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Abstract: In the target classification based on belief function theory, sensor reliability 

evaluation has two basic issues: reasonable dissimilarity measure among evidences, and 

adaptive combination of static and dynamic discounting. One solution to the two issues  

has been proposed here. Firstly, an improved dissimilarity measure based on dualistic 

exponential function has been designed. We assess the static reliability from a training set 

by the local decision of each sensor and the dissimilarity measure among evidences. The 

dynamic reliability factors are obtained from each test target using the dissimilarity 

measure between the output information of each sensor and the consensus. Secondly, an 

adaptive combination method of static and dynamic discounting has been introduced.  

We adopt Parzen-window to estimate the matching degree of current performance and  

static performance for the sensor. Through fuzzy theory, the fusion system can realize  

self-learning and self-adapting with the sensor performance changing. Experiments 

conducted on real databases demonstrate that our proposed scheme performs better in 

target classification under different target conditions compared with other methods. 

Keywords: information fusion; sensor reliability; belief function theory; discounting 

factor; target classification 
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1. Introduction 

Belief function theory has been widely applied in intelligent decision systems [1], which is 

obviously influential in the representation, measure and combination of uncertainty. In the multisensor 

information fusion process, the output of each sensor is assigned the same reliability in the Dempster 

rule of combination [1]. In fact, each sensor has different capacity, so it is not reasonable to keep 

reliability constant for each sensor, especially for heterogeneous sensors (such as optical sensors, 

RADAR and infrared sensors). Firstly, evaluating the reliability of sensors accurately and amending 

output evidence are necessary to improve the robustness of fusion systems and decrease the side 

effects of sensor output with evidence of low reliability. Secondly, the distinction of the sensors’ 

reliability is an important factor causing conflicts among evidences. By computing the reliability of 

each sensor, modifying the corresponding evidence is another important way of dealing with high 

conflicting evidences’ combination. Thirdly, the reliability of sensors is closely related to the 

environment, which may change at any time. For example, some contextual factors often affect the 

reliability of sensors, such as target and background properties (environmental noise, and deceptive 

behaviors of observed targets) [2]. If the evaluation method for sensors’ reliability is not adaptive  

to the environment and lacks self-learning ability, large deviations will occur in the fusion results. 

Therefore, correcting disadvantages in evidence modeling, adapting to different environments, and 

adding the reliability evaluation of sensors in the fusion process can solve problems of combining 

conflicting evidences [3–5]. 

The main purpose for the sensors’ reliability evaluation is to determine an appropriate discounting 

factor for the sensor. We adopt the sensor discounting factor to denote its reliability according to the 

relation that the reliability is equal to 1 minus the discount factor [6], which includes static and 

dynamic reliability evaluation. The static reliability evaluation is based on the training samples and 

obtained the prior knowledge actually. The dynamic reliability is calculated in the test process without 

using the training sets and reflects performance changes of sensor. That is to say, the static reliability is 

prior information while the dynamic reliability is real-time information. These two kinds of reliability 

factors can be combined together. The overall framework, which relates to the problem of general 

fusion of uncertainty information, was originally put forward by Rogova [7]. In [6], Elouedi evaluated 

the reliability of sensors with the transferable belief model. Then, Guo [2] improved the acquisition 

scheme of the reliability factor and presents the application strategy under the belief function theory 

framework. To acquire the sensors’ reliability factors, Yang [8] combined the sensor confusion matrix 

of a priori static information and dynamic information of current output decisions. Elouedi [9] 

determined the static reliability factor of sensors by correcting the recognition rate on all training 

samples. Delmotte and Gacquer [10] proposed one mechanism of handling conflicts to detect defective 

sources, and designed the time-varying combination of dynamic reliability and static reliability. Other 

static or dynamic reliability evaluation methods are presented in [11–13]. 

After obtaining the reliability factor, basic belief assignment (BBA) from a multisensor can be 

corrected by the corresponding factors. The most classic method is Shafer’s discounting rule [1].  

