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Abstract: The possibility to identify with significant accuracy the position of a vehicle in a 
mapping reference frame for driving directions and best-route analysis is a topic which is 
attracting a lot of interest from the research and development sector. To reach the objective 
of accurate vehicle positioning and integrate response events, it is necessary to estimate 
position, orientation and velocity of the system with high measurement rates. In this work 
we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems 
(MEMS) technology, coupled with information derived from a video camera placed on a 
two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of 
a two-wheel vehicle feature a higher level of complexity given that more degrees of 
freedom must be taken into account. For example a motorcycle can twist sideways; thus 
generating a roll angle. A slight pitch angle has to be considered as well; since wheel 
suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this 
paper we present a method for the accurate reconstruction of the trajectory of a “Vespa” 
scooter; which can be used as alternative to the “classical” approach based on GPS/INS 
sensor integration. Position and orientation of the scooter are obtained by integrating 
MEMS-based orientation sensor data with digital images through a cascade of a Kalman 
filter and a Bayesian particle filter. 
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1. Introduction 

The development of electronic systems for determining the position and orientation of moving 
objects in real-time has been a critical research topic for the last decade. Applications vary in many 
fields and range from rigid frames—aerial and land-based vehicles—as well as dynamic and complex 
frames like a human body [1,2]. The objective of measuring such parameters can also vary a lot; in 
remote sensing it is a crucial aspect for correct georeferencing of data acquired from optical sensors. 
Navigation and road safety purposes have also become common applications. Two main results of the 
technological progress in this field are represented by the Electronic Stability Program (ESP), an 
evolution of the Anti-Blocking System (ABS), and satellite positioning of vehicles. In the automotive 
sector, due to limited budgets and sizes, navigation sensors rely on the integration between a low cost 
GPS receiver and an Inertial Measurement Unit (IMU) based on Micro Electro-Mechanical System 
(MEMS) technology. Such integration is commonly realized through an extended Kalman filter [3–7], 
which provides optimal results for offsets, drifts and scale factors of employed sensors. However the 
application of this filter to motorcycle dynamics does not perform similarly. Unlike cars, motorcycles 
are able to rotate around their own longitudinal axis (roll), bending to the left and the right, therefore 
the yaw angular velocity is not measured by just one sensor, rather it is the result of the measurements 
of all three angular sensors, which contribute differently in time according to the current tilting of the 
motorcycle. Consequently, an error on the estimate of the roll angle at time t will affect the estimate of 
the pitch and yaw angles at next time t+1 as well. In this paper we consider the problem of detecting 
the position and orientation of a “Vespa”, a popular Italian scooter brand, using a low cost Positioning 
and Orientation System (POS) and images acquired by an on-board digital video camera. The estimate 
of the parameters (position in space and orientation angles) of the dynamic model of the scooter is 
achieved by integrating in a Bayesian particle filter the measurements acquired with a MEMS-based 
navigation sensor and a double frequency GPS receiver. In order to further improve the accuracy of 
orientation data, roll and pitch angles provided by the MEMS sensor are pre-filtered in a Kalman filter 
with those computed with the application of the cumulated Hough transform to the digital images 
captured by a video-camera.  

In the next sections, after an overview of the system components, the method adopted for trajectory 
reconstruction is described in detail. Specifically, in Section 3 we present the “Whipple model” [8,9], 
which constitutes the mathematical basis of the dynamic model of the motorcycle, and in Section 4 we 
focus on the estimate of the roll angle from the images recorded by the video-camera using the 
cumulated Hough transform [10–12]. Then in Section 5 we discuss the use of the Bayesian particle 
filter to integrate MEMS sensor data with GPS measurements. Results achieved with the proposed 
method are reported in Section 6, while final conclusions are discussed in Section 7.  

2. System Components 

The method for the motion estimation of a motorcycle proposed in this work has been tested on a 
“Vespa”, a common Italian scooter, which was equipped with a set of navigation sensors as shown in 
Figure 1. The system consists of an XSens MTi-G MEMS-based Inertial Measurement Unit (IMU) and 
a 1.3 Megapixel SONY Progressive Scan color CCD camera. The main technical specifications of the 
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Xsens MTi-G are summarized in Table 1. Data acquisition and sensor synchronization were handled 
by a Notebook PC (Acer Travelmate) provided with 1,024 MB of RAM and a CPU processing speed 
of 1.66 GHz. A Novatel DL-4 double frequency GPS receiver was also fixed on the scooter and used 
to collect data for reference trajectory determination.  

