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Abstract: In this paper measurements from a monocular vision system are fused with 
inertial/magnetic measurements from an Inertial Measurement Unit (IMU) rigidly connected 
to the camera. Two Extended Kalman filters (EKFs) were developed to estimate the pose 
of the IMU/camera sensor moving relative to a rigid scene (ego-motion), based on a set of 
fiducials. The two filters were identical as for the state equation and the measurement 
equations of the inertial/magnetic sensors. The DLT-based EKF exploited visual estimates 
of the ego-motion using a variant of the Direct Linear Transformation (DLT) method;  
the error-driven EKF exploited pseudo-measurements based on the projection errors from 
measured two-dimensional point features to the corresponding three-dimensional fiducials. 
The two filters were off-line analyzed in different experimental conditions and compared to 
a purely IMU-based EKF used for estimating the orientation of the IMU/camera sensor. 
The DLT-based EKF was more accurate than the error-driven EKF, less robust against loss 
of visual features, and equivalent in terms of computational complexity. Orientation root 
mean square errors (RMSEs) of 1° (1.5°), and position RMSEs of 3.5 mm (10 mm) were 
achieved in our experiments by the DLT-based EKF (error-driven EKF); by contrast, 
orientation RMSEs of 1.6° were achieved by the purely IMU-based EKF. 

Keywords: sensor fusion; extended Kalman filtering; inertial/magnetic sensing; monocular 
vision; ego-motion 
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1. Introduction 

Sensor fusion methods combine data from disparate sources of information in a way that should 
ideally give better performance than that achieved when each source of information is used alone.  
The design of systems based on sensor fusion methods requires the availability of complementary 
sensors in order that the disadvantages of each sensor are overcome by the advantages of the others.  
An interesting application niche for sensor fusion—the one dealt with in this paper—is motion 
tracking. None of the several existing sensor technologies, taken alone, can meet the desired 
performance specifications, especially when motion is to be tracked without restrictions in space and 
time [1]. Vision and inertial/magnetic sensors are considered in this regard a particularly useful 
combination for developing a sense of position (localization) and motion, which is critically important 
in several technical fields, including augmented reality [2,3], robotics [4–7] and human machine 
interfaces [8]. 

Vision-based tracking systems can accurately track the relative motion between the camera and 
objects within its field of view (FOV) by measuring the frame-by-frame displacements of selected 
features, such as points or lines [9]. The camera pose relative to the scene can be estimated in all six 
degrees of freedom (DOFs) by using a stereo-camera system or by incorporating some a priori 
knowledge of the scene when a monocular system is used. The information provided by finding and 
associating image points of interest through a monocular video stream (monocular visual tracking) can 
be used to estimate the camera orientation relative to an absolute reference frame. The concurrent 
estimation of environment structure and motion allows to recover the perception of depth, otherwise 
lost from a single perspective view, using multiple images taken from different viewpoints [9].  
The main shortcoming of vision-based tracking systems is the slow acquisition rate, which is due to 
both the physics of the image acquisition process and the computational workload of the computer-vision 
algorithms, especially those used to detect the visual features in each image frame. The consequence is 
that vision-based tracking systems lack robustness against fast motion dynamics, which may easily 
lead to loss of visual features. Another difficulty with vision-based tracking systems is that the line of 
sight between the camera and objects within its FOV must be preserved as much as possible, in other 
words vision-based tracking systems are severely prone to problems of occlusions. 

Inertial-based tracking systems integrate Inertial Measurement Units (IMUs) that incorporate 
accelerometers and gyroscopes for measuring translational accelerations and angular velocities of the 
objects they are affixed to with high sampling rates; this feature makes them ideally suited to capture 
fast motion dynamics. Being internally referenced and immune to shadowing and occlusions, inertial 
sensors can track body motion, in principle, without restrictions in space. Unfortunately, measurements 
of linear accelerations and angular velocities are affected by time-varying bias and wideband 
measurement noise of inertial sensors. Accurate estimates of body orientation in the three-dimensional 
(3D) space can be produced using quite complex filtering algorithms, sometimes with the addition of 
magnetic sensors that sense the Earth’s magnetic field to help producing drift-free heading estimates [10]; 
conversely, the 3D body position can be accurately estimated in tracking systems operating in a single 
IMU configuration only within temporally limited intervals of time, unless specific motion constraints 
are known and exploited to mitigate the double-time integration errors of gravity-compensated measured 
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accelerations. The latter approach has been successfully implemented in strap-down inertial navigation 
systems (INS) for applications of pedestrian navigation [11,12]. 

Fusing visual and inertial/magnetic measurements can therefore yield, in principle, a tracking 
system for pose estimation in all six DOFs that retains, at the same time, the long-term stability and the 
accuracy of a vision-based tracking system with the short-term robustness and promptness of response 
typical of an INS [13]. Two main approaches have been tried to exploit the complementary properties 
of visual and inertial sensors, namely the loosely coupled approach and the tightly coupled approach [13]. 
In the loosely coupled approach [14–16], the vision-based tracking system and the INS exchange 
information each other, while the sensor data processing takes place in separate modules.  
The information delivered by the IMU can be used to speed up the tracking task of the features by 
predicting their locations within the next frame; in turn, data from the visual sensor allows updating the 
calibration parameters of inertial sensors. Conversely, in the tightly coupled approach all measurements, 
either visual or inertial, are combined and processed using a statistical filtering framework.  
In particular, Kalman filter-based methods are the preferred tool to perform sensor fusion [2,17,18].  

