

In addition, EEMD decreases the amount of the noise based on the statistical law of the following 
formula [16]: 

ˆ
N
εε =  (8) 

where N is the overall number, ε is the magnitude of the noise; and ε̂  is the error between the 
processed signal and the final IMFs, which are summed to obtain signal. In other words, in the case of 
constant noise amplitude, a greater overall number N yields a more accurate final result of 
decomposition. However, if the amplitude is extremely small and the SNR is extremely high, the noise 
would not affect the extremas’ selection, thus losing the role of supplementary scales. 
  



S
 

 

w
A
s
a

T

E
f
a

Sensors 201

Supposin

where the si
After being 
simulation s
are shown in

Figure
(c) IM

The simil
The mode al

Figure 4(
EEMD. The
frequency c
adaptive, wh

3, 13 

ng the simul

(

a

w t

m

=

=
ignal point 
decompose

signal is pro
n the Figure

e 3. (a) Sim
MFs of the si

lar compone
liasing phen
(a) is a car
e signal is 
omponent. 
hich guaran

lation signal

sin(2
0.2

)
0.215

0,1,2,3

t
t

t

π= × ×
−⎧

= ⎨ +⎩
=
is 1,000, an
ed by EMD
ocessed by u
e 3(c). 

mulation sign
imulation si

(b) 

ents are evid
nomenon is 
rdiac cycle 
sequently 
The decom

ntees the inh

l’s expressi

) 10 ( )
2 0.015

0.015

t w t
m

m

+ ×
− ×

+ × −

nd sampling
D, the IMFs
using EEMD

nal; (b) IMF
ignal obtain

dent in diffe
effectively
of a heart 
decompose

mposition ba
herent chara

on is: 

)* ( )
, 0.2 0
, 0.215

t n
m

t

δ −
+

− +

g frequency
s are shown
D. The prev

Fs of the sim
ned by using

(a) 

erent IMFs i
eliminated
sound sign

ed into the 
asic functio
acteristic of 

( ...,
0.03

0.03

n
m t

m

= −
× < <

+ × <

y fs is 2,000
n in Figure 
vious two IM

mulation sig
g EEMD. 

n Figure 3(b
by using E

nal. Each I
highest fre

on that is d
signal and 

2, 1,0,1,2,
0.215 0.0

0.23 0.t

− −
< +

< +

0 Hz. Figure
3(b). We s

MFs and the

gnal obtaine

(c) 

b) but are no
EEMD. 
IMF is show
equency co

directly obta
avoids the d

,...)
03
.03

m
m

×
×

 

e 3(a) show
select N as 
e residue co

ed by using

 

ot present in

wn in Figu
omponent to
ained from 
diffusion an

253

(9

ws this signa
100 and th

omponent r(

g EMD; 

n Figure 3(c

ure 4(b,c) b
o the lowe
the signal 

nd leakage o

37 

9) 

al. 
he 
(t) 

c). 

by 
est 
is 
of  



Sensors 2013, 13 2538 
 

 

signal energy. This feature is a significant improvement of EEMD compared with traditional signal 
processes. For the Fourier transform, the decomposition basic function is a fixed frequency and 
amplitude harmonic wave function, where each harmonic wave function characterizes the energy at a 
specific frequency.  

Figure 4. (a) Cardiac cycle of a heart sound signal; (b) First five IMF components of (a)’s 
signal; (c) Last four IMF components of (a)’s signal. 

 
(a) 

(b) (c) 

For the wavelet and wavelet packet analyses basis functions are determined in advance and do not 
change with different signals. Obviously, different decomposition basic functions are needed for the 
optimal decomposition of different signals. The best results cannot be guaranteed with pre-determined 
basic functions. 

