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Abstract: During the last two decades Red Palm Weevil (RPW, Rynchophorus 
Ferrugineus) has become one of the most dangerous threats to palm trees in many parts of 
the World. Its early detection is difficult, since palm trees do not show visual evidence of 
infection until it is too late for them to recover. For this reason the development of efficient 
early detection mechanisms is a critical element of RPW pest management systems. One of 
the early detection mechanisms proposed in the literature is based on acoustic monitoring, 
as the activity of RPW larvae inside the palm trunk is audible for human operators under 
acceptable environmental noise levels (rural areas, night periods, etc.). In this work we 
propose the design of an autonomous bioacoustic sensor that can be installed in every palm 
tree under study and is able to analyze the captured audio signal during large periods of 
time. The results of the audio analysis would be reported wirelessly to a control station, to 
be subsequently processed and conveniently stored. That control station is to be accessible 
via the Internet. It is programmed to send warning messages when predefined alarm 
thresholds are reached, thereby allowing supervisors to check on-line the status and evolution 
of the palm tree orchards. We have developed a bioacoustic sensor prototype and 
performed an extensive set of experiments to measure its detection capability, achieving 
average detection rates over 90%.  
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1. Introduction 

Red palm weevil (RPW, Rhynchophorus Ferrugineus Oliv., (Curculionidae, Coleoptera)) is a 
serious pest that attacks different species of palm trees (e.g., date palm, coconut palm, and royal palm). 
The RPW pest was reported in Asia, Australia, Philippines, and Thailand as early as 1962 [1]. Since 
then, its expansion has covered near all countries in Asia, Middle East [2] and the Mediterranean Rim. 
Recently, the RPW pest has also been reported in different areas of the American continent, being 
currently considered as a global pest. This high rate of spread is largely caused by human intervention, 
by transporting infested young or adult date palm trees and offshoots from contaminated to uninfected 
areas. Date palm is an important crop in North African and Asian countries and ornamental palms are 
widely planted as amenity trees in the whole Mediterranean area.  

This pest is especially destructive because visible symptoms only appear when the infestation is 
severe. By then, it is too late to save the palm tree, therefore, only preventive actions are really 
effective. Among these actions, early detection systems are crucial to fight against RPW pest, since 
they can quickly detect it in the early infestation stages and trigger the actuation protocol to save the 
rest of the plantation. After RPW detection, a deep inspection around the detection area is carried out, 
to destroy the severely infested trees, evaluate those endangered trees to determine its treatment and 
biological traps deployed. This protocol prevents the rest of the plantation from being infested, so an 
effective early detection system is fundamental to save as many palm trees as possible, working as a 
defensive protection barrier. In [3] the authors expose an extensive compilation of works related to the 
RPW pest, examining in detail several aspects of the problem as its historical evolution, RPW 
biological cycle, economic aspects derived from RPW pest, pest management strategies, etc. 

Different technologies have been applied to detect the initial stages of RPW pest infestation. In [4] 
the authors employ a Computer Assisted Tomography system for the inspection of infested wheat, 
obtaining good results. However, their proposal has two main drawbacks that limit its applicability: (1) use 
of a very expensive system, and (2) the difficulty of scanning adult palm trees in-situ, since the X-Ray 
device requires special power supplies. Other trials were based in the use of gas sensors, in order to 
detect the characteristic smell of some volatiles, generated during the fermentation processes in the 
infested palms, as some previous experiences using trained dogs had good results [5]. Anyway, gas 
sensors are not very selective and their response is influenced by many other volatiles, as shown at [6]. 

Most of the works about RPW early detection systems are related to acoustic sensors, because the 
activity of RPW larvae inside the palm trunk is audible for human operators under acceptable 
environmental noise levels (rural areas, night periods, etc.). In [7] and [8], some acoustic sensors 
specifically designed to detect RPW activity have been proposed. They employ an acoustic probe inserted 
in the palm trunk to improve the capture of sounds made by the RPW larvae. Then, the sensor device 
analyzes the captured sound in real-time, supplying an audible tone when the analysis detects a sound. The 
sensor is managed by a trained operator who, depending on the number and frequency of the positive 
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tones, determines whether the palm tree is infested. In [9], another RPW bioacoustic sensor is provided 
to analyze the audio captured from the interior of a palm trunk, which is the same idea than the one 
proposed in [7]. But, instead of audible tones, their device activates a blinking red LED to indicate the 
presence of RPW activity. In this case, the operator training is not required. Among the experimental 
results, authors have proved that, under controlled environmental conditions, it is possible to detect 
acoustically two week old larvae activity in palms infested with only five individuals.  

A portable acoustic device is proposed in [10] for the RPW on-line detection. It processes the audio 
signal captured from the palm, applying an active band pass filter in the 800–2,500 Hz frequency band, 
which has been identified as the effective frequency range of the red palm weevil’s acoustic emissions. 
The device produces a clip sound when RPW activity is found, then the human operator can decide 
whether the monitored palm is infested. The accuracy reported by authors is around 97% with 
measurements collected at four different points in each palm. 

In [11] the authors propose a signal processing system to detect the presence of RPW by defining an 
extensive set of temporal features (signal roll-off, slope and temporal spread) and tuning processing 
parameters as optimum frame size and proper window functions. Additional related works, like [12]  
and [13], perform detailed studies about RPW sound activity when moving and feeding, and identifies 
some spectral and temporal features of RPW sound activity. In particular, they analyze the sound 
impulse bursts from RPW feeding activities in order to isolate them from other audio sources (wind, 
birds, etc.).  

In [14], the authors propose a unified acoustic detection system for specific insect pests, analyzing 
both the RPW and Rice Wheevil (RW) pests as two particular cases. The proposed signal detection 
system employs matching learning methods, based on a particular set of signal features to properly 
classify the captured audio signals. This approach is able to achieve 99.1% and 100% detection 
performance rates with RPW and RW, respectively. These results have been obtained with real-field 
recordings over a laptop computer, but no computational complexity of the detection system is 
reported and a reduced human in-situ presence is still required. 

A remarkable acoustic detection system is proposed in [15], where authors use a mathematical 
method for automatic detection of RPW acoustic activity in offshoots. The methodology applied is 
similar to some techniques used in the field of speech recognition, utilizing Vector quantization (VQ) 
or Gaussian mixture modeling (GMM). The proposed algorithm successfully achieves detection ratios 
as high as 98.9%. These are very good results but, as authors state in their work, they have been 
obtained under optimal conditions: the recordings were taken inside a sound-proof recording box in a 
noiseless environment. 