In this paper the problem of estimating the ego-motion of a hand-held IMU-camera system is 
addressed. The presented development stems from our ongoing research on tracking position and 
orientation of human body segments for applications in telerehabilitation. While orientation tracking 
can be successfully performed using EKF-based sensor fusion methods based on inertial/magnetic 
measurements [10,19,20], position tracking requires some form of aiding [21].  

A tightly coupled approach was adopted to the design of a system in which pose estimates were 
derived from observations of fiducials. Two EKF-based sensor fusion methods were developed that 
built somewhat upon the approaches investigated in [2,18], respectively. They were called DLT-based 
EKF (DLT: Direct Linear Transformation) and error-driven EKF. Their names were intended to denote 
the different use made of visual information available from fiducials: the visually estimated pose 
produced by the DLT method was directly delivered to the DLT-based EKF, while in the error-driven 
EKF the visual measurements were the difference between the measured and predicted location of the 
fiducials in the image plane. In each filter 2D frame-to-frame correspondences were established by a 
process of model-based visual feature tracking: a feature was searched within a size-variable window 
around its predicted location, based on 3D known coordinates of fiducials and the a priori state 
estimate delivered by the EKF. Moreover, the visual measurement equations were stacked to the 
measurement equations for the IMU sensors (accelerometer and magnetic sensor), and paired to the 
state transition equation, where the state vector included quaternion of rotation, position and velocity 
of the body frame relative to the navigation frame. 

The main contributions of this paper are: (a) the comparative analysis and performance evaluation 
of the two different forms of visual aiding—the study was extended to the case when visual and 
inertial/magnetic measurements were used alone; (b) the investigation of the role played by magnetic 
sensors and related measurements of the Earth’s magnetic field for heading stabilization, never 
attempted before in research on visuo-inertial integration (to the best of our knowledge). This paper is 
organized as follows: Section 2 reports the description of our experimental setup and a detailed 
mathematical analysis of the filtering methods. Main results achieved so far are presented in Section 3 
and then discussed in Section 4. Finally, we offer concluding remarks and perspectives for our future 
work in Section 5. 
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2. Methods  

We introduce the reference frames that are used in the experimental setup shown in Figure 1: 

• Navigation frame {n}—this is the frame in which the coordinates of the corner points of a 
chessboard are known and the Earth’s gravity and magnetic fields are assumed known, or 
measurable. The goal of the sensor fusion methods is to estimate the pose of the IMU case, 
namely the body pose, in {n}. 

• Body frame {b}—this frame is attached to the IMU case, and the inertial and magnetic 
measurements delivered by the IMU are resolved in {b}.  

• Camera frame {c}—this frame is attached to the camera, with its origin located in the camera 
optical center and the Z-axis pointing along the optical axis; although the camera is rigidly 
connected with the IMU, {c} is different from {b}. 

• Image frame {i}—the 2D coordinate frame of the camera images; it is located in the image 
plane, which is perpendicular to the optical axis. 

Figure 1. The camera is rigidly attached to the same support where the IMU sensor case is 
also attached. The axes of the three frames {n}, {c} and {b} are also drawn.  
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The following notation is used to express the relation between two frames, for instance {c} and 
{b}:  and   denote, respectively, the rotation matrix and the quaternion from 
{b} to {c} (  is the vector part and  is the scalar part of , [22]);  represents the position of 
{b} relative to {c}.  

Figure 1 shows the sensor unit assembly and the chessboard. The sensor unit assembly contains one 
web-cam and one IMU; they are housed in a plastic box and are rigidly connected to each other. The visual 
sensor is a Microsoft web-cam with resolution 640 × 480 that acquires black-and-white visual images 
at approximately 30 fps; the images are transferred to the host computer via a USB port. The time 
elapsed between the time instant when the acquisition process starts and the time instant when a new 
image frame is available is returned together with the visual data. 

The IMU is an MTx orientation tracker (Xsens Technologies B.V., Enschede, The Netherlands) 
equipped with one tri-axial accelerometer, one tri-axial gyroscope and one tri-axial magnetic sensor, 
with mutually orthogonal sensitive axes; the raw sensory data are delivered to the host computer at 100 Hz 
via another USB port. Both the camera and the IMU are electrically synchronized to an optical motion 
analysis system Vicon 460 equipped with six infrared (IR) cameras running at 100 Hz. The 3D 
coordinates of eight IR-reflective markers are acquired. Four markers (diameter: 15 mm) are located at 
the corners of the plastic box housing the sensor unit assembly, and four markers of the same diameter 
are located on the chessboard plane, where they are used for capturing the 3D coordinates of four 
black-and-white extreme corners of the chessboard. Since the size of the chessboard printed on an A3 
sheet of paper is known, the 3D coordinates resolved in {n} of each black-and-white corner of the 
chessboard are easily determined. 