EEMD’s adaptability can characterize the properties of the signal, thus ensuring the accuracy of 
decomposition. Moreover, each IMF component shows a clear physical meaning, which enables the 
derivation of instantaneous frequency after HT. Signal frequency can be expressed precisely, which is 
why EEMD is suitable for non-stationary signal processing. 
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2.3. Hilbert Spectrum and Hilbert Marginal Spectrum 

For a given signal x(t), the HT is defined as: 

1 ( )( ) [ ( )] xy t H x t d
t

τ τ
π τ

∞

−∞
= =

−∫  (10) 

and the analytic signal z(t)is: 
( )( ) ( ) ( ) ( ) j tz t x t jy t a t e ϕ= + =  (11) 

a(t) = [x2(t) + y2(t)]1/2 is the instantaneous amplitude, and φ(t) = arctan(y(t)/x(t)) is the instantaneous 
phase. The instantaneous frequency ω(t) can be given by: 

( )( ) d tt
dt
ϕω =  (12) 

Having obtained the IMFs by using EEMD method, HT can be applied to each IMF component, 
and each IMF component can be expressed as: 

( )( ) Re( ( ) )ij t
i ic t a t e ϕ=  (13) 

With the instantaneous frequency, each IMF can also be expressed as: 
( )

( ) Re( ( ) )ij t dt
i ic t a t e

ω∫=  (14) 

Thus, the original signal can be expressed in the following form: 

1
( ) Re( ( )exp( ( ) ))

n

i i
i

x t a t j t dtω
=

= ∑ ∫  (15) 

where the residue rn is discarded. 
Meanwhile, for the same signal x(t), the Fourier expansion can be expressed as: 

1

( ) ij t
i

i

x t a e ω
∞

=

=∑  (16) 

where ai and ωi are both constants. 
From Equations (15) and (16), it shows that the Fourier transform is a special form of the HT. 

Amplitude variation and instantaneous frequency not only improve the effectiveness of decomposition 
significantly, but also make HHT suitable for non-stationary signals. The transformations of amplitude 
and frequency can be clearly separated by using each IMF component’s expansion, which mitigates 
Fourier transform’s limitation in terms of invariable amplitude and frequency. The time-frequency-
amplitude distribution is designated as the signal’s Hilbert spectrum H(ω,t), which can accurately 
describe amplitude changes with time and frequency and can further reflect the signal’s inherent  
time-varying characteristics. 

The marginal spectrum H(ω) can be defined as: 

0
( ) ( , )

T
H H t dtω ω= ∫  (17) 

The Hilbert spectrum offers a measure of amplitude contribution from each frequency and  
time, whereas the marginal spectrum offers a measure of the total amplitude (or energy) from each 
frequency [15]. The Hilbert spectrum and the marginal spectrum are shown separately in Figure 5(a,b). 
Figure 5(c) shows the Fourier spectrum. 
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Figure 5(a) provides distinct information on the time-frequency contents of the cardiac cycle of an 
object, which clearly reveals the dynamic characteristic of the cardiac cycle in the time-frequency 
plane. The marginal spectrum shown in Figure 5(b) represents the fluctuation of the energy distribution 
of heart sound with frequency, which mainly has two frequency pikes. The first pike lies at 
approximately 20 Hz to 40 Hz, which corresponds to the frequency range of S1. The second pike lies 
at approximately 80 Hz to 120 Hz, which corresponds to the frequency range of S2. 

Figure 5. (a) Hilbert spectrum of the cardiac cycle; (b) Marginal spectrum of the cardiac 
cycle; and (c) Fourier spectrum of the cardiac cycle. 
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Figure 5(c) is the Fourier spectrum of the cardiac cycle. Comparing to the marginal spectrum, the 
Fourier spectrum shows rich higher frequency components, i.e., the harmonic components. These 
appeared additional harmonic components are used to simulate nonstationary heart sound. As a result, 
the harmonic components divert energies to a much wider frequency domain. Both marginal spectrum 
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and Fourier spectrum reflect signal energy changing with frequency, but the Fourier spectrum does not 
provide reasonable physical explanations since the data is not stationary. 