All the approaches mentioned above require in-situ monitoring, thus, for extensive monitoring of 
large plantations, these proposals are time, labor and cost-consuming activities. In addition, the 
monitoring process is developed at one particular period of time, that is to say, there is no continuous 
monitoring of palm trees. This fact would make the detection delay highly dependent on the 
monitoring frequency (the number of monitoring processes performed in a period of time), taking also 
into account that the higher the monitoring frequency is, the higher the overall monitoring costs.  

Consequently, we are interested in specific bioacoustic sensors that may be physically installed in 
the supervised palm trees to perform continuous monitoring. This approach reduces significantly the 
overall monitoring costs and the detection delay. The desired bioacoustic sensors are designed to be 
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autonomous devices (battery operated) with large operational working lives (greater than one year) and 
a wide range of monitoring frequencies.  

In this paper, we design and develop a bioacoustic sensor prototype which efficiently detects the 
sounds produced by RPW larvae after the first infestation stages. The proposed bioacoustic sensor is 
able to: (1) effectively detect the RPW presence with high detection rates (over 90%); (2) perform 
monitoring tests at user programmable frequencies in order to achieve a fast detection response;  
(3) work autonomously during large periods of time (at least one year); (4) work without maintenance 
requirements after installation; (5) form a wireless sensor network to cover from little orchards to large 
plantation extensions; (6) allow continuous monitoring activity, since data may be checked on-line in 
real-time through an Internet connection with the control station; (7) trigger an alarm system defined at 
the control station to warn supervisors about the desired events by means of e-mail, Short Message 
System (SMS), Instantaneous Message System (IMS), etc. 

This device is composed by an audio probe inserted into the palm trunk to record the sounds 
produced inside. The audio probe is connected to the sensor board, where the captured sounds are 
processed in real-time, to determine the presence of RPW larvae activity. The sensor board is equipped 
with a wireless communication interface which periodically sends the monitoring results to a control 
station. At control station, the reports received from installed sensors are further processed and 
conveniently stored with the corresponding side information (palm ID, geolocation info, timestamp, 
report summary, etc.). If the control station has available Internet access, all received data can be 
accessed remotely, and some alarm settings can be configured to proactively send alert messages to 
supervisors (RPW presence, node failure, etc.). In this paper we only cover the design and evaluation 
of the bioacoustic sensor prototype; therefore, networking issues, control station functionality, and 
extensive field experiments are part of our future work. 

2. Bioacoustic Sensor: Hardware Description 

In this section we provide details about the design of our bioacoustic sensor. The main components 
of the proposed sensor architecture, shown at Figure 1, are the following: 

• An audio probe, in charge of acquisition of sounds from the RPW, conditioning and properly 
amplifying the captured audio signal, making it suitable to be processed by the detection 
algorithm. 

• A low-power processor, that will be able to run the detection algorithm to process the sound 
captured by the audio probe and determine the RPW presence. 

• A wireless communication interface, able to deliver data messages reporting the results of 
RPW activity. 

• A power supply unit, in charge to provide suitable power to the bioacoustic sensor node. 

The audio probe is a specific device designed to work in the analog domain and to provide the 
signal captured from the palm tree with the highest possible quality. The design and the details of the 
audio probe are presented in the following section. 
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Figure 1. Block diagram of the proposed RPW bioacoustic sensor. 

 

Regarding the processor element, it has to achieve some requirements: (1) it has to be able to 
digitalize, or get already digitalized, the audio signal provided by audio probe; (2) it has to be able to 
execute, in real-time, the proposed detection algorithm to detect the presence of RPW activity;  
(3) it has to be able to send messages using the available wireless network interface; (4) the processor 
element should present saving-energy or low-power characteristics, in order to work with batteries for 
a long time; (5) the expected weight and size of the bioacoustic sensor must be small enough to be 
installed at the top of a palm tree.  

The last two requirements preclude the use of personal computers, PC-based industrial computers, 
and laboratory instrumentation. Low power DSP and microcontrollers meet all these requirements; 
thus, the first step has been to decide which device we should employ to build the core of the 
bioacoustic sensor. The chosen device has been a Jennic (now NXP) brand microcontroller, model 
JN5148-001 [16]. The wireless JN5148-001 microcontroller fits the requirements of computation 
power, networking, battery operation, size and audio acquisition demanded by the RPW application. 
Its main characteristics are: 

• Low power operation modes, from 1.5 µA in sleep mode, and close to 200 mA in full power 
mode with all peripherals working on. 

• Thirty two-bits RISC pipelined processor. 
• One memory of 128 KB ROM and one memory of 128 KB RAM, large enough to store 

program and data used to perform the bioacoustic detection of the RPW. 
• Wireless 2.4 GHz, IEEE 802.15.4 compliant transceiver, with ZigBee network support. 
• Up to 21 general purpose digital inputs/outputs. 
• Twelve bit ADC with a maximum sampling frequency of 100 kHz. 
• Four wire interface for digital audio. 

With reference to the audio acquisition task, there are two possible ways: First, using the four wire 
audio interface; and second, using the Analog-to-Digital Converter (ADC). With the first option, the 
use of an external audio Coder/Decoder (CODEC), including an ADC and communications hardware, 
is mandatory. Some CODECs include an amplification stage, which may be an advantage. With the 

  

Audio 
acquisition and 
amplification RISC 

Processor 

Wireless 
interface 

ADC 

Power 
supply 

Microcontroller 

 

 

Solar 
cells 

Sound probe 

Miniature 
solar cells Supercapacitor Sensor Board



Sensors 2013, 13 1711 
 

 

second option, the audio conditioning and implementation should be done by means of a self-designed 
analog circuit, using the on-chip ADC of the microcontroller to digitalize the audio. The advantage of 
this option is that parameters and power consumption of the amplification stage may be fine-grain 
designed, so we have decided to use this approach in our bioacoustic sensor.  

Regarding the power supply, the bioacoustic sensor measured consumption rises up to 200 mA 
when performing detection process. Although detection may be decomposed in four stages–sound 
acquisition, digitalization, audio analysis and transmission of results- the detection algorithm works in 
real-time, hence, all devices for signal conditioning, analog-to-digital conversion, and execution of the 
detection algorithm, must run simultaneously. Radio communication proceeds at the end of the 
detection process, therefore, at this point consumption keeps below maximum because the analog 
stage, including analog-to-digital converter, is switched off.  