The ancillary laboratory frame where the 3D positions of the markers are given is used to compute 
the transformation from {b} to {n}, yielding the reference data ref or ref , and ref that are needed 
for assessing the performance of the proposed sensor fusion methods. As for the IMU-camera relative 
pose calibration problem, namely the estimation of the rigid body transformation from {c} to {b}, or  are determined using the method proposed in [23]; the translation vector  is determined 
using a ruler, since accurate knowledge of this quantity is not critically important, especially when 
tracking slow motions [2]. 

2.1. Purely IMU-Based Method of Orientation Estimation 

The purely IMU-based method for determining the IMU orientation relative to {n} revolves around 
the EKF developed in [10]. The major difference is that neither gyro bias nor magnetic distortions are 
included in the state vector for self-compensation purposes: the state vector R R  is simply 
composed of the quaternion  sampled at the time instants . The suffix R stands for rotation, to 
indicate the components of the state vector that describe the rotational behavior of the IMU-camera 
sensor unit assembly relative to {n}, see below. The angular velocity      measured by the 
gyroscopes is used to update the state vector according to the state-transition model:  

R R R R  (1)

The rotational state transition matrix R  is related to  as follows: 
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R exp Δ  (2)

where Δ   is the sampling interval and  is the operator: 

0  (3)

and  is the skew-symmetric operator, [22]: 0 0 0  (4)

The process noise vector R  is related to the noise in the angular velocity measurements as follows: 

R Δ2 · , Δ2  (5)

where  is the gyroscope measurement noise, which is assumed white Gaussian with zero 
mean and covariance matrix  ·  (  is the n × n identity matrix). The process noise 
covariance matrix can be shown to have the following expression [10]: 

R Δ2  (6)

When tracked motions are relatively slow, as it is assumed in this paper, the sensed acceleration is 
simply taken as the projection of the gravity  along the sensitivity axes of the tri-axial 
accelerometer.  

Since no heading information is available when the gravity vector is sensed, the measurement of the 
Earth’s magnetic field  by the magnetic sensor may help producing drift-free heading estimates.  
The measurement equations are written as:        (7)

where  and  are the measurement noises superimposed to the output of the accelerometer 
and the magnetic sensor, respectively; they are assumed white Gaussian with zero mean and 
covariance matrices  ·  and  · , respectively. The operator  in Equation (7) 
is the quaternion product,  denotes the quaternion inverse, and  and  are quaternions with 
zero scalar part and vector part  and , respectively. The operator   denotes the vector part of 
the quaternion . 

The EKF linearization requires the computation of the Jacobian matrices of the measurement 
Equation (7): 
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,
,   (8)

The operator ,  can be written for the quaternion        and a quaternion  
with vector part  and zero scalar part as follows [22]: , R R L L 00 1  (9)

where: 

L   R  (10)

The measurement noise covariance matrix is given by: 

 (11)

where  is the n × n null matrix. In order to guard against the effect of spurious magnetic 
measurements, which can be produced especially in indoor environments where magnetic fields are far 
from being homogeneous, the vector selection technique proposed in [24] is implemented: the strength 
of the sensed magnetic field norm and the dip angle , namely the angle that is formed between the 
sensed magnetic field and the sensed gravity acceleration, are compared to their nominal values using 
suitably chosen threshold values,  and , respectively. Whenever either difference exceeds the 
corresponding threshold value, the magnetic measurement is considered invalid and therefore it is 
discarded from the filtering process by setting the matrix  to zero. A similar vector selection 
technique is implemented by comparing the norm of the measured acceleration vector norm with the 
value of gravity (1g = 9.81 m/s2) [19]: the acceleration measurement vector is assimilated by the EKF 
only when the absolute difference between norm and g is less than a threshold value , otherwise 

 is set to zero. 

2.2. Purely Vision-Based Method of Pose Estimation 

We assume that the visual features are the projections into the image plane of  chessboard corners 9  which represents our fiducial markers (Figure 2). Initially the user is asked to click on the 
four extreme corners of the chessboard in the first image frame, starting from the upper-left corner and 
proceeding counterclockwise; five additional 3D/2D correspondences are established by projecting the 
3D chessboard model available in {n} back to the image plane in {i} based on the homography 
estimated using the four features selected by the user. The nine image point features we choose to 
identify in the first frame are then tracked using the pyramidal implementation of the Kanade-Lucas 
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tracker (KLT) [25–27]. Henceforth, the squared area whose vertices are the four extreme corners of the 
chessboard is called the chessboard area. 

Figure 2. The nine feature points constructed during the initialization stage are shown. Red 
squares: the four feature points manually selected by the user; green circles: the nine 
feature points constructed during the initialization stage. 

 

The image point features are fed to a least-squares estimation algorithm to calculate the 
transformation from {n} to {c} [28]. This algorithm is a variant of the DLT method [29], suited for 
tracking plane surfaces like the chessboard. The covariance matrix of the estimated pose is computed 
at each iteration step by analyzing the projection errors of the feature image points as suggested in [9]. 