Mercier [14] has proposed contextual discounting based on classic discounting, and gave the 

mathematical derivation process. Denoeux and Smets analyzed the inverse operation of discounting, 

that is, de-discounting in the classification issue [15]. Other examples of discounting work on 
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multisensors can be found in [16,17]. Due to the high computational complexity of the contextual 

discounting method, this paper applies Shafer’s discounting rule. 

However, the existing methods of sensor reliability evaluation and evidence discounting have 

several problems. The dissimilarity measure of reasonable evidences is the basic issue of both static 

and dynamic reliability assessment. For example, dissimilarity measures among evidences are 

unreasonable in Guo’s [2] and Elouedi’s method [6]. Moreover, some methods use information 

inadequately, such as Elouedi’s Tf [9] and Yang’s method [8]. In addition, the research on methods of 

combining static and dynamic discounting factors is not deep enough, which is just mentioned in [2]. 

This combination method has no ability to adapt to the performance changes of sensors. 

In order to resolve the above problems, this paper puts forward a scheme of sensor reliability 

evaluation and evidence discounting, which mainly includes two parts. First, we have designed an 

improved dissimilarity measure based on a dualistic exponential function so as to assess the static 

reliability from a training set by local decision of each sensor and distance measure between evidences. 

The dynamic reliability factors are gained from every test target by dissimilarity measures between the 

output information of each sensor and the consensus of total evidences simultaneously. Second, we 

have introduced an adaptive combination method of static and dynamic discounting based on fuzzy 

theory and Parzen-window density estimation, which can be suitable for different kinds of uncertain  

target environments. 

The rest of the paper is divided into six parts. Section 2 reviews the belief function theory. An 

improved dissimilarity measure based on a dualistic exponential function is presented in Section 3. 

Evaluation methods of static and dynamic discounting factor are respectively introduced in Section 4. 

In Section 5, we propose an adaptive combination mechanism of static and dynamic reliability 

discounting. The experiments and analysis are arranged in Section 6, where we compare the proposed 

method with other methods on real datasets. Then, a conclusion is presented in Section 7. 

2. Basic Concepts of the Belief Function Theory 

Belief function theory is regarded as a useful tool of representing and processing uncertain 

knowledge. In this section, a brief review of the belief function theory is introduced. 

2.1. Main Function  

Let Ω = {ω1, ω2, …, ωp} be a finite set of all possible results to a given problem, which is named as 

the frame of discernment. All the elements of Ω are exclusive and exhaustive, and belong to the power 

set of Ω, denoted as 2
Ω
. The subsets of Ω containing only one element are called singletons. 

Definition 1: Given a set of evidence provided by the sensor, intelligent agent defines the 

corresponding basic belief assignment on   as a function m
Ω
:2

Ω
 → [0,1], which satisfies: 

 (1) 

If there is no ambiguity, m
Ω
 may be abbreviated to m.     , the value of m(x) is called the basic 

belief mass (BBM), representing the belief portion of an agent Ag committed exactly to the proposition 

( ) 1
A

m A
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A, and nothing is more specific. The subsets x of Ω with a property m(x) > 0 are called focal elements 

of BBA m. 

The mass m(Ω) represents the degree of ignorance of agent Ag. When m(Ω) = 1, m is called a 

vacuous BBA, which corresponds to complete ignorance of x’s value. The value m(ϕ) is the conflictive 

degree, and m(ϕ) = 0 is not necessarily required; and if it is not, this corresponds to the open-world 

assumption. A certain BBA expresses the total certainty. 

Definition 2: Let BBA m be defined on a frame of discernment Ω; the belief function and the 

plausibility function are defined respectively as follows: 

 (2) 

 
(3) 

The belief function Bel is a measure of the total belief committed to A without being committed to 

Ā. The plausibility function Pl quantifies the maximum amount of belief that could be given to a subset 

A of Ω. Three functions above are in one-to-one correspondence. 