Despite this high power requirement, the bioacoustic sensor is not working full-time. As explained 
below, the sensor node works in a predefined duty cycle, where most of the time it stays in an ultra-low 
power consumption mode (sleep mode). When sensor wakes up from sleep mode, it enters running mode, 
where all the required systems are turned on, and the RPW detection software starts to work during a 
limited period of time (between 5 and 10 minutes, although it may be programmable). At the end of 
running mode, the sensor node wirelessly sends the corresponding RPW activity report found during the 
capture session. This working behaviour is periodically repeated during the life of the sensor node, 
performing between 3 and 12 audio analysis a day (again this may be modified). In the best case, a battery 
of 2,000 mAh works for no more than one month. The use of batteries with more capacity is precluded 
because of its high weight and size and the common location of the sensor, on top of palm trees. 

To increase the operating time of the bioacoustic sensor, we propose a power unit based on the use 
of a supercapacitor, which usually has less charge than a battery, but is rechargeable. The 
supercapacitor is able to supply a maximum current load of 500 mA during one hour of continuous 
operation before running out of energy. In order to recharge the supercapacitor, we use a set of eight 
miniature solar cells, arranged in parallel to gain enough current, about 350 mA. Every cell works at 
3.0 volts and is able to give 45 mA, with dimensions: 54 mm × 43 mm × 3.0 mm (L × W × D). 
Obviously, power generation levels are lower on cloudy days; light cloud cover can reduce the output 
by as much as a half, and on a very overcast day it drops to as little as 5%–10%. However, this level of 
energy generation is still enough to meet the supercapcitor charging requirements.  

The current produced by solar cells is supplied to a Low Dropout (LDO) Linear Voltage Regulator 
(LT3085 from Linear Technology), to adjust the solar cells voltage to the input range demanded by 
supercapacitor, which operates at 2.3 volts. The output of the supercapacitor powers the sensor board 
using a Step-Up Voltage Regulator (L6920 from STMicroelectronics) to properly adjust capacitor’s 
voltage to that required by the sensor board. Also, a conventional, non-rechargeable backup battery is 
included to supply power to the bioacoustic sensor when there is no solar light and the supercapacitor 
is not capable to power up the system. 

Finally, the radio interface is up to create a reliable point-to-point outdoor communication over 
distances of 30 meters. Nominal values from manufacturer are larger, but they can be achieved only in 
optimal conditions of no EMI interferences, higher transmission power (up to 20 dBm), and particular 
antenna arrangement and orientation. The 30 meters maximum reliable range has been proposed after 
performing some experimental field tests with two sensor prototypes in Line Of Sight (LOS), urban 
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scenarios and low power transmission profiles. In Figure 2 some pictures about the RPW bioacoustic 
sensor prototype are shown. We can observe both sides of the sensor board prototype and the  
solar-based power supply we use to power our sensor. 

Figure 2. Bioacoustic sensor node prototype (a) upper side view, (b) down side view, and 
(c) solar-based power unit. 

 

3. Bioacoustic Sensor: Audio probe 

The audio probe is composed by three elements: the microphone, the probe and the signal 
conditioning stage. To decide the appropriate audio probe design, we have analyzed the features of 
RPW sound: (a) studying previous works like [11–13], (b) performing a preliminary spectral and 
temporal analysis of available RPW audio recordings, and (c) taking into account several aspects, as 
probe insertion into palm trees, environmental noise levels, signal adjust conditioning parameters  
(i.e., signal amplification and filtering) among others, by means of laboratory and field tests. Below, 
we explain the details that define each probe element, its multiple design approaches and the reasons 
that have led us to choose the proposed design.  

3.1. Microphone 

Regarding the microphone, we have considered two alternatives: MEMS or silicon microphones and 
electret microphones. The major advantage of MEMS microphone is its small size. With this kind of 
microphone the attachment to palm tree is very easy and of low injury, both using inserting nails/probes or 
surface sand down allocation. However, mass diaphragm of MEMS is small, so the sensitivity to vibrations 
is really low. Experiences were accomplished with Analog Devices ADMP401 and ADMP405, with 
sensitivities of –42 dB and –38 dB at 1 kHz, respectively, and 3.35 × 2.5 × 0.88 mm size. 

For electret microphones it is possible to find a large range of sizes and sensitivities. The behavior 
is similar to MEMS microphones—sensitivity, linearity, range of frequencies, but the main difference 
is the size. This kind of microphones, with cylinder shape, may range from 2 mm up to 10 mm of diameter 
and length between 2 mm and 7 mm. Experiences were accomplished with PRO-SIGNAL MCE-100 (see 
Figure 3) and MCE-400, both with an external diameter of 9.7 mm and length of 6.7 mm, and sensitivity of 

(a) (b) (c) 
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5.6 mV/Pa and 7.9 mV/Pa at 1 kHz. We used also KINGSTATE KECG2740PBJ, a 6 mm external 
diameter and length of 2.7 mm, with a sensitivity of –40 dB at 1 kHz. All electret and MEMS microphones 
present similar degree of linearity at a frequency range between 100 Hz and 10 kHz, which it is enough for 
the RPW sound acquisition [7].  

Figure 3. MCE-100 Microphone. 

 

3.2. Acoustic Probe 

To attach the sound sensor to the palm tree, we have considered two different probe designs. The 
first one consists of attaching the sensor to the palm tree surface. The main advantage of this approach 
is the low or even null impact in the palm tree structure. A 1 cm diameter circle has been sanded down 
to accommodate the sensor, which is held with a strap around the palm tree. Early experiments have 
shown that it is very hard to fix the sensor close to the stem. Also, this attaching method leaves the 
sensor exposed to environmental noise, which in urban gardens and parks may be higher than sounds 
coming from the palm tree trunk. 

The second alternative was to use a nail to insert the sensing device inside the palm tree. This 
option provides two advantages: The sensor is closer to the sound source and it is isolated from 
external noise. The main disadvantage is the injury caused to the palm tree, leaving a 1 cm diameter 
hole; it requires being extremely careful when removing the probe, filling the affected area with 
appropriate putty material and/or painting it with a fungicide.  

We have considered nails of plastic, copper and aluminum. The probes have been built as hollow 
cylinders of 6, 8, 10 and 12 mm of internal diameter, and around 10 cm of length. We have made some 
tests in laboratory with palm tree stem sections, in order to assess de behavior of different probe 
materials and audio sensors. In the experiments, the probes were inserted in a palm stem and the 
electret and MEMS microphones were placed some times in the outer extreme and other times in the 
inner extreme of the probe, to assess the proper position of the audio sensor inside the probe. Sounds 
were artificially produced using iron and wood tools scratching inside the stem. After performing 
several experiments, the following conclusions were drawn: (1) plastic probe presents the worse sound 
transmission, so it has been discarded; (2) there is no considerable difference between copper and 
aluminum probes regarding sound transmission; (3) the greater the probe diameter, the greater the 
system response, if microphone and probe diameters are the same; (4) if the microphone does not fit 
properly into the probe because its diameter is smaller, the sound transmission is considerably worse. 
This was more noticeable with MEMS microphones, with no circular shape and therefore, less contact 
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surface with the probe. Also, its small size makes it difficult to fit and attach it to the inner face of the 
probe, to get gain from probe vibrations; (5) when the microphone is allocated in the outer extreme of 
the probe, the sound transmission is better, because the probe acts like a resonance chamber, 
amplifying the sound. 