2.3. EKF-Based Sensor Fusion Methods of Pose Estimation 

The EKF-based sensor fusion method of body pose estimation requires that the rotational state 
vector R  is extended using the components of the translational state vector T  which includes the position  and velocity 

 of the IMU case in {n}. The state-transition model equation is given by:  

T T T T  (12)

In our approach accelerometers are used for stabilizing the IMU-camera attitude with respect to 
gravity (roll and pitch angles), as prescribed by the measurement Equation (7), under the assumption 
that the magnitude of the gravity vector is large enough to dominate the body acceleration, which is 
modeled as noise: 

 (13)
where w is white Gaussian noise, with zero mean and covariance matrix  , where the 
variance  is also called the strength of the driving noise [30].  

Feature points
selected by the user;

All feature points
obtained during the 
initialization stage;

IR reflective marker
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The state transition matrix can be written as: 

T  1 Δ0 1 1 Δ0 1 1 Δ0 1
 (14)

where Δ  is the time interval elapsed between successive measurements, regardless of which sensors 
produce them.  

The noise covariance matrix of the process noise T  can be written as: 

T   

Δ 4 Δ 2Δ 2 Δ Δ 4 Δ 2Δ 2 Δ Δ 4 Δ 2Δ 2 Δ
 (15)

The simplifying assumption that the translational and rotational components of the body motion  
are uncoupled is then made in writing the state transition model of the overall state vector   R T  as follows: 

R T  (16)

The covariance matrix of the process noise R  T  is: 

R T  (17)

Two different sensor fusion strategies are considered to account for how to add the visual 
measurements  to Equation (7), which leads to different dependencies between the output variables 
and the components of the system’s state vector. Henceforth the two measurement models are called 
the DLT-based model and the error-driven model, hence the name DLT-based EKF and error-driven 
EKF for the corresponding sensor fusion methods, see Figure 3.  
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Figure 3. Block diagrams of the two Kalman-filter-based methods of sensor fusion. 

 

 

A common element to both methods is the approach to visual feature tracking. While the purely 
vision-based method of pose estimation relies on the popular frame-to-frame KLT, visual feature 
tracking in either the DLT-based EKF or the error-driven EKF exploits the predicted a priori point 
features ,   1, …, Nf that are obtained from the projection of the 3D chessboard model in {i}: 

,  , 1, … ,  (18)

where  and  are derived from the a priori estimate of the state vector, and K is the camera 
calibration matrix [9]: 

00 0 1  (19)



Sensors 2013, 13 1929 
 

 

 and  are the two components of the focal length (theoretically, they should be equal),  takes 
accounts for any pixel misalignment within the optical sensor, while xc and yc are the coordinates of 
the principal point (image centre) relative to the origin of the frame {i}. Equation (18) is based on the 
“pinhole model”, according to which an ideal planar lens is assumed and optical distortion is 
neglected. Actually, the image point features are compensated for the distortion introduced by the lens 
system using the so-called Brown-Conrady model [31]. All camera intrinsic parameters, involved both 
in the camera calibration matrix and in the distortion model, were estimated during the camera 
calibration stage [32]. 

Features points ,  are then used as initial conditions for the Harris corner finder. The Harris 
corner finder works by searching for the nearest black-and-white corner within a window that is 
centered around its predicted location [33]. The search window size, which is constrained between  
5 and 20 pixels, is adaptively computed based on the predicted a priori error covariance. 

For either method, the overall linearized measurement model can be written in the following form: 

R T  (20)

The measurement noise covariance matrix is written as follows: 

 (21)

The size of the matrices   and  depends on which EKF-based sensor fusion method we 
consider. Implicit in the formulation of Equation (20) is that inertial/magnetic sensing contributes only 
to the estimate of orientation, while visual sensing conveys information about all the six DOFs. 

A multi-rate filtering strategy is needed to deal with the different sampling rates of IMU and camera 
measurements: the IMU measurement process runs at a rate of 100 Hz, while the camera measurement 
process is slower, running at a rate of approximately 30 fps (Figure 4). Both EKFs can be defined as 
multi-rate, which alludes to the transition between different measurement equations that must be 
performed within the filter depending on which measurements are available. Since the time instant 
when the inertial/magnetic and visual measurements are made is known to the system, the time lag 
between successive measurements Δ  is also known, which allows propagating the state vector in the 
prediction stage and selecting which rows of the Jacobian matrix in Equation (20) would be actually 
set to zero in the update stage at any iteration step of the filter. In other words, in the time intervals 
between successive image frames from the camera only IMU measurements are to be processed, which 
implies that the measurement equations of both EKFs are identical to the measurement equations of the 
purely IMU-based method of orientation determination described in Section 2.1. Then, when a new 
image frame becomes available, the measurement equations are suitably changed in order to assimilate 
the visual information, leading to the measurement equations presented in Sections 2.3.1 and 2.3.2 for 
the two EKFs (see below).  
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Figure 4. Timestamps of camera (blue) and IMU (red) samples. The number of IMU 
samples between successive image frames is slightly variable due to the irregular sampling 
rate of the camera. 

 

2.3.1. DLT-Based Measurement Model 

The DLT method reviewed in Section 2.2 provides, for each incoming image frame, the estimate of 
the chessboard pose in {c}, in terms of  or  and . This is based on using the correspondences 
between the image point features and their corresponding corner points on the chessboard. The DLT 
output can be expressed directly in terms of the body pose in {n} using the following transformations: 

 (22)

We recall that    are known from solving the IMU-camera relative pose calibration 
problem, as already described above.  