2.2. Combination 

The combination of multiple BBAs can be realized through the conjunction rule. Let m1 and m2 be 

two BBAs which are induced from two distinct pieces of evidence. Based on the closed-world 

assumption, two BBAs’ conjunctive combination, denoted     , for all the     are defined  

as follows: 

 
(4) 

The normalized factor is: 

 (5) 

where the term C12 is called the conflict between m1 and m2, and it may be regarded as a simple 

measure of dissimilarity between BBAs. The conjunctive rules are both commutative and associative. 

2.3. Classical Discounting 

Because of the various conditions’ influence, doubts about the reliability of an information source m 

are sometimes possible. Assuming that a source has probability (1 − α) of reliability (0 ≤ α ≤ 1), the 

discounting operation [1] of m has been named discounting rate. This correction operation of m is 

define as: 

( ) (1 ) ( )

( ) (1 ) ( )

m A m A A

m A m A if A







 

     


    
 (6) 

  ( )
B A

Bel A m B for A


  

  ( ) 1 ( )c

B A

Pl A m B Bel A
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The probability of reliability (1 − α) represents the source’s reliability degree. If the source is 

completely unreliable, this degree equals to 0, then α is equal to 1. On the contrary, if the source is 

absolutely reliable, then α equals to 0, and m will not be discounted. Other mechanisms of discounting 

are presented in [14–16,18]. 

2.4. Pignistic Transformation 

In the transferable belief model (TBM) [19], pignistic probabilities are used for making decisions. 

The transferable belief model is based on two levels: 

• The credal level and its beliefs are expressed by belief functions. 

• In the pignistic level where for the purpose of making decisions, belief functions are 

converted into the pignistic probabilities denoted BetP. 

The relation can be constructed between the two functions by the pignistic transformation on Ω: 

 (7) 

3. An Improved Dissimilarity Measure about BBAs 

3.1. Problem Description 

Fundamentally speaking, an accurate dissimilarity measure between BBAs is the basis of the sensor 

reliability evaluation, either static or dynamic. For instance, the basic idea of the dynamic discounting 

method is that, if one source of evidence is different from other sources, it has a low reliability. 

In this section, we first review the existing dissimilarity measure methods used in sensor reliability 

evaluation. Then, an improved dissimilarity measure method based on dualistic exponential function 

has been designed. Finally, several dissimilarity measure methods are compared and discussed. 

3.2. The Existing Dissimilarity Measure Methods 

In belief function theory, the dissimilarity between evidences reflects the inconsistency of sensors. 

In order to describe the inconsistency in a quantity, it is necessary to define quantitatively the 

dissimilarity measure, then, the target-oriented corresponding strategy emerges in such circumstances. 

There are three dissimilarity measure methods, namely BBM type, distance type and complex type 

dissimilarity measures. 

3.2.1. BBM Type of Dissimilarity Measure 

This was been proposed by Shafer [1]. BBM is given to the empty set in the process of conjunction 

combination rule. However, the BBM cannot be committed frequently owing to the counterintuitive 

problem. Based on Shafer’s work, Jia [13] has proposed a generalized dissimilarity measure, and 

considered the common effects of direct conflict and potential conflict. 

  

| | ( )
( ) , .

| | 1 ( )B

A B m B
BetP A A

B m 
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3.2.2. Distance Type of Dissimilarity Measure 

The evidences are regarded as linear space vectors in this dissimilarity measure, which  

reflects the geometric meaning of the inconsistency between evidences. On the basis of distance  

metric definition [20], this dissimilarity measure contains the specific mathematical format. Such 

methods include Wang’s distance measure [21], Jousselme’s distance measure [22], and He’s distance 

measure [23], etc. 

3.2.3. Complex Type of Dissimilarity Measure 

This dissimilarity measure combines both the BBM type and distance type measures, and has the 

form of dualistic variables corresponding to two kinds of measures [20,24]. The expressions, 

advantages, and disadvantages for the above three kinds of dissimilarity measure methods are shown in 

Table 1 (formulas and symbols follow the definitions of Section 2, and K is the number of evidences). 