Taking into account the obtained experimental results, we have decided to use an aluminum probe, 
because it is resistant to corrosion and easy to work, with a 10 mm of interior diameter, to get the 
maximum sound transmission and to avoid an excessive injury to the palm tree. Finally, the 
microphone has been situated in the outer side of the probe to get a better sound transmission, leaving 
the other end opened. After working with real palm trees, and in order to reuse the probes, we have 
decided to close the inserting end of the probe to prevent the entrance of palm grains and, at the same 
time, to protect the microphone. We have tested both approaches in laboratory, but no considerable 
differences were detected between audio signals captured with closed and open-ended probes.  
Figure 4(a) shows a picture of both open-end and closed-end audio probes, and, Figure 4(b) shows an 
example of probe insertion in a young palm. 

Figure 4. Open and Closed probes (a). Example of probe insertion (b). 

(a) (b) 

Regarding the place of insertion of the probe, the RPW commonly starts infestation close to the top 
of the palm tree, so we suggest inserting the sound probe at the end of the stem which is located as 
close as possible to the palm crown. Some field experiences have showed us that it is more convenient 
to test first in the southern side of the palm tree side, because after surgery of infested palms, it may be 
appreciated that infestations begin in this side of the tree, but this fact should be formally studied. 

3.3. Signal Conditioning: Filtering and Amplification Stage 

Once we have defined the audio sensor and the probe, we need to perform some signal conditioning 
to deliver the microphone output signal to the A/D converter with the highest possible quality.  
The main issue here is the amplification stage, which is a well-known problem with lots of solutions. 
In this case, not all of these solutions are convenient, because the bioacoustic sensor has a set of 
requirements that limits the design: (1) it has to be powered by batteries, so the use of high and bipolar 
voltages should be avoided, and (2) sensor signal output has to be largely amplified, in the whole range 
of frequencies, up to 10 kHz. 
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To fit the requirements, we have used a Texas Instruments TLV2785 operational amplifier. This 
chip includes four operational amplifiers, with single supply since 1.8 V up to 3.6 V, and a supply 
current of less than 1 mA per channel, very convenient for battery operated devices. In addition, 
amplifiers may be shutdown to save battery when the device is not capturing sound. Its bandwidth is 8 
MHz, allowing gains of more than 50 dB for a cut off frequency of 10 kHz.  

A PCB board has been designed, where two of the operational amplifiers are used to amplify the 
microphone output. Two additional amplifiers are used to create an active low pass filter at 10 kHz, to 
avoid aliases in the digital part of acquisition chain. This board is inserted in a plastic box, with an 
RCA connector for the microphone, a potentiometer to adjust the desired gain, and two jack outputs, 
one for the headphones and the other for the connection with an analog input of a microcontroller  
(a prototype is shown at Figure 5). The goal of this design is the modularity and flexibility of the device: 
different microphones may be connected to the amplifier, it can be used by a human operator listening 
through headphones, or it can be connected to the microcontroller for the autonomous detection.  

Figure 5. Signal conditioning and amplifying board prototype. 

 

3.4. Final Audio Probe Design 

Taking into account all the different choices studied and tested, the acoustic probe final 
configuration is composed by: A 10 mm internal diameter aluminum probe with the inserting end 
closed, an MCE-100 electret microphone placed at the outer side of the probe and a high gain, high 
bandwidth operational amplifier. 

4. Bioacoustic Sensor: Software Description 

After having described the sensor board hardware architecture and the details about our specific 
RPW audio probe, we are going to explain the software installed in the sensor. The operating software 
is stored in the on-chip flash memory and is loaded at boot time. Just after a hardware reset or power 
on, the bioacoustic sensor enters the initialization stage. In practice, the initialization stage is done only 
once, when the sensor is installed for the first time.  

During the bioacoustic sensor installation, the operator fixes the sensor (audio probe plus sensor 
board) to the palm tree at the desired monitoring location. Then, the sensor is configured by means of 
the Sensor Deployment Software (SDS) running in a portable device (smartphone, tablet, laptop, etc.) 
with GPS support and equipped with the control station (CS) radio interface (i.e., a USB dongle) which 
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allows direct communication with the sensor. This device acts as control station only during the sensor 
node initialization/configuration stage, without requiring the synchronization with other network nodes.  

If the sensor node is not configured (first boot), it enters the configuration mode, waiting for the 
corresponding instructions. Then, the sensor deployment software delivers to the sensor node the 
configuration information, like node ID, GPS location, sensor node hardware address, sound capture 
configuration parameters (sample resolution, sampling rate, processing window size, etc.), audio 
analysis time interval, and the schedule for the first audio analysis. After receiving and storing the 
configuration data, the sensor node (1) configures the sensor board (wireless radio and peripherals), 
then (2) broadcasts the HELLO message indicating the end of the configuration mode, and finally  
(3) enters the standby mode to save power until the beginning of the first scheduled audio analysis.  

After the installation of all the sensors, the information recorded by the SDS system is downloaded 
to the control station (ID, hardware address, GPS location, capture cycle schedule, etc.), being ready to 
start network operation.  

Figure 6. Flow diagram of the bioacoustic sensor operating software, with its three 
differentiated working modes: Initialization, standby and running.  

 

Figure 6 shows, by means of a flow diagram, the different stages of the operating software installed 
in each sensor node. After the initialization stage, the sensor node enters a loop of running and standby 
modes defined by the audio capture period established at initialization stage. Thus, at the beginning of 
the capture cycle, the sensor node goes in running mode, where audio is captured and analyzed in real-time. 
When the RPW audio analysis period finishes, the sensor node delivers the corresponding report to control 
station, then it goes in standby mode, waiting for the beginning of the next capture cycle.  

In running mode, the first operation performed by the sensor node is to configure and initialize the 
audio system with the parameters established at the initialization stage (sample bits, sampling rate, 
window size, etc.). Then, a Signal-to-Noise Ratio (SNR) measurement test is executed to determine the 
actual noise level before the audio analysis procedure; this step is fundamental for the performance of 
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our RPW audio analysis algorithm. When the actual SNR level is known, the RPW audio analysis 
algorithm starts capturing audio samples in windows of fixed length (“Get WND” step at Figure 6) that 
may be overlapped in a predefined portion that ranges from 0% (no window overlapping) to 50%  
(next window will start just at the half of the current one).  