Based on the accuracy of signal decomposition and on the advantages of HHT, the marginal 
spectrum is used in this paper and is compared with the Fourier spectrum in the experiments in  
Section 4, which will prove that the marginal spectrum can be an effective representation of a heart 
sound’s personality trait. 

3. Heart Sound Identification System 

This novel identification system comprises five parts: signal acquisition, pre-processing, feature 
extraction, training, and identification. Figure 6 shows a block diagram of this identification system. 

Figure 6. Block diagram of heart sound identification system. 

 

3.1. Signals Acquisition 

The use of a computer’s sound card can facilitate the acquisition of signals with high accuracy and 
medium sampling frequency. Before signal acquisition, the sampling frequency, sampling bits, and 
buffer size should be set. In this work, the equipment for signal acquisition shown in Figure 7 and the 
personal computer’s sound card is used to pick up heart sound signals. Given that the heart sound 
frequency compositions mainly concentrate in the low frequency domain and that the highest 
frequency component does not exceed 200 Hz, we choose a sampling frequency of 2,000, a sampling 
bit of 16, and a buffer size of 4,000. During signal acquisition, participants are required to be calm and 
relaxed. A digital stethoscope is placed on the participants’ chest in the pulmonary auscultation region. 
The recorded heart sound database comprises 280 heart sounds from 40 participants, which last 
approximately 10 s. The interval between each recorded signal is at least an hour. The location on the 
chest for all recordings is same. 
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Figure 7. Equipment for signal acquisition. 

 

3.2. Pre-Processing 

3.2.1. De-Noising 

Given the influence of the acquisition environment and of the electronic stethoscope, the collected 
heart sound signals contain various kinds of noises, which is still affected by interferences such as 
body movement, lung sounds and other surrounding sounds. If these noises are not removed, the 
accuracy of the features will be seriously affected and ultimately influence the identification system’s 
performance. Given that heart sounds are non-stationary, the discrete WT (DWT) was utilized to solve 
this problem. 

The specific de-noising steps are: (1) the fifth-order Daubechies wavelet is selected as the mother 
wavelet to decompose the heart sound signal into six scales; (2) the WT coefficients at the third, fourth, 
fifth, and sixth scales are retained based on an energy-based threshold [17], whereas the coefficients 
related to other scales are set to zero; and (3) the signal is reconstructed by using inverse DWT (IDWT). 
A de-noised heart sound signal along with its corresponding raw signal is depicted in Figure 8. 

Figure 8. Raw heart sound signal and the corresponding de-noised signal. 
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3.2.2. Framing 

Given the non-stationary nature of heart sounds, signals must be divided into short segments called 
frames. Obviously, the subsequent feature extraction is based on each frame. The length of this 
segment is called frame length, and the distance from the beginning of a frame to the beginning of the 
subsequent one is called frame shift. Numerous windows can be applied to decompose signals into 
frames. The duration of the window is equal to the frame length. In the experiment phase, we will 
discuss whether different types of windows as well as different frame lengths and frame shifts would 
affect the system’s performance. 

3.3. Feature Extracting 

In this work, the marginal spectrum is extracted as the feature. Figure 9 shows the flow chart of the 
feature extraction procedure. 

Figure 9. Block diagram of feature extraction process. 
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(1) EEMD is applied to each frame signal x(n) to obtain the IMFs of the signal. Then, two 
parameters: the number of the ensemble N and the ratio between the added noise’s standard 
deviation and the heart sound r are derived. Two experiments will be conducted to select an 
optimal set for N and r. 

(2) Hilbert spectrum H(ω,t) of each frame will be determined by applying HT to each IMF, which 
represents the amplitude and the instantaneous frequency in a three-dimensional plot with respect 
to time and reveals clearly the physiological properties of heart sound in time-frequency plane. 

(3) Three-domain Hilbert spectrum H(ω,t) of each frame signal is integral in the time domain to 
obtain the Marginal spectrum H(ω). The performance will be compared with that of the Fourier 
spectrum, which has the same physical meaning. 