Table 1. Analysis of different dissimilarity measure methods. 

Categories Methods Measure Expressions Advantages Disadvantages 

BBM 

Shafer [1] 
1

1

1,

( )
K

k kk

K

K k k

kX X

C m X




 

    

It can measure the 

dissimilarity of more than 

three pieces of evidences; 

and the implement 

efficiency is high. 

Its results are often 

counterintuitive, for 

example the problem of 

one-vote veto. 

Jia [13] 

1

1 1

1

| |
1 ( )

| |k

K

Kkk

K k kK k
A

kk

A
GC m A

A








  
    
    

 


 

| | denotes the cardinality  

It includes both direct 

dissimilarity and  

potential conflict. 

In different evidence 

conditions, the 

dissimilarity measure 

results between evidences 

are large relatively. 

Distance 

Wang [21] 
1 2

1 2

| ( ) ( ) |
( , )

2
BBA

A

m A m A
R m m




   

Its form is intuitive and 

simple with high 

execution efficiency. 

The measure is not careful 

without considering the 

compatible parts of  

focal elements. 

Jousselme [22] 

1 2 1 2 1 2
1

( , ) ( ) ( )
2

T
BBAd m m m m D m m    

| |
, , ( , ) , | | denotes the cardinality

| |

A B
A B D A B

A B
   

 

It describes the 

dissimilarity between 

evidences and has the 

support of distance axiom. 

Its computation is large 

when the number of 

elements for discernment 

framework is large, and  

it is not  

reasonable sometimes. 

Complex 

Liu [24] 

2

1
1 2 12( , ) ,

m

m
cf m m C difBetP  

2

1
1 2max | ( ) ( ) |

m

m
A

difBetP BetP A BetP A


   

It includes both BBM type 

and distance type of 

dissimilarity measures. 

The dualistic dissimilarity 

measure leads to the 

complexity of 

determining the threshold, 

which has not  

uniform criterion. 

Guo [20] 

2 2
121 1

| |12

2

m
m

m
C difBetPm

G

C difBetP
cf e

 
  

It overcomes the operation 

complexity of dualistic 

dissimilarity measure. 

The results of the 

dissimilarity measure are 

illogical sometimes. 
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3.3. Our Dissimilarity Measure Method 

Before designing the measurement method, the dissimilarity measurement should be firstly fit for 

the intuitive logic of persons. Secondly, it can measure the dissimilarity among more than  

two pieces of evidence simultaneously. In addition, the dissimilarity measurement should have good 

operational capability. Considering the comprehensiveness of dissimilarity measurement, this paper 

integrates both the BBM type and distance type dissimilarity measurements. Firstly, the new function 

is proposed to replace C1…K, and then a new measurement form is designed for more than three pieces 

of evidence, which overcomes the difBetP problem. With the certain one-sidedness of Guo’s method 

and poor maneuverability of Liu’s method, this paper uses the binary function form. In the compromise 

process, our paper represents evidence measurement by using an improved binary function. 

The specific strategy includes three steps: 

3.3.1. Improvement of C1…K 

The problem of C1…K is that the conflict measure results are often counterintuitive. Based on different 

consistency measure functions [25,26] in Table 2, this paper adopts the form of the Dice measure function. 

Table 2. Different consistency measure functions. 

Name Sokal & Sneath Dice Ochiai Fixsen & Mahler 

Function Form 2

A B

A B A B
 

2 A B

A B
 A B

A B

 A B

A B
 

This paper expounds that the local dissimilarity consists of local potential dissimilarity and local 

direct dissimilarity. We construct the local potential dissimilarity among K pieces of evidences. 