Window overlapping must be carefully defined, not being too high—in order to guarantee real-time 
processing and low power consumption—neither too low—to avoid losing potential RPW audio 
segments located just between two consecutive windows. In our studies we have chosen 4096-sample 
fixed size windows with the minimal overlapping that prevents potential losses of RPW signals located 
at window edges. 

Once we have captured a window of audio samples, we proceed to apply our RPW analysis 
algorithm. If this window contains one or more RPW audio signals, the analysis results are time 
stamped and stored as part of the running mode analysis report. When the last captured sample window 
is processed, the sensor builds a report which is wirelessly delivered to the control station, and waits 
for a message back indicating an acknowledgement of the successful report reception. This message 
may contain operational instructions, as new monitoring schedule, hardware status report required in 
the next duty cycle, audio configuration changes, etc., for the sensor to perform just before entering the 
standby mode.  

4.1. RPW Sound Model  

To determine the sound model, we have used a set of segments captured with the von Laar 
equipment [7] by Susi Gomez and Michel Ferry (Estación Phoenix at Elche, Spain). These real-field 
recordings have been taken from the offshoots of severely infested adult palm trees. Most of the 
recordings come from Phoenix canariensis and Phoenix dactylifera species. In some audio segments, 
we have got general information about the infestation level, since the affected palm tree was destroyed 
just after getting the recordings, confirming later the presence of several RPW generations inside the 
palm trunks. We have classified three different kinds of sounds coming from RPW larvae: “eating”, 
“squealing” and “moving”. The first one corresponds to the characteristic crunch sound produced 
when the RPW larvae chew internal palm fibers. The second one, “squealing” is also a characteristic 
RPW sound but its cause is not clear. And finally, the last one corresponds to the larvae movement 
through galleries inside the palm trunk. For our study, we have chosen the first one, “eating”, because 
(1) it is the loudest sound, (2) its frequency is clearly superior to the other identified sounds in all 
available recordings, and (3) it is representative of the RPW larvae feeding actions in the first stages of 
their evolution. Consequently, we think that this one is the proper target sound to analyze in our early 
detection bioacoustic sensor.  

Figure 7 shows a good example of “eating” sound that was extracted from the recordings above 
mentioned. We can see the “eating” sound in both temporal, Figure 7(a), and frequency domains, 
Figure 7(b). The later was obtained from a wavelet packet transform with five decomposition levels 
that equally divides the input audio signal bandwidth in 32 subbands (horizontal axis). For each 
wavelet subband, we have computed the normalized energy of its coefficients in order to visually 
determine the energy distribution. As it can be seen, in Figure 7(b), there are three subbands that 
accumulate most of the signal energy. Thus, energy distribution across wavelet subbands may be 
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considered a spectral fingerprint of RPW feeding activity, being an important feature to be included in 
our RPW “eating” sound model.  

Figure 7. A 4096 sample window containing the RPW “eating” sound captured at 44.1 kHz 
sampling rate; (a) Temporal, and (b) frequency domain. 

 
We also analyze the “eating” sample in the temporal domain, determining its main duration in terms 

of audio samples. We need to determine the beginning and ending positions of “eating” sound inside 
captured audio window using three parameters: audio signal level, signal variance, and SNR level, as 
shown in Figure 7(a). With the SNR level we determine the noise domain present in the captured 
audio, which is the actual noise level plus a 6 dB margin. The beginning of a new sound will be 
determined by α consecutive samples which value is above noise domain; meanwhile, the ending of 
the new sound will be determined just before β consecutive samples, which value falls inside noise 
domain. Both parameters are empirically established to properly identify potential RPW sounds.  
It can be seen in Figure 7(a) that the RPW “eating” temporal extension is of 492 samples (around  
11 milliseconds).  

Notice that not all of the “eating” samples have been recorded with the same quality as the one 
shown in Figure 7. There are “eating” samples with (1) different noise levels, mainly due to the 
recording conditions, like sound probe placement and environmental noise present at recording time, 
(2) different sound levels due to the distance between the source RPW and the audio probe resulting in 
strong, average, and weak “eating” samples, and (3) also different temporal extensions of “eating” 
samples. We have identified a set of more than 100 different RPW “eating” sounds in the original 
audio recordings employed for this purpose.  

Our model is based in the following RPW “eating” sound features: (a) the energy distribution at 
frequency domain, and (b) the temporal features that determine the extension of the “eating” sound. 
First, we have manually identified all the RPW “eating” sounds from the available recordings to build 
the data sample space S. For each audio sample we have calculated its associated feature vector,  , , … , , ,  1. . | |, that is composed by the wavelet subband energy distribution 
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(sbi values) and its temporal extension (Text). Then, we have performed a dimension reduction of the 
feature vectors through a vector quantization (VQ) [17] process, resulting in new set, , of two 
dimensional (frequency and time) vectors, , … , 1. . | |, where the frequency 
value, f, is obtained through a weighted average of the energy found at every wavelet subband (the weights 
assigned to every wavelet subband are established as a function of its relevance in the RPW “eating” 
spectral decomposition, as it can be observed in Figure 7(b), and the temporal dimension value, t, 
represents the temporal extension value found at the original feature vector. 

We have established as the reference feature vector the one associated with the best RPW “eating” 
sample (high SNR level, strong and clean signal), corresponding to the one shown in Figure 7. To 
determine the distance of all feature vectors with respect to the reference one, we have used the 
Euclidean distance. The largest distance found among the quantized feature vectors and the MIN-MAX 
thresholds found at each dimension (frequency and time) are considered to determine whether a sound 
under analysis corresponds to a RPW “eating” sound.  

When a new sound is detected during the audio processing of a particular sample window,  
we (1) obtain its feature vector, (2) perform the vector quantization, and (3) check if the resulting 
frequency and temporal values of the quantized vector fall between the MIN-MAX thresholds. In that 
case, the new sound is labeled as an RPW “eating” sound, and a score between 0 and 1 is assigned as a 
function of its distance to the reference feature vector. This value corresponds to the probability of 
being an RPW positive.  