The visual observation matrix can be simply written as: 

1 0 0 0 0 00 0 1 0 0 00 0 0 0 1 0  (23)

The measurement noise covariance matrix is: cov cov  (24)

where: 

Samples
 

 

Camera sample
IMU sample
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cov  14 cov , , Tcov cov  (25)

In principle, the covariance matrix cov , ,  of the Euler angles , ,  and the covariance 
matrix cov  of the translation vector  are provided by the DLT method using the methods 
described in [9]. However, a stable behavior of the DLT-based EKF is simply obtained by taking cov , ,   0.05°  and cov  1 mm . These values are in close 
agreement with the experimental uncertainty estimated during extensive experimental testing of the 
DLT method in our experimental setup (not reported in this paper). 

2.3.2. Error-Driven Measurement Model 

The feature projection errors at time  are the difference between the measured image point 
features with coordinates , , 1, … ,  and the a priori predicted features points ,   
(see Section 2.3). 

The measurement equation can be written as: 

, ,  (26)

Since the dependence of the measurements ,  from the quaternion  is nonlinear, the Jacobian 
matrix of the transformation from Equation (26) must be computed as part of the EKF linearization: 

,  ,  (27)

The Jacobian matrix related to the translational part of the state vector can be written: 

T , , ,  (28)

where ,  denotes the m-column of , : 

,  (29)

The visual measurement noise covariance matrix  can be written as: ·  (30)

where the standard deviation  measures the uncertainty of the Harris corner finder [33]. We chose 
the value  = 0.75 pixel, rather than the more optimistic value suggested in [33] 0.1 pixel , 
which gave rise to a more stable filter in our experiments. 
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2.4. Experimental Validation 

Eight tracking experiments, each lasting 60 s, were conducted by moving the sensor unit assembly 
of Figure 1 freely by hand in all six DOFs, with the constraint to keep the chessboard area always 
within the camera FOV. The angular velocities were up to 40°/s and the linear accelerations were up to 
0.6 m/s2. An additional tracking experiment was performed by moving the sensor unit assembly 1° at  
a time. 

The IMU sensors were calibrated using the in-field calibration techniques described in [34].  
In particular, the gyroscope was compensated for the initial bias value by taking the average of its 
output during a rest period of 1 s, just before the IMU motion started (bias-capture procedure).  

The following filtering methods were tested: the purely IMU-based method of orientation 
estimation (Section 2.1); the purely vision-based method of pose estimation (Section 2.2); and the two 
methods of sensor fusion named DLT-based EKF (Section 2.3.1) and error-driven EKF  
(Section 2.3.2). In all cases no gating technique was implemented in the EKFs to detect outliers due to 
mismatched features in consecutive image frames. The sensor data acquired during the tracking 
experiments were analyzed for the off-line validation study in five different filtering scenarios:  
(a) inertial/magnetic sensor measurements from the IMU were ignored by the filters;  
(b) inertial/magnetic sensor measurements from the IMU were assimilated in the filters; (c) the 
magnetic sensor measurements from the IMU were ignored by the filters; (d) gyro bias was not 
compensated by bias capture, in the situation when magnetic sensor measurements from the IMU were 
ignored by the filters; (e) a mechanism of intentional damage to the integrity of visual information was 
implemented and inertial/magnetic sensor measurements were assimilated by the filters. The rationale 
behind (c) was to stress the importance of magnetic sensor measurements for heading stabilization. 
The rationale behind (d) was to urge the capability of the proposed sensor fusion methods to 
accommodate slight imperfections that are typical of inertial sensors. Finally, the rationale behind  
(e) was to assess the tracking robustness of the sensor fusion methods against visual gaps.  
The mechanism for degrading the visual information made available to the DLT-based EKF and the 
error-driven EKF was implemented as follows: for each incoming image frame, a random sample of 
visual features with size randomly selected from 0 (i.e., no deletions occurred) to the maximum 
number tolerated by each filter (i.e., nine for the error-driven EKF and three for the DLT-based EKF) 
was discarded by setting the corresponding rows of the Jacobian matrix  to zero (this trick allowed 
preventing the information associated with the selected features to influence the filtering process);  
at the next image frame, number and identity of the removed visual features were due to change 
independently based on the chosen random selection process. The filter parameter setting reported in 
Table 1 was chosen.  
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Table 1. Parameter tuning. 

Process noise 

[°] 0.40 

 [m/s2] 0.05 

Measurement noise 

[mGauss] 2 m  10 °  0.05 mm  1 pixel  0.75 

Vector selection mGauss  20 °  5 m  20 

The reference data were interpolated using cubic splines to the time instants when inertial/magnetic 
and visual measurements were made. Standard conversion formulae were then used to convert the 
reference and estimated quaternions in the corresponding Euler angles. The performance assessment 
was based on the root mean square errors (RMSEs) of the estimated roll, pitch and yaw angles. 
Moreover, the error quaternion ∆   represented the estimated rotation needed to bring the 
estimated body frame into {b}: the scalar component of ∆ , namely ∆ 2 cos ∆  was used to 
compute the orientation RMSE. The RMSE of the estimated position was computed separately for 
each coordinate axis ,  and  and as a total position error  . Finally,  
the RMSE values calculated in the eight tracking experiments were summarized using mean value and 
standard deviation (SD). 