For K pieces of evidences corresponding BBA mk(k ϵ {1,2,…, K}) on the same discernment frame 

Ω, BBAs is given the BBM mk(Ak) > 0 (k =1,2,…, K ) respectively on sets A1, A2,…Ak.          

and max {ǀA1ǀ, ǀA2ǀ,…ǀAkǀ} ≥ 2,the local potential dissimilarity among K pieces of evidence is: 

 (8) 

the local direct dissimilarity: 

 (9) 

Definition 3: For K pieces of evidences corresponding to the BBA mk(k ϵ {1,2,…, K}) on the same 

discernment frame Ω, the total dissimilarity is defined as the sum of the local potential dissimilarity 

and the local direct dissimilarity between K pieces of evidences, namely: 

  

1 2

1

, , , 1

1

| |
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| |
k

K
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 (10) 

Theorem 1: For K pieces of evidences corresponding to BBA mk(k ϵ {1,2,…, K}) on the same 

discernment frame Ω, the total dissimilarity is: 

 (11) 

Proof: in Equation (8), we can see that: 

If    
 
     , then           

        
 
   , local potential dissimilarity becomes local direct 

dissimilarity; 

If    
 
     , and ǀA1ǀ = ǀA2ǀ = ǀAkǀ = 1, then ξA1, A2,…Ak = 0, and there is no dissimilarity. 

Hence, whether local direct dissimilarity or local potential dissimilarity can be expressed by 

Equation (8). The total dissimilarity is the sum of local potential dissimilarity and local direct 

dissimilarity between evidences, then we can get: 

  

Theorem 2: For D1…k of Equation (11), there is always 0 ≤ D1…k ≤ 1. 

Proof: on one hand, in Equation (11), we suppose     
 
      , then there will be ǀAkǀ ≥ x, so we 

get      
 
      ，thus: 

1

1

| |
1 1 0

| |

K

kk

K

kk

K A K x

K xA





 
   


  

With mk (Ak) ≥ 0, we get D1…k ≥ 0. On the other hand, we can get: 

 

 

If and only if    
 
              , the equal sign. Therefore, inequality 0 ≤ D1…K ≤ 1  

is established. From the simple calculation, we can know that the form D1…K overcome the problem  

of C1…K. 
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3.3.2. Improvement of           

   

The problem of          

   is that          

   cannot measure the dissimilarity for more than three 

evidences. We put forward a new formula: 

 (12) 

When K = 2,                    

  , obviously difBetP1…k can measure the dissimilarity among 

more than two pieces of evidence simultaneously. 

3.3.3. Dualistic Exponential Function Form 

We put forth the exponential dualistic function, through the association of multiple parameters, 

making up one-sidedness defect of a single parameter. In the same discernment frame Ω, with K 

(positive integer K ≥ 2) pieces of evidence, a dissimilarity measure expression as shown in Equation (13) 

is defined as BEF: 

 
(13) 

3.4. Comparison of Different Measure Methods 

Comparing with the existing dissimilarity measurement methods, the advantages of our method can 

be shown in the following examples: 

Example 1: Let three BBAs m1, m2, m3 be in the same discernment frame Ω = {ω1, ω2, ω3}: 

, ,  

, ,  

, ,  

 

The contrast results of different dissimilarity measurement methods are shown in Table 3. 

Table 3. Contrast results of different dissimilarity measurement methods. 

Evidence 
Methods 

<C12, difBetP> [24] Jousselme [22] Guo [20] Jia [13] BEF 

m1 and m2 <0, 0.6067> 0.7430 0.1654 0.6429 0.5293 

m1 and m3 <0, 0.0233> 0.0283 0.0114 0.0460 0.0279 

From Table 3, we can see that C12 = C13 = 0 has been obtained by Shafer’s dissimilarity 

measurement, which is not fit for people’s intuition. In addition, other dissimilarity measurement 

methods can determine that the dissimilarity between m1 and m3 is far less than that between m1 and 

m2, which is much closer to human logic than Shafer’s opinion. The two BBAs have visible 

differences about the dissimilarity measurement between m1 and m2; in terms of common sense, the 

dissimilarity between m1 and m2 would not be too large or too small. From the above several 

measurement methods, our method has more advantages obviously. 