Figure 1. Side view of the Vespa scooter showing the data acquisition sensors. The digital 
video camera was placed on the right bottom side of the motorcycle. 

 

Table 1. Main technical specifications of Xsens MTi-G. 

Static accuracy (roll/pitch) <0.5 deg 
Static accuracy (heading) <1 deg 
Dynamic accuracy 1 deg RMS 
Angular resolution 0.05 deg 
Dynamic range:  
 - Pitch 
 - Roll/Heading 

±90 deg 
±180 deg 

Accuracy position (SPS) 2.5 m CEP 
Maximum update rate: 
 - Onboard processing 
 - External processing 

 
120 Hz 
512 Hz 

Dimensions 58 × 58 × 33 mm (W × L × H) 
Weight 68 g 
Ambient temperature  
(operating range) 

−20 … +55 °C 

3. The Whipple Model  

The “Whipple model” [8,9] consists in an inverse pendulum fixed in a frame moving along a line 
with the wheels which are considered to be discs with no width (Figure 2). The vehicle’s entire mass m 
is assumed to be concentrated at its mass center, which is located at height h above the ground and 
distance b from the rear wheel, along the x axis. The parameter ψ represents the yaw angle, ϕ the roll 
angle, δ the steering angle and w is the distance between the two wheels. In this model the motorcycle 
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motion is assumed to be constrained so that no lateral motion of the tires is allowed (non-holonomic 
constraint). The mathematical model does not take into account the possible oscillation of the scooter’s 
wheel suspensions neither the movement of a driver. The motion equations are therefore described by: 

 
(1)

where x, y and z represent the real-time vehicle positions in the spatial frame, v is the forward velocity, 
and θ is the pitch angle (not shown in Figure 2).  

From the geometry of the system the rate of change (i.e., first derivative) of the yaw angle is 
defined as follows:  

 (2)

where σ is the instantaneous curvature of the path followed by the motorcycle in the xy plane and R is 
the instantaneous curvature ray (σ = R−1). 

Figure 2. The inverted pendulum motorcycle model.  

 

According to the inverted pendulum dynamics; the roll angle satisfies the following equation: 

 (3)

where g is the acceleration due to gravity. The term hσ sinϕ can be rewritten as a function of the 
steering angle δ and the roll angle ϕ: 

 (4)

and given that angles δ and ϕ do not simultaneously assume high values, the term hδ sinϕ can be 
neglected. Therefore, taking into account also Equation (2), Equation (3) becomes: 

 (5)

Assuming that we can measure the roll angle ϕ(t), the pitch angle θ(t) and the velocity v(t), 
Equation (5) could be used to estimate the curvature σ. Indeed, by integrating Equation (5) we can 
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compute the instantaneous curvature σ(t), provided that an initial condition σ(0) is given. Similarly, 
knowing the profile σ, if we integrate the non-holonomic kinematic model (1) from an initial position 
[x(0), y(0), z(0)] the path followed by the motorcycle can be fully reconstructed. In next sections we 
will discuss how we estimate the parameters φ, θ and v, whose knowledge is crucial for the application 
of the proposed method. 

4. Roll and Pitch Angle Estimation  

Roll and pitch angles can be estimated by using the frames recorded from the videocamera, which is 
rigidly fixed to the motorcycle, and detecting the position in the image of the horizon line estimating 
slope and distance of this line from the image origin. Using the perspective projection camera model, 
the horizon line projected onto the image plane can be described in terms of roll and pitch angles as 
follows (see [10,11] for details): 

 (6)

where (U,V) denote the image plane coordinates of a point P with coordinates [x,y,z] in the camera 
frame Σc. Therefore, the pitch and roll angles θ and ϕ can be determined knowing the position of the 
horizon line in the image. Despite the horizon cannot be easily determined due to occlusions frequently 
occurring in the scene, roll and pitch rates can be robustly estimated by comparing two consecutive 
images. Indeed, given the horizon line in the frame at time ti, I(ti), in the next frame at time ti+1, 
I(ti+1), the horizon is described by the following relationship: 

 (7)

Linearizing Equation (7) about θ(t) and ϕ(t), neglecting terms of order higher than one in Δ and 
assuming small pitch angles (θ ≅ 0), we obtain: 

 (8)

Equation (8) shows that in two successive frames, the horizon rotates by Δϕ and translates by −Δθ 
cosϕ. These two quantities (Δϕ, Δθ) can be measured by computing the Hough transform on a region 
of interest centered around a neighborhood of the current estimation of the horizon line.  