(4) Dimension compression and amplitude normalization: the spectrum coefficients c(n) are 
followed by the Discrete Cosine Transform (DCT). The dimension is reduced to an appropriate 
dimension for the subsequent training and identification phase. In the experiment phase, the 
effects of different dimensions and of amplitude normalization will be used to normalize the 
spectrum coefficient amplitudes to a range between 0 and 1 by dividing the absolute maximum 
value of these coefficients. 
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3.4. Training 

VQ is a conventional and successful classifier in pattern recognition [18]. Compared with other 
identification models (such as GMM), VQ model‘s advantage lies in the simplicity of the design and 
little calculation time, which is very suitable for quick recognition. So in this work, VQ is used as a 
classifier in the heart sound identification system. The basic idea behind VQ is to compress a large 
number of feature vectors into a small set of code vectors. Given a vector source with known statistical 
properties, a distortion measure, and a given number of code-vectors, a codebook and partition need to 
be identified to achieve the smallest average distortion. Assuming the smallest average distortion is 
given by: 

11

1 ( , )min
T

i
i j m

m Mj

D d x B
T ≤ ≤=

⎡ ⎤= ⎣ ⎦∑  (18) 

where xj(j = 1,2,…,T) is the feature vector arising from the user who will be identified. Bi 
m is the 

codebook formatted in the training phase, and it presents the i-th codebook of m-th codeword. For  
d(xj, Bi 

m), the Euclidean distance can be used for measurement. In the identification stage, each user’s D 
is calculated by using Equation (18), and the final recognition result is the smallest D that corresponds 
to the person. 

In these experiments, the VQ codebook is trained with the Linde-Buzo-Gray algorithm [19] 
iteratively to minimize the quantization error, and the Euclidean distance is used to measure the 
quantization error. LBG algorithm bypasses the need for multi-dimensional integration. In this work, 
we use LBG-VQ algorithm for the proposed heart sound based identification. We will determine the 
optimal choice of the number of mixture components for the VQ later. 

4. Experiments Results and Analysis 

In this system, the recognition method can be classified as one-to-many comparisons. That is, all 
the users’ templates in the database must be searched for a match when an individual is recognized. 
The decision criterion is the minimum Euclidean distance described above. Three signal recordings of 
each participant are used in this phase to test the system’s performance. The results of these 
experiments will be described based on the correct recognition rate (CRR): 

100n

n

CCRR
T

= ×  (19) 

where Cn is the number of correct recognitions, and Tn is the total number of testing samples. That is, 
CRR is our system’s performance metric. 

There are 40 participants and 7 heart sound recordings for each participant. Each recording lasts 
approximately 10 s. Four recordings of each person are selected randomly to build the model in the 
training phase. The rests are randomly used for identification in the testing phase. Heart sound 
biometric system based on marginal spectrum analysis and VQ presented in Section 3 is used. 
Preliminary experiments are conducted to evaluate the performance of different parameter setting: 
EEMD parameters, number of VQ codebook, Window type, frame length and frame shift, DCT 
dimension compression degree and different feature sets. 
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achieved. This conclusion differs from that of [7], where the best results are achieved with the  
non-overlap property. Moreover, this finding proves that non-overlapping of a few frames is not 
optimal in cases with insufficient signal length. The result does not conflict with that of [7], which 
conforms to different parameters. 

4.2. Performance under Different EEMD Parameters 

To use EEMD for the calculation of the marginal spectrum, two parameters must be predetermined: 
the number of the ensemble N and the ratio between the added noise’s standard deviation and that of 
the heart sound r. 

Experiment was performed to select an optical set for the accurate extraction of spectrum features 
as the new feature set. Note that, a frame length of 256 ms with frame shift of 64 ms, VQ-32, 
Hamming window type and feature dimension of 100 have been used. We will discuss the choice of 
these parameters later. In order to determine to the optimal N and r value, N was chosen from 10 to 30 
by 5 steps, r varied from 0.1 to 0.3. The results of CRR based on two parameters are shown in Figure 11. 