 1
1 ,
max max | ( ) ( ) |K i j

i j K A
i j

difBetP BetP A BetP A
  



 

21 1( )
1 1 2

1
2

K KD difBetP

K K
K

D difBetP
BEF e






1 1({ }) 0.94m   1 1 2({ , }) 0.03m    1 1 2 3({ , , }) 0.03m    

2 1({ }) 0.03m   2 1 2({ , }) 0.03m    2 1 2 3({ , , }) 0.94m    

3 1({ }) 0.98m   3 1 2({ , }) 0.01m    3 1 2 3({ , , }) 0.01m    
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Example 2: Let three pair BBAs be in the same discernment frame Ω = {ω1, ω2, ω3, ω4, ω5}: 

First pair: 

 
 

Second pair: 

  

Third pair: 

  

From Table 4, we can see that there are more differences between the first pair and the third pair. 

Jousselme’s method and Jia’s method cannot separate these two kinds of circumstances. Liu’s method 

and Guo’s method reflect the different between the first pair and the third pair. It is difficult to pick out 

the threshold in Liu’s method, which lacks operability. For example, we cannot quantitatively 

distinguish the conflict between <0, 0.7> and <0.0975, 0.55> quantitatively. The dissimilarity value of 

Guo’s method changes greatly from the first pair to the third pair while our method reflects the 

relatively stable property gradually from the first pair to the third pair gradually. 

Table 4. Contrast of different dissimilarity measurement methods. 

Evidence 
Methods 

<C12, difBetP> [24] Jousselme [22] Guo [20] Jia [13] BEF 

The first pair <0.9075,0.85> 0.85 0.8296 0.93 0.878 

The second pair <0.0975,0.55> 0.6946 0.2059 0.6675 0.5306 

The third pair <0,0.7> 0.8062 0.1738 0.8 0.6543 

Example 3: Let Ω be a discernment frame with 20 elements. We use 1, 2, etc. to denote element 1, 

element 2 in the discernment frame. The first BBA m1 is defined as: 

, , ,   

where A is a subset of Ω. The second BBA is m2({1,2,3,4,5}) = 1. 

There are 20 cases where subset A increases one element at a time, starting from case 1 with  

A = {1} and ending with case 20 with A = Ω as shown in Table 5. The comparisons of different 

dissimilarity measure methods for these 20 cases are detailed in Table 5 and graphically illustrated in 

Figure 1. As can be seen from Table 5, value C12 always equals to 0.05 whether the size of subset A 

changes or not, which means that it cannot reasonably reflect the conflict degree between evidences. 

The results also indicate that all five dissimilarity measures change along with the size of A. When  

A = {1,2,3,4,5}, all values reach the minimum. The curves of Guo’s and Jia’s method are extreme 

cases. The value of Jia’s method is worth so much more than Guo’s. According to the appraisement 

criterion in [24], our method (BEF) is close to the curve of difBetP and reasonable. 

  

1 1 1
1 1 2 1 3 1 4

1 1 1
2 1 2 2 3 2 4

({ , }) 0.9, ({ }) 0.05, ({ }) 0.05

({ , }) 0.05, ({ }) 0.05, ({ }) 0.9

m m m

m m m

   

   

  

  

2 2 2
1 1 2 4 1 3 1 4

2 2 2
2 1 2 2 3 2 4

({ , , }) 0.9, ({ }) 0.05, ({ }) 0.05

({ , }) 0.05, ({ }) 0.05, ({ }) 0.9

m m m

m m m

    

   

  

  

3 3
1 1 1 2 3 4 5

3
2

({ }) 0.9, ({ , , , }) 0.1

( ) 1

m m

m

     

 

1({2,3,4}) 0.05m  1({7}) 0.05m  1( ) 0.1m   1( ) 0.8m A 
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Table 5. Comparisons of different conflict measurement methods. 