The filtering algorithms were implemented using Matlab; the experimental validation was carried 
out in off-line conditions. Since the 10-dimensional state vector was the same for either the DLT-based 
EKF or the error-driven EKF, the operations involved in the prediction stage were exactly the same, 
which took (approximately) 1 ms in the current implementation (standard laptop, 2.2 GHz clock 
frequency). Another common element was the vector matching process for the sensed acceleration and 
magnetic field vectors, which required 1 ms, while the computation of the inertial/magnetic Jacobian 
matrix took approximately 1 ms. The difference between the two EKFs was in the visual measurement 
equations: in the DLT-based EKF 10 measurement channels were deployed, in contrast with the  
24 measurement channels needed by the error-driven EKF. The computation of the visual features 
required 14 ms in both filters, which included state propagation and prediction. In the DLT-based 
EKF, the DLT method was implemented at each iteration cycle, followed by the update of the  
time-varying measurement noise covariance matrix in Equation (24); conversely, in the error-driven 
EKF the computation of the visual Jacobian matrix—see Equations (27–29)—was needed at each 
iteration cycle. In conclusion, both filters would require 16 ms for each iteration cycle when an image 
frame was available for processing. The purely vision-based method was more computationally 
expensive (approximately, 28 ms), mainly because of the need for the pyramidal implementation of the 
KLT tracker. The purely IMU-based method took about 2 ms for iteration cycle. 
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3. Experimental Results 

The RMSE values of the eight tracking experiments are summarized in mean value ± SD in Table 2, 
when all tested filtering methods are based on visual measurements only, and in Tables 3–5, where 
visual measurements are fused with inertial/magnetic measurements: in particular, Tables 4 and 5 
report the summary statistics of the performance metrics when magnetic measurements are prevented 
from influencing the filtering process—the conditions under which data in Table 4 are produced differ 
from those valid for Table 5 depending whether the gyro bias capture is enabled (Table 4) or not 
(Table 5). The label TF, i.e., Tracking Failure indicates the inability of the error-driven EKF to 
successfully complete the tracking task when the inertial/magnetic measurements are not integrated 
within the filter. The label N/A, i.e., Not Available indicates the inability of the purely-IMU based 
method of orientation estimation to do positioning. 

Table 2. Summary statistics of the performance metrics in the scenario (a). 

 Purely-vision based DLT-based EKF Error-driven EKF 
Yaw, ° 0.45 ± 0.08 0.40 ± 0.04 TF 
Pitch, ° 0.64 ± 0.10 0.66 ± 0.13 TF 
Roll, ° 0.78 ± 0.14 0.73 ± 0.09 TF 

Orientation, ° 1.11 ± 0.16 1.09 ± 0.19 TF 
X, mm 1.55 ± 0.42 1.54 ± 0.31 TF 
Y, mm 2.67 ± 0.59 2.88 ± 0.43 TF 
Z, mm 4.45 ± 0.71 2.14 ± 0.32 TF 

Position, mm 5.45 ± 0.76 3.95 ± 0.52 TF 

Table 3. Summary statistics of the performance metrics in the scenario (b). 

 Purely-IMU based DLT-based EKF Error-driven EKF 
Yaw, ° 1.04 ± 0.27 0.41 ± 0.06 0.81 ± 0.16 
Pitch, ° 0.76 ± 0.19 0.63 ± 0.10 0.78 ± 0.31 
Roll, ° 0.96 ± 0.15 0.78 ± 0.10 0.92 ± 0.13 

Orientation, ° 1.61 ± 0.29 1.08 ± 0.13 1.46 ± 0.25 
X, mm N/A 1.37 ± 0.41 2.59 ± 0.56 
Y, mm N/A 2.82 ± 0.48 6.72 ± 1.20 
Z, mm N/A 1.96 ± 0.24 6.64 ± 2.41 

Position, mm N/A 3.40 ± 1.10 10.00 ± 1.75 

Table 4. Summary statistics of the performance metrics in the scenario (c). 

 Purely-IMU based DLT-based EKF Error-driven EKF 
Yaw, ° 2.16 ± 2.03 0.43 ± 0.06 2.34 ± 1.81 
Pitch, ° 0.80 ± 0.16 0.65 ± 0.09 0.84 ± 0.20 
Roll, ° 1.29 ± 1.40 0.81 ± 0.11 0.81 ± 0.15 

Orientation, ° 3.00 ± 1.95 1.10 ± 0.15 2.72 ± 1.63 
X, mm N/A 1.48 ± 0.44 4.47 ± 2.01 
Y, mm N/A 3.03 ± 0.32 20.67 ± 13.4 
Z, mm N/A 2.01 ± 0.29 5.89 ± 2.13 

Position, mm N/A 3.90 ± 0.51 22.22 ± 13.0 
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Table 5. Summary statistics of the performance metrics in the scenario (d). 