Figure 11. Performance of the heart sound identification system based on EEMD’s N and r. 

 

As shown in Figure 11, when r is 0.2 and N is 20, the heart sound identification system achieves the 
best result of 94.16%. However, when the value of r is fixed, a greater N does not necessarily result in 
better performance. When N reaches a certain value 20, the precision of decomposition is at its 
maximum, and increasing N would no longer improve decomposition accuracy. Because EEMD 
improves the uniform distribution of signals, too much white noise is useless when signals have 
reached the uniform distribution. 

Similar to the previous analysis about r, if the noise is extremely small, it may not cause the change 
of extrema, thus losing the role of supplementary scales and ultimately affecting the results of feature 
extraction. If the added noise is extremely large, the added noise will affect the SNR and confuse the 
decomposition results. So r was fixed 0.2 as a middle value with N = 20, which was the optimal choice 
for this system. 
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Table 4. The CRR using different feature set. 

Different feature set CRR(%) 
Marginal spectrum 94.16 
Fourier spectrum 84.93 

Table 4 shows that the improvement in the CRR when the marginal spectrum is used as the feature 
set. A CRR increase of up to approximately 10% can be achieved. The improvement can be attributed 
to the marginal spectrum’s better characterization of non-stationary heart sound compared with the 
Fourier spectrum, as demonstrated in Section 2. 

4.6. Performance using Different Database 

Identification performance with respect to another database is discussed in this section. An open 
heart sounds database HSCT-11 collected by the University of Catania Italy is adopted to evaluate the 
performance of heart sounds biometric systems, which is a collection of heart sounds to be used for 
research purpose in the field of heart-sounds biometry and freely available at the address. It contains 
heart sounds acquired from 206 people, i.e., 157 male and 49 female [20,21]. Eighty people (65 male 
and 15 female) are selected randomly in our experiments. N of 20, r of 0.2, VQ-32, Hamming window 
type, feature dimension of 100, frame length of 256 ms, and frame shift of 64 ms have been used as the 
optimal values discussed above. The performance of the biometrics system is expressed in terms  
of CRR, which achieves 92%. It is clear that the results are also very encouraging across the  
larger database. 

5. Conclusions 

This paper proposed a new biometric method based on heart sounds by using a novel feature set, the 
marginal spectrum versus a normal feature of the Fourier spectrum. In the experimental phase, the 
optimal value of two parameters in EEMD method is first determined, and then the number of VQ 
codebooks is set. The DCT dimension compression degree was also considered. Finally, the effects of 
window type, frame length, and frames shift were tested. After parameters were set to the optimal 
values: N of 20, r of 0.2 in the EEMD method, VQ-32, Hamming window type, feature dimension of 100, 
frame length of 256 ms, and frame shift of 64 ms, the feature set of marginal spectrum was compared with 
that of the Fourier spectrum. The marginal spectrum, which is suitable for non-stationary signal 
processing, achieved a CRR of 94.16% in our identification system, whereas the CRR was 84.93% for 
the Fourier spectrum in the same experimental environment. The marginal spectrum was found to be a 
better feature set than the Fourier spectrum in the heart sound biometric system. 

This approach may achieve improvements in identification performance compared with systems 
proposed in the related literature, and the marginal spectrum can undeniably be used as a novel  
feature set in heart sound biometric systems, and the experiment sample is far larger than that in other 
studies [7–10]. 

Future work would be directed towards the use of different classification schemes such as the GMM 
to build a different identification system that can prove this novel feature’s applicability and 
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superiority. Meanwhile, other factors that affect the result such as different de-noising methods, etc., must 
be considered. 

The results indicated that heart sounds could be considered a promising biometric technology. 
Although the proposed system was found to achieve good performance under the experimental 
conditions, numerous factors have to be considered in practical applications, such as signal stability 
and a large signal database ccontaining a large number of peoples with varying age, conditions, 
emotion and diversified heart disease. Thus, future work will also have to concentrate on the two 
aforementioned aspects to improve this novel biometric method. 
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