The Hough transform [12] is a feature extraction technique used in image analysis, computer vision, 
and digital image processing, whose purpose is to find imperfect instances of objects within a certain 
class of shapes by a voting procedure. This voting procedure is carried out in a parameter space, from 
which object candidates are obtained as local maxima in a so-called accumulator space that is 
explicitly constructed by the algorithm for computing the Hough transform. In this case this transform 
is used to determine the horizon line in the images acquired by the scooter’s on-board videocamera. To 
this aim polar coordinates (ρ,α) are used as space parameters and are related to the image coordinates 
(U,V) as follows: 

 (9)

An example of such image space parametrization is shown in Figure 3. 

cos cos sin sin cosθ ϕ ϕ θ ϕ− =V U

cos( ) cos( ) sin( ) sin( ) cos( )V Uθ θ ϕ ϕ ϕ ϕ θ θ ϕ ϕ+ Δ + Δ − + Δ = + Δ + Δ

sin cos cosϕ ϕ ϕ ϕ θ ϕΔ + Δ = −ΔV U

cos sinρ α α= +U V



Sensors 2013, 13 1515 
 

 

Figure 3. The parameter space (ρ,α) of the Hough transform adopted for line detection. 

 

Given this parameterization, points in parameter space (ρ, α) correspond to lines in the image 
space, while points in the image space correspond to sinusoids in parameter space, and viceversa 
(Figure 4). The Hough transform allows therefore to determine a line (e.g., the horizon) in the image as 
intersection, in parameter space, of sinusoids corresponding to a set of co-linear image points. Such 
points can be obtained by applying an edge detection algorithm. 

Figure 4. Image points mapped into the parameter space.  

 

The steps needed to compute the rates (Δϕ, Δθ) can be summarized as follows: 

1. Apply an edge detection to a predefined region of interest of the image; 
2. Perform a discretization the parameter space (ρ, α) by subdividing it in a set of cells (bins); 
3. Considering that each edge candidate is an infinite line segment of polar coordinates (ρ, α), 

the number of edges falling in each bin is counted; 
4. Through this accumulation an histogram of an image in coordinates (ρ, α) is generated, 

whose intensity values are proportional to the number of edges falling in each bin. This 
histogram  represents the Hough transform H(ρ, α) of the image. 

From each histogram the corresponding cumulated Hough transform is derived. This transform is a 
modification of the Hough transform and is defined as follows: 
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 (13)

Similarly, the estimate of the increment of the roll angle θ is computed as follows: 

 (14)

After these steps, the estimates of the roll and pitch angles are computed by time integration of the 
rates Δϕ and Δθ.  

5. The Bayesian Particle Filter 

The key point of all navigation and tracking applications is the motion model to which bayesian 
recursive filters (as the particle filter [13]) can be applied. Models which are linear in the state 
dynamics and non-linear in the measurements can be described as follows: 

 (15)

where xt is the state vector at time t, ut the input, ft the error model, yt the measurements and et the 
measurement error. In this model, indipendent distributions are assumed for ft, et and the initial state 
x0, with known probability densities pet , pft and px0, respectively, but not necessarily Gaussian.  

We denote the set of available observations at time t as:  

 (16)

The Bayesian solution to equations (15) deals with the computing of the a prior distribution 
p(xt+1|Yt), given past distribution p(xt|Yt). In case the noise can be modeled by indipendent, white and 
gaussian with zero mean probability density functions, and h(xt) is a linear function, then the optimal 
solution is provided by the Kalman filter. Should be this condition not satisfied, an approximation of 
the a prior distribution p(xt+1|Yt) can be still provided using a Bayesian particle filter [13]. This filter is 
an iterative process by which a collection of particles, each one representing a possible target state, 
approximates the a prior probability distribution, which describes the possible states of the target. Each 
particle is assigned a weight wt

i, whose value will increase as closer to true value the related sample 
will be. When a new observation arrives, the particles are time updated to reflect the time of the 
observation. Then, a likelihood function is used to updated the weights of the particles based on the 
new information contained in the observation. Finally, resampling is performed to replace low weight 
particles with randomly perturbed copies of high weight particles. A block diagram of the particle filter 
is presented in Figure 8.  
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Figure 8. Block diagram of the Bayesian particle filter. 