 Purely-IMU based DLT-based EKF Error-driven EKF 
Yaw, ° 29.93 ± 0.90 0.41 ± 0.06 3.07 ± 0.62 
Pitch, ° 1.01 ± 0.27 0.69 ± 0.09 1.20 ± 0.51 
Roll, ° 1.16 ± 0.17 0.77 ± 0.10 1.00 ± 0.16 

Orientation, ° 29.99 ± 0.91 1.08 ± 0.13 3.41 ± 0.65 
X, mm N/A 1.36 ± 0.41 4.92 ± 1.58 
Y, mm N/A 2.82 ± 0.48 24.27 ± 6.33 
Z, mm N/A 1.97 ± 0.24 9.19 ± 4.80 

Position, mm N/A 3.71 ± 0.60 26.79 ± 6.27 

The representative plots in Figure 5 are produced by running the DLT-based EKF and the error-driven 
EKF using sensor data from one of the eight tracking experiments in the scenario (b).  

Figure 5. For one of the eight tracking experiments, plots of reference position and Euler 
angles of the body pose, together with plots of the position and orientation RMSE. For the 
sake of visualization, the RMSE values are computed over moving average windows of 
duration 5 s (DLT-based EKF, in red; error-driven EKF, in black). 

 

The plot of Figure 6 concerns the results of tracking one rotational DOF at a time, when the error-driven 
EKF runs in the scenario (a). Finally, the results of eroding the amount of visual information made 
available to the filtering methods are presented in Figure 7. 
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Figure 6. Reference and filtered position and Euler angles that are produced using the 
error-driven EKF (pure vision). Reference data in blue; filtered data in red. 

 

Figure 7. Error plots of the position and orientation RMSEs versus the number of image 
feature points that are removed at each iteration during processing by either the DLT-based 
EKF or the error-driven EKF (see text). 

 

4. Discussion 

In this paper positioning is not attempted using inertial/magnetic sensors alone, as it is done, e.g.,  
in pedestrian navigation systems, when the IMU is attached to the foot. The exploitation of 
biomechanical constraints that concern the dynamics of human walking allows indeed mitigating the 
error growth incurred in the double-time integration process of gravity-compensated acceleration 
components: for instance, the cubic-time growth of positioning errors can be broken down to a  
linear-time growth by implementing zero-velocity updates (ZUPT) at the times when the foot is 
detected steady during walking [35]. This approach cannot be pursued in general, and in particular 
when the tracked motions are too slow and rest periods for ZUPT are infrequent, if any, which is the 
case in the tracking experiments discussed in this paper. In other words, positioning is possible in our 
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experimental setup only because of the availability of monocular vision, provided that we can properly 
deal with the scale ambiguity in the translational ego-motion. The DLT-based EKF using vision alone 
and the purely vision-based method are characterized by the same accuracy of pose estimation in the 
experimental trials of this paper, as shown in Table 2; it is worth noting that, when inertial/magnetic 
measurements are incorporated in the filter, the predictive mechanism implemented in the DLT-based 
EKF allows it to perform the feature tracking task with the same efficiency as the KLT algorithm and 
much lower computational costs. 

However, the informative contribution of the inertial/magnetic or just the inertial measurements to 
the DLT-based EKF is not relevant to boost the accuracy of pose estimation—for slow tracked 
motions, the DLT-based visual measurements are sufficient to obtain very accurate pose estimates—
see Tables 2–5.  

In contrast to the DLT-based EKF, the error-driven EKF benefits greatly from the integration of 
inertial/magnetic or from inertial measurements (to a lesser extent), without which it fails in the 
experimental trials of this paper. The error-driven EKF performs better, or even much better, than the 
purely IMU-based method in terms of attitude estimation accuracy, while yielding quite accurate 
estimates of position too. However, some problems of the error-driven EKF are raised, especially when 
magnetic measurements are not incorporated in the filtering process, which are not shown by the  
DLT-based EKF. Our explanation is that providing the sensor fusion method with direct measurements 
of the quaternion and translation vector of interest is much more informative than relying on visual 
projection errors as the error-driven EKF does. 

The value of incorporating the magnetic sensor measurements in the sensor fusion process is 
assessed by analyzing the data reported in Tables 3–5. Since the visual measurements are highly 
informative on all six DOFs, the DLT-based EKF performs accurately even in the experimental 
scenarios (c) and (d) (Tables 4 and 5). Conversely, the error-driven EKF suffers substantially from 
lacking the magnetic sensor information, although the visual measurements allow somewhat mitigating 
the error growth in the orientation estimates. Nonetheless, the positioning accuracy is due to degrade 
significantly, especially in the experimental scenario (d), which is reflected in the quite high SDs 
attached to the RMSE average values in Tables 4 and 5.  

The reason is that the error-driven EKF may suffer from gross mismatches between estimated and 
reference poses. In practice, wrong state vector estimates are produced, which do not preclude however 
the system from successfully tracking the image point features. This is a good instance of the problem 
of ambiguous/multiple solutions to the pose estimation problem. As discussed in [36,37], the motion of 
a planar target seen from perspective views can result ambiguous even if four or more coplanar points 
are used to generate the 2D/3D correspondences. A typical ambiguity problem is represented by the 
rotation/translation coupling [37] in which yaw or pitch angle variations are interpreted as translational 
displacements along the Y- or Z-axis, respectively, as shown in Figure 6—see Figure 1 for interpreting 
the meaning of the axes: changes of the yaw angle are wrongly interpreted as motion occurring along 
the Y-axis, in the same way as changes of the pitch angle are misleadingly interpreted as motion 
occurring along the Z-axis. Moreover the state parameter values that minimize the projection errors 
may be quite different from the physical orientation and translation from {b} to {n}. This problem is 
due to the non-linear nature of the least-square method used by the error-driven EKF to generate the 
pose from the projection errors, which is prone to local minima. Visuo-inertial integration is a suitable 
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means to deal with the problem of ambiguous/multiple solutions: the error-driven EKF is indeed 
capable of correctly disambiguating critical motions thanks to the IMU measurements, especially when 
measurements from the magnetic sensor are integrated and gyro bias is properly compensated by the 
bias capture procedure, as shown in Table 3.  