4.2. RPW Audio Analysis Algorithm  

The RPW audio analysis algorithm is applied to every single captured window during the running 
mode operation of our sensor node, shown in Figure 6 as “Process WND” step. As explained above, 
the default size of each captured window is set to 4,096 samples. The first operation over the captured 
audio samples applies a Hanning filter [18] with a window size of 16 that removes high frequency 
noise, smoothing the captured raw audio samples. Then, we start a process to identify potential sounds 
that may be candidates to be analyzed as RPW “eating” sounds. Beginning at the start of a captured 
window we proceed through the samples to find audio segments that contain a clear sound (above 6 dB 
over the established SNR level) with an extension that falls between the minimum and maximum 
extension thresholds defined at the RPW sound model. If no potential sound is found when the end of 
the current window is reached, the analysis finishes without results. However, if one potential sound 
candidate is found, the algorithm proceeds to analyze the identified audio segment as explained above, 
providing the corresponding analysis results and resuming the identification of more potential 
candidates along the rest of the current window. This is an interesting approach, since it avoids 
performing full acoustic analysis to the entire window when there is no potential RPW “eating” sound 
candidates, saving energy and running fast enough to fit real-time restrictions.  

When a potential sound is identified in the current window, the analysis algorithm performs the 
following tasks: (1) apply a wavelet packet transform over the audio segment with a 5-level 
decomposition, providing 32 frequency subbands, (2) discard the four lowest frequency subbands 
(from 0 to 680 Hz) when no information about “eating” sound is found in our corpora of RPW 
samples, (3) compute the energy distribution across all frequency subbands, and (4) obtain the 
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corresponding feature vector to determine if the resulting frequency and temporal values of the 
quantized vector fall between the MIN-MAX thresholds. In that case, the sound under analysis may be 
classified as an RPW “eating” sound and a final analysis score value between 0 and 1 is provided, 
being 0 interpreted as a highly doubtful positive and 1 a completely safe positive.  

Each positive found in the current window produces a report containing (1) the relative start and 
end sample positions, (2) the window ID number, and (3) the corresponding score value. Each report is 
conveniently stored in memory, so when running mode operation finishes, the list of stored window 
reports can be processed and wirelessly delivered to the control station. If no report is available, i.e., no 
potential sounds detected during the running mode operation, a wireless packet is also delivered to 
control station as a heartbeat, indicating that the sensor node is operative and running.  

5. Bioacoustic Sensor: Performance Evaluation 

In this section, we perform a detailed evaluation of the proposed bioacoustic sensor, emphasizing 
the performance of the RPW audio analysis algorithm. First of all, we describe the corpora of RPW 
sound recordings used in the performance tests. Then, we report the experiments carried out and the 
methodology followed to determine the performance of our algorithm. Next, a summary of 
performance results is analyzed to determine the effectiveness of our proposal. In addition, we have 
carried out some resilience tests to settle the sensibility of our algorithm against external noise, audio 
sampling rate, and the number of bits per sample employed in the A/D conversion. An additional blind 
test considering RPW sounds, noise recordings and sounds produced by other insects belonging to the 
palm tree ecosystem has been developed in order to assess the performance of our detection algorithm. 
Finally, we have made a comparative analysis between our bioacoustic sensor and other acoustic 
detection systems in terms of a set of desirable features of an early RPW acoustic detection system. 

5.1. Corpora of Sound Recordings 

Michael Ferry and Susi Gómez, from the Estación Phoenix laboratory in Elche (Spain) have 
personally recorded several hours of RPW sounds using the von Laar RPW system [7] in different 
areas of the Spanish Mediterranean Rim (Granada, Malaga, Almería and Alicante). They have 
provided all the recordings for our study and have provided the recording conditions (audio probe 
placement, environmental noise, RPW infestation levels, etc.) and also the interpretation of the 
registered RPW sounds. Another set of RPW recordings has been provided by von Laar’s Audio CD 
Small Collection Edition [19], where 13 RPW sound tracks are available, including a description of 
each audio track. The contents of “von Laar” audio CD has been captured with the same equipment 
than the Estación Phoenix audio set, but we have no information about the recording conditions. 
Finally, from several sound sources, we have built the third audio recording set with a selection of 
“non RPW” sounds that are usually present in palm trees environment, like the sound produced by 
palms when the wind blows, environmental noise produced by human activity (traffic, construction 
activity, etc.), and the sounds coming from other insects or birds [19]. This set is useful to test the 
selectiveness and resilience level of our algorithm.  
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5.2. Experimental Tests  

To carry out the experimental tests, we must first know the location of every RPW single “eating” 
sound in the available recordings, to fix their corresponding time intervals in the audio files. Thus, we 
have annotated by listening tests of a trained operator (subjective tests) the locations and number of 
RPW “eating” sounds found in the selected audio recordings, giving also subjective information about 
each detected RPW “eating” sound, like strong, weak, short, several sounds at a time, etc. Also, we 
have identified non RPW sounds. This is one of the first tasks we have to do, since it is also needed for 
the definition of the RPW “eating” sound model explained in Section 4.1. 

Once identified the location of the RPW “eating” sounds in the available recordings, we need to 
define the performance metrics that we are going to use to evaluate our detection algorithm. For that 
purpose, the performance of our detection algorithm applied to a particular audio recording is defined 
through the following performance metrics: 

• %Positives (Pos): It determines the ratio between number of detected RPW “eating” sounds 
and the total number of RPW sounds found in subjective tests.  

• %False Positives (FPos): It determines the ratio of detected RPW “eating” sounds that do not 
correspond to the real RPW sounds found in subjective tests.  

• %Undetected (Undetect): It determines the ratio between the number of undetected RPW 
“eating” sounds and total number of RPW sounds found in subjective tests. 

Additionally, for each of the above performance metrics, we have defined the following derivations 
that improve the analysis of performance results:  

• %No_model: It determines the ratio of Pos/Fpos/Undetect RPW “eating” sounds, if we do not 
consider those RPW sounds that do not follow the “eating” model (i.e., RPW moving sounds). 

• %No_weak&short: It determines the ratio of Pos/Fpos/Undetect RPW “eating” sounds, if we do 
not consider those RPW “eating” sounds that are too weak or short to be detected by our model.  

• %Best_case: It determines the ratio of Pos/Fpos/Undetect RPW “eating” sounds, if we do not 
consider those RPW sounds identified as “No_model” and “No_weak&short”. 

5.3. Performance Results 

The first set of experiments has been done over a selection of 10 audio recordings taken from the 
Estación Phoenix recording set, since we have all the information required to assess that recorded 
sounds come from RPW individuals, and we have the support from Estación Phoenix staff to identify 
and classify the recorded sounds. All selected audio files were recorded with a 44.1 kHz sample rate 
and 16 bit samples.  