Cases <C12, difBetP> [24] Jousselme [22] Guo [20] Jia [13] BEF 

A = {1} <0.05, 0.605> 0.78581 0.18801 0.825 0.63 

A = {1,2} <0.05, 0.42667> 0.68666 0.16353 0.825 0.4458 

A = {1,2,3} <0.05, 0.24833> 0.57053 0.12233 0.825 0.285 

A = {1,…,4} <0.05, 0.195> 0.42367 0.10597 0.825 0.2032 

A = {1,…,5} <0.05, 0.125> 0.13229 0.081178 0.825 0.1237 

A = {1,…,6} <0.05, 0.25833> 0.38837 0.12517 0.85167 0.2266 

A = {1,…,7} <0.05, 0.35357> 0.50292 0.14895 0.87071 0.304 

A = {1,…,8} <0.05, 0.425> 0.57053 0.16323 0.885 0.3648 

A = {1,…,9} <0.05, 0.48056> 0.61874 0.17247 0.89611 0.4141 

A = {1,…,10} <0.05, 0.525> 0.65536 0.17879 0.905 0.455 

A = {1,…,11} <0.05, 0.56136> 0.6844 0.18331 0.91227 0.4896 

A = {1,…,12} <0.05, 0.59167> 0.70817 0.18665 0.91833 0.5192 

A = {1,…,13} <0.05, 0.61731> 0.72809 0.1892 0.92346 0.545 

A = {1,…,14} <0.05, 0.63929> 0.74513 0.19118 0.92786 0.5677 

A = {1,…,15} <0.05, 0.65833> 0.75993 0.19276 0.93167 0.5877 

A = {1,…,16} <0.05, 0.675> 0.77298 0.19403 0.935 0.6056 

A = {1,…,17} <0.05, 0.68971> 0.78461 0.19508 0.93794 0.6216 

A = {1,…,18} <0.05, 0.70278> 0.79509 0.19595 0.94056 0.6361 

A = {1,…,19} <0.05, 0.71447> 0.80461 0.19668 0.94289 0.6493 

A = {1,…,20} <0.05, 0.725> 0.81333 0.1973 0.945 0.6613 

Figure 1. Comparison of different methods when subset A changes. 

 

All in all, our improved dissimilarity measure method has three advantages. Firstly, it is much 

closer to human logic and has no one ticket veto problem. Secondly, it overcomes the operational 

problem of existing dualistic conflict measure methods. Thirdly, it can measure the conflict among any 

pieces of evidence simultaneously and face interchangeability and combinability. 

4. Evaluation Method of the Discounting Factor 

In this section, the static discounting factor is assessed from a training set by comparing the sensor 

reading with the truth, which is based on the study of last section. Our method permits us to assess the 
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discounting factor is assessed in the process of target recognition, which is always on the test set. We 

deem that the sensor whose evidence in accordance with those of majority sensors is reliable 

comparatively. Then we bring forward an evaluation method of dynamic reliability based upon our 

improved dissimilarity measure. Different methods are discussed in the end of this section. 

4.1. Problem Description 

The static discounting factor of sensor Sk (k ϵ {1,…, K}) is assumed to be evaluated. Let  

Г = {o1,…,on} denote the training set of n targets and Ω = {ω1, ω2,…, ωp} denote the set of p classes. 

The sensor reading about the class of each target oj o Г is represented by a BBA on the set Ω. In a 

general training set, the class of each target is certain. While the knowledge of the truth often comes 

from uncertainty, risk, and ignorance [2] in realistic problems, and it can be represented by the belief 

function theory. In another word, the sensor reading and truth value can be represented by BBAs so 

that we can design the unified model. 

In order to investigate the recognition performance of a fusion system across-the-board, the 

evaluation of dynamic reliability of each sensor is an important issue. When the real-time observation 

environment changes relative to the training environment, such as the decline and the invalidation of 

the sensor performance caused by environment noise and hostile interference, the static reliability and 

discount factor from the preliminary training no longer reflect the sensor performance and current 

status independently. Therefore, static evaluation of the sensor reliability is not enough, and the 

reliability of each sensor must be estimated dynamically in the fusion system. 