 

Since the computational cost of a particle filter is quite high, only an adequate minimum number of 
variables has been included in the dynamic model of the scooter. It was therefore chosen to neglect any 
movement along the z axis (e.g., “bouncing” of suspensions), and to account for position variables x 
and y, speed v, the three angles needed for modelling the orientation (φ, θ, ψ) and the filtered version 
of the curvature σ. In order to further improve the accuracy of orientation data, roll and pitch angles 
provided by the MEMS sensor have been combined and pre-filtered in a Kalman filter with those 
computed using the cumulated Hough transform applied to the digital images captured by a  
video-camera. Assuming that the system is now represented as a collection of N particles, the 
dynamics of the generic particle si (i.e., a possible system state) is described by the following model: 

 (17)

where: 

− ΔT is the sampling interval; 
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t) represents the measurement noise of the X coordinate, modeled as a Gaussian function 
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−  is weight of the i-th particle; 

−  is the importance function, i.e., the likelihood function through which the weights are 

updated according to the following relationship: 

 (18)

−  is a coefficient which dynamically changes in order to give more weight to minimal curvatures 

and roll angular velocities as denoted by:  

 (19)

where σl and  are the thresholds for the maximum curvature and roll angular velocity respectively. 
We set γm = 1/500, σl = 1/100 m−1 and = 30 °/s. 

In the model Equation (17) we used different formulas for the derivatives of the orientation angles 
,  and . This is due to the fact that the angular velocities (ωx, ωy, ωz) measured by the MEMS 

sensor are related to the body frame (i.e., the coordinate system fixed with the scooter) while 
orientation angles (φ, θ, ψ) are determined in a world reference frame (e.g., the GPS coordinate 
system, WGS-84). A frame transformation from the body to the world frame is therefore needed, 
which leads to different equations for the orientation angles. 

The components of the state vector at time t are then computed as weighted average of the variables 
estimated by the filter, using the weights wi of all particles si: 

 (20)

In order to limit the computational effort of the filter, the update of the particle weights wi is not 
performed at every step of the algorithm, but rather when the GPS data are available from the receiver. 

6. Results and Discussion 

Three drive tests were carried out on the same track in order to evaluate the measurement 
repeatability, whose results for the roll angle are shown in Figure 9. A slight difference can be 
observed for test No. 3 where the speed was slower than for the other two tests. 

An example of the track reconstructed from the data received during one of the three tests is shown 
in Figure 10. Here the trajectory (dotted line) estimated with the Bayesian particle filter is compared 
with the reference trajectory derived from differentially corrected GPS measurements (solid line). 
Beyond vibrations, offsets and scale factors, further interesting sources of error to be tested are wrong 
initial conditions and noises of the roll and pitch angles. During the test the roll angle was brought to 
more than 20° to evaluate the performance of the filter; no GPS update was used by the Bayesian 
particle filter to estimate the trajectory covered by the scooter. The algorithm was able to converge, 
albeit slowly, towards the real angle. Some statistics highlighting the residual distances between the 
reference trajectory shown in Figure 10 and that estimated with the particle filter are summarized in 
Table 2.  
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Figure 9. Roll angle profiles resulting from the performed tests. 

 

Figure 10. The estimated trajectory (dotted line) overimposed onto the GPS reference 
track (solid line). 

 

Table 2. Statistics of the residual displacements btw. the GPS reference trajectory and that 
estimated by the particle filter shown in Figure 10. 

Minimum 0.042 m 
Maximum 10.116 
Mean 1.033 
Absolute mean 3.2 m 
Standard deviation (operating range) 2.533 m 

Developments of the proposed method will deal with the encoding of the Bayesian filter inside an 
integrated system which can be used to equip the scooter. This can lead in the future to provide even 
motorcycles with traction control systems. Further developments will be the inclusion in the dynamic 
model of the suspensions’ motion along the Z axis, and also the study of the influence of the steering 
angle (δ) on the estimation of the roll angle. These two parameters are indeed related by the following 
relationship, which can be easily derived from Equation (2):  

 (21)
tancosarc
W

δϕ
σ
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7. Conclusions 

In this paper we have presented an alternative method for the reconstruction of the trajectory of a 
motorcycle (“Vespa” scooter) with respect to the “classical” approach based on GPS/INS sensor 
integration. In our implementation position and orientation of the scooter are obtained by integrating 
MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a 
Bayesian particle filter. As shown, the proposed method provides quite acceptable results though its 
application is affected by environment conditions. Indeed the roll angle estimation based on the Hough 
transform requires a minimal amount of linear elements in the scene, whose absence can degrade the 
results achievable for the roll angle. For example a complex skyline and low contrast between the road 
segment and neighboring object can be problematic, even if not common.  
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