When processing each audio file, the first operation before analyzing audio contents is to determine 
the SNR level found at the whole audio recording. Once the SNR level is known, then we begin the 
process of the audio contents by reading the first audio window and applying our detection algorithm. 
The analysis results are stored in a log file for their later processing, before proceeding with the next 
window until the end of the audio file.  
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Figure 8. Detection algorithm performance in terms of %Positive (Pos), %False Positive 
(FPos), and %Undetected (Undetect) performance metrics (Best case index). 

 
After processing each audio file, we compare the analysis results provided by our algorithm with 

the ones found at subjective tests, in order to obtain the values of the above defined performance 
metrics. Figure 8 shows the performance of our detection algorithm after processing the selected audio 
sequences. As it can be seen, there are no false positives, being the average detection rate around 96%. 

5.4. Resilience of the RPW Detection Algorithm  

The results presented above have been obtained with a high quality audio source that supplies 16 bit 
samples with a 44.1 kHz sampling rate. Besides, the SNR level found at those sequences is 
surprisingly high, since they were recorded from the interior of infected trunks in such a way that the 
environmental noise was seriously reduced. However, in real field environments, this quality may be 
difficult to find, so we proceed to perform several experiments with lower quality audio signals to test 
the resilience of the RPW detection algorithm, trying to find its performance limits.  

We have employed the same set of 10 audio sequences used in previous experiments to build 
quality degraded versions in terms of sampling rate, bits per sample and SNR level. Consequently,  
we are able to evaluate our detection algorithm when working with lower quality audio signals.  

In Figure 9(a) we have built two versions of the second audio recording (“*01.wav”) by changing 
the number of bits per sample in a way that we have the same audio sequence with 8, 12 and 16 bit per 
sample. We can see that reducing the number of bits per sample (i.e., increasing quantization error 
during audio digitalization process) has no effect in the RPW detection algorithm, since we obtain the 
same results. This is good news, since our algorithm is independent of the number of bits required to 
encode one audio sample. Then, we will use 8 bits per sample, reducing both the audio storage 
requirements and the computational power of the analysis algorithm.  
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Figure 9. Detection performance under lower quality versions of the “*01.wav”  
audio sequence. 
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To test these values, we have built lower quality versions by subsampling the original audio 
sequence by factors of 2 and 4, taking as a result the same audio sequence with 22.025 and 11.0125 kHz 
sampling rates. Figure 9(b) shows that reducing the sampling rate causes the reduction of our algorithm’s 
positive detection rate, but note that no false positives are introduced. This effect may be due to the 
loss of both temporal and frequency information as a consequence of the subsampling process, 
reducing the detection rate of our algorithm up to 25%.  

We employ the maximum sampling rate available depending on the resources of our sensor hardware. 
In particular, there is enough memory to work with capture window buffers at maximum sampling rate 
(capture window of 4 Kbytes of memory with a 44.1 kHz sampling rate) and the power of sensors core 
processor is enough to perform the proposed analysis algorithm (see Section 4.2) in real-time. 

Finally, we propose another degradation of the original audio sequence by introducing a certain 
level of noise to observe the behavior of our detection algorithm, since the SNR level of captured 
audio is determinant to the success of our RPW detection algorithm. In order to generate degraded 
versions of the original audio sequence, we have introduced different amounts of white Gaussian noise 
into the original audio (5, 10, 15, 20 y 25 dBW). The results are shown in Figure 9(c), where we can 
observe that the proposed RPW algorithm exhibits a certain tolerance to background noise up to 10 dBW 
of additional noise level. However, if noise increases above 10 dBW, the performance is severely 
affected because the existing RPW “eating” sounds are hidden in the background noise, being difficult 
to detect. Nevertheless, what is most important is that a high level of background noise does not 
produce false positives. This behavior is mainly due to the estimation of current SNR audio level that 
our RPW detection algorithm performs at the beginning of each capture cycle (see Figure 6). 

5.5. Additional Performance Tests: RPW Blind Test 

Finally, in order to determine the selectiveness of our detection algorithm, we have performed a 
blind test driven by third party evaluators who defined a specific subset of audio sequences from the 
Estación Phoenix, von Laar and Non-RPW available audio sets (see Section 5.1). The resulting audio 
set is composed by 23 audio sequences, where 11 sequences contain at least one RPW “eating” sound, 
9 sequences contain the sounds produced by other insects belonging to the palm tree ecosystem and the 
last three sequences contain different environmental noises (sounds produced by palms when the wind 
blows, sounds produced by birds or sounds coming from human activities). All of these sequences 
were certified by the ones who have recorded them. 

The RPW blind test was arranged by third party evaluators in one session. The session consisted of 
reproducing the 23 audio sequences in random order with an inter-sequence interval of 5 seconds. 
Each audio sequence was reproduced through an audio system available in the evaluation room, our 
sensor placed 1 meter away from speakers. The results provided by our algorithm were displayed in 
real-time through a video projector; hence, the temporal correlation between the sounds heard in the 
room and the results shown by our algorithm could be observed on the fly. For each audio sequence, 
our RPW detection algorithm determines if it contains RPW activity or not. 

After obtaining the analysis results of all audio sequences in the blind test, we needed to find a 
method to objectively measure the performance of our detection algorithm. The evaluators decided to 
use a binary classification scheme [20] to perform this evaluation. Binary classification is able to 
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determine whether an individual of a population has one particular characteristic/property. It is widely 
used in medical testing to determine whether a patient has a certain disease; it is also used in industrial 
quality control procedures to evaluate if a particular product is good enough to be sold or it should be 
discarded because it does not reach the minimum demanded quality.  

Then, our RPW detection algorithm could be considered as a binary classifier that determines 
whether a particular audio sequence has RPW “eating” activity. To find out the performance of our 
binary classifier, we need to define several statistical indexes that we arrange in the 2 × 2 matrix 
shown at Table 1, as the possible classification results of a particular individual.  

Table 1. Binary classifier defined by a 2 × 2 matrix with the obtained results in the test. 

 Real values (23) 

C
la

ss
i

fie
r 

re
su

lt
s True Positive (8) False Positive (0) 

True Negative (12) False Negative (3) 

where:  

• True Positive (TP): It means that the classifier decided that the analyzed audio sequence has 
RPW “eating” sound activity, and it is true.  

• False Positive (FP): It means that the classifier decided that the analyzed audio sequence has 
RPW “eating” sound activity, but it is false. 

• True Negative (TN): It means that the classifier decided that the analyzed audio sequence has 
not RPW “eating” sound activity, and it is true. 

• False Negative (FN): It means that the classifier decided that the analyzed audio sequence has 
not RPW “eating” sound activity, but it is false. 