The visual sabotage implemented in this paper is not as extreme as permanent losses of image point 
features would be, such as those occurring in case of occlusions, or when the ego-motion is so fast that 
part or all of the chessboard area escapes the camera FOV. We simply limit to randomly reduce 
number and location of coplanar feature points, sometimes even below the minimum number 
theoretically needed for pose estimation. The data reported in Figure 7 demonstrates the superiority,  
in terms of visual robustness terms, of the error-driven EKF over the DLT-based EKF. In fact, the 
former filter can tolerate reductions down to zero of the image point features without experiencing 
tracking losses of any kind while the latter absolutely needs a minimum number of six image point 
features. In addition, the RMSE values of the DLT-based increase progressively with the number of 
removed features, in contrast to the RMSE values of the error-driven EKF.  

The main problem experienced in regard of loss of vision is as follows: since it is only the vision 
that does positioning, the position estimates tend to diverge fast when the system is blind, visually 
speaking. While the orientation estimates are continuously and accurately provided by the 
inertial/magnetic sensors, it is this diverging trend that explains why projection errors may rapidly 
grow to an extent that makes impossible for the system to maintain the track on the chosen fiducial 
markers. To make matters worse, we have decided not to implement any mechanism for monitoring 
the filter divergence based on the number of visual features registered, or any re-initialization 
procedure in case of divergence [38]: a Kalman-based filter would be capable, in principle, of 
recovering tracking losses of short duration using either the information on the motion trajectory 
captured by the dynamic model or the information from the inertial/magnetic sensors. 

5. Conclusions 

In this paper two approaches to fuse visual and inertial/magnetic measurements have been 
considered and correspondingly two EKFs have been developed to track the ego-motion in all six 
DOFs. They were analyzed with the aim to elucidate how the visual and inertial/magnetic 
measurements cooperate together and to which extent they do for ego-motion estimation. The two 
filters perform differently in terms of accuracy and robustness: in the DLT-based EKF the visual 
measurements seem to have a higher informational content as compared to the inertial/magnetic 
measurements, and the overall system shows remarkably good accuracy in estimating all six DOFs; 
conversely, in the error-driven EKF the inertial/magnetic measurements are fundamental for the 
correct operation of the filter, and the overall system can thus gain in robustness against loss of visual 
information, at the expense of accuracy in estimating all six DOFs. Moreover, the strategy of sensor 
fusion is interesting in other respects: on the one hand, the DLT-based EKF takes advantage of the 
inertial/magnetic measurements since visual features can be tracked without using tools like the KLT, 
which are computationally time-consuming; on the other hand, the error-driven EKF does positioning 
only because of its capability of exploiting the projection errors of the image point features.  
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That magnetic sensor measurements can be helpful to stabilize heading is highlighted in our results, 
although this statement cannot be overemphasized given the difficulties of motion tracking in 
magnetically perturbed environments [39]. Another limitation of the present work is that we have not 
considered the effects of fast motions on the filter behavior. Actually, we have implemented vector 
selection schemes for accelerometer and magnetic sensor measurements, as done, e.g., in [24]; 
however, due to the benign nature of the tracked motions and the magnetic environment surrounding 
the IMU, they were substantially inactive during all tracking experiments described in this paper.  
A possibility to deal with magnetically perturbed environments would be to augment the state vector 
with the magnetic disturbance as done, e.g., in [39]; a possibility to deal with aggressive movements 
would be to modify the state vector by including angular velocity and linear acceleration into  
it [2,18,40]. Both possibilities are technically feasible in our approach, and they are left for our 
ongoing work. We plan to improve this work in several other respects: in particular we intend to 
remove the limitations of working with fixed calibration patterns like the chessboard by exploiting 
natural features that are usually present in unprepared environments, paving the way to the 
implementation of an SFM system. Although this effort may greatly complicate the feature 
extraction/tracking steps, faster and more natural ego-motions would be considered in our 
experimental scenarios. 

In conclusion, in this paper we proposed two different models of visual measurements to be used 
within Kalman-based filters that also incorporate inertial/magnetic measurements for estimating the 
ego-motion of a hand-held IMU/camera sensor unit. The two proposed EKFs were off-line analyzed in 
different experimental conditions: the DLT-based EKF was more accurate than the error-driven EKF, 
less robust against loss of visual features, and equivalent in terms of computational complexity. 
Orientation RMSEs of 1° (1.5°) and position RMSEs of 3.5 mm (10 mm) were achieved in our 
experiments by the DLT-based EKF (error-driven EKF). By contrast, the purely IMU-based EKF 
achieved orientation RMSEs of 1.6°. 
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