In Table 1, the blind test results are also shown between parentheses. The “Real values” parameter 
identifies the number of individuals to be classified (23 random selected audio sequences). The result 
of the binary classifier shows that (a) 8 out of 11 audio sequences were correctly identified as audio 
sequences containing RPW activity, (b) all the audio sequences with no RPW activity, i.e., 12, were 
correctly classified, (c) 3 audio sequences with RPW activity were not detected, and (d) no sequence 
was erroneously classified as an RPW activity audio sequence.  

There are several performance metrics that may be used to determine the performance of our  
binary classifier: 

• Positive Predictive Value (PPV). It is defined as the relationship between the number of TPs 
found and the sum of TPs and FPs. This index indicates the proportion of audio sequences 
correctly classified as containing RPW “eating” activity. 

• Negative Predictive Value (NPV). It is defined as the relationship between the number of TNs 
found and the sum of TNs and FNs. This index indicates the proportion of audio sequences 
correctly classified as not containing RPW “eating” activity. 

• Sensitivity (SEN). This index determines the probability of correct classification of the 
individuals that contain RPW activity. It is defined as the relationship between TPs and the sum 
of TPs and FNs. 
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• Specificity (SPE). It determines the probability of correct classification of the individuals that 
do not contain RPW activity. It is defined as the relationship between TNs and the sum of TNs 
and FPs. 

• Matthews Correlation Coefficient (MCC). It evaluates the quality of the binary classifier by means 
of expression (1). This index provides a value between –1 and 1, where 1 should be interpreted 
as a perfect classifier and –1 shows that the classifier performs predictions just opposite to the 
desired ones. An MCC value of cero will determine a completely random classifier:  . .. . .  (1)

Applying these performance indexes with the results obtained in the blind test, the value of the 
above performance metrics are the following: PPV = 100%; NPV = 80%; Sensitivity = 72%; 
Specificity = 100%; MCC = 0.76. 

The way we interpret the performance of our RPW detection algorithm (binary classifier) depends 
on the detection specifications demanded by the application. Thus, it is of critical importance to avoid 
false positives, since it would cause the activation of the corresponding protocol over the area where 
the alerting palm tree is located, with the corresponding costs and the risk of removing healthy palm 
trees. Therefore, the RPW detection algorithm should provide as high PPV and Specificity metric 
values as possible. In our case, after performing the blind test we obtained the maximum performance 
score on both metrics.  

Although no so critical as avoiding false positives, the RPW detection algorithm should also have a 
good detection rate, trying to reduce as much as possible the total number of false negatives. This 
would be achieved with high values of NPV and Sensitivity metrics, as those achieved by our RPW 
detection algorithm. 

5.6. Comparative Analysis with other RPW Acoustic Detection Systems  

Finally, we have performed a comparative analysis of our acoustic sensor proposal with other 
proposals from literature. We have taken into account several features that we consider of interest: 
Average Detection Rate (ADR), False Positives Rate (FPR), Continuous Monitoring capability (CM), 
Unattended Operation (UO), Monitoring Costs (MC), and Computational Complexity (CC). In Table 2, we 
summarize the information from different RPW acoustic detection systems that we have analyzed from 
the literature, observing that our proposal is not so efficient in terms of average RPW detection rates 
than other proposals, but it has other interesting characteristics (i.e., continuous monitoring) that make 
it an interesting choice for remote sensing palm tree orchards. 

Although, we have no information about the economic cost of other acoustic RPW detection 
systems (some of them are only software proposals), we estimate the overall cost of our acoustic RPW 
sensor. Our estimation is based on the economic cost of (a) materials, (b) Printed Circuit Board (PCB) 
production, (c) electronic components, and (d) the assembly of all the sensor parts. 
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Table 2. Comparison among different RPW acoustic detection systems. 

 ADR FPR CM UO MC CC 
Our proposal 90% 0% Yes Yes Low Low 

[10] 97% 5.5% No No High Low 
[14] 99.1% n/a No Yes Avg High 
[15] 98% 1.5% No Yes Avg Avg 

Taking into account all of these items, a prototype of our acoustic RPW sensor would be under  
200 Euros. This is the economic cost of each of the four prototypes we have built; however, for larger 
production orders the cost per unit should be significantly reduced. When comparing the estimated 
costs of our RPW acoustic sensor with those from von Laar or AED2000L acoustic systems, our 
proposal becomes very competitive and attractive for practical RPW monitoring deployments. 

6. Conclusions 

During the last two decades, the Red Palm Weevil (RPW), also known as Rynchophorus 
Ferrugineus Oliv., has become one of the most dangerous threats to the palm trees in most parts of the 
world. Its early detection is difficult to assess since the infected palm trees do not show visual 
evidences until it is too late for the plant to recover. For this reason, the development of efficient early 
detection mechanisms is critical for the design of efficient RPW pest management systems. 

In this context, we have presented a bioacoustic sensor able to efficiently detect the sounds 
produced by RPW larvae after the first infestation stages. Up to our knowledge, all of the acoustic 
detection systems proposed in the literature require an in-situ audio analysis, so: (1) continuous 
unattended monitoring is not supported, and (2) the monitoring costs are high, being directly 
proportional to the required monitoring frequency. To verify the performance of our detection 
algorithm we have driven a large set of experimental tests using several hours of certified audio 
recordings. The results show that our proposal achieves acceptable detection rates, it has certain 
resilience with respect to environmental noise, and it is highly selective, being able to efficiently 
discriminate the sounds produced by other insects.  

Therefore, our bioacoustic sensor proposal copes with the restrictions above mentioned in order to 
provide a low-cost monitoring system with a fast detection response that exhibits the following 
capabilities: (1) high RPW detection rates (over 90%) with no false positives under the experimental 
tests we have carried out; (2) periodic audio monitoring following an user-defined schedule;  
(3) it works autonomously with a solar-based power unit for a long period of time (potentially eternal);  
(4) no maintenance is required after installation; (5) the installed bioacoustic sensors may form a wireless 
sensor network with a coverage from little orchards to large plantation extensions. 

Our future work will be focused on the deployment of our RPW bioacoustic sensors to form a 
wireless sensor network in palm tree orchards. This implies the development of network software that 
will allow a reliable communication of each sensor with the control station. Also, we will develop the 
control station software that will receive the analysis reports from the installed sensors in order to 
process and conveniently store them with the corresponding side information (palm ID, geolocation 
info, timestamp, report summary, etc.). All the information at the control station may be accessed 
through Internet, allowing supervisor to remotely check the palm trees status in real-time through a 
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nice and intuitive graphical user interface. Then, a complete monitoring tool would be available to 
protect palm trees from RPW pest, providing fast detection response, continuous monitoring activity 
and reducing the monitoring costs when compared to in-situ human-operated monitoring proposals.  
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