4.2. The Existing Methods of Evaluating the Discounting Factor 

Elouedi [6] has developed a method for assessing the sensor reliability in classification problems, while 

the pignistic transformation leads to the loss of information and bring about an increase of uncertainty. 

Guo [2] has calculated the static and dynamic discounting factor based on the Jousselme distance 

measure, which has some defects in fact. Likewise, the static discounting factor can only distinguish 

different recognition performance between sensors on the overall, but cannot handle different  

target categories. 

The proposed method of Yang [8] obtains the reliability factor of current identification evidence 

based on the sensor confusion matrix of a priori static information and its current output decision of 

dynamic information. However, this method has lost some original information. 

Elouedi’s method [9], which is simpler than Yang’s, has put forward the idea of regarding the 

average correct classification rate as static reliability factors. Hence, the same problem of Yang’s 

method also exists in Elouedi’s method. 

Xu’ method [12] constructs a dissimilarity matrix whose elements are obtained by applying the 

cosine similarity measure method to evidence similarity in pignistic vectors. Obviously, the pignistic 

transformation has the defect of costing the loss of dynamic information. 
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4.3. Our Evaluation Method of Static Discounting Factor 

Static reliability evaluation of sensors is a process of obtaining static discounting factors based  

on the training set. It is actually to obtain prior knowledge and performance of each sensor, and thus 

quantify sensor static reliability better. There are several key problems which must be considered: 

reasonable evidence dissimilarity measure under different conditions; the reliability evaluation of 

sensor which is based on the different categories of output; how to make full use of information on 

limited training samples. 

Guo’s method is based on the Jousselme distance measure. The distance metric may not conform to 

the common sense, as shown in Example 1. We adopt the method of last section based on the 

improved measure BEF (m1, m2). 

Next, we start with the reliability evaluation based on the output of maximal pignistic probability. 

Based on the acquisition method of static discounting factor of Guo’s [2] and Elouedi’s Tf method [9], 

we can only distinguish among different sensors in the overall recognition, and cannot indicate the 

sensor's ability in different target categories. Actually, recognition ability in different categories of 

sensors is usually diverse. Therefore, we should estimate the recognition reliability on different 

categories for each sensor, we can quantify the reliability of each sensor more accurately in this way. The 

static reliability evaluation based on the output of maximal pignistic probability has been adopted then. 

For each training target oj ϵ Г, let the BBA m{oj}[Sk] denote the reading of sensor Sk aiming to 

target oj and the BBA m{oj} denote oj. Let BetR{oj} represent the pignistic probability and ωt denote 

the corresponding element of the maximum pignistic probability about target oj, then: 

 (14) 

We can obtain the static discounting factor     
      of target oj: 

 (15) 

The factor     
           denotes the static discounting factor under the condition of decision for 

being ωt, where s denotes “the static”, k denotes the serial number of sensor, t denotes the label of the 

class, in Equations (14) and (15), we regard the maximum pignistic probability as a prerequisite 

condition, which is the decision base and an important thought of TBM. We still adopt the values of  

( )m   to calculate the discounting, so the process is actually without information loss. 

As known in Equation (15), the static discounting factor of each sensor is related to the dissimilarity 

measure between its reading and actual value. 

In the training set Г = {o1,…,on} of n targets, we define nl (l = 1,2,…,p) as the number of the 

making decision equal to ωl. For each target in the set Г, by repeating Equation (15), we get n static 

discounting factors of containing p classes, denoting as follows: 

  

Naturally, we get the static discounting factor under the condition of each class via simple 

averaging operation: 

arg max{ { }( )}j i
i

t BetP o 
 

  
 

, 0( ) ( | ) ( [ | ], [ ])s s
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 (16) 

Furthermore, we acquire the static reliability factor of the p-dimensional vector as follows: 

 (17) 

4.4. Our Evaluation Method of Dynamic Discounting Factor 

The paper has an essential premise: each sensor is independent. In this premise, we follow the idea 

of Guo’s method [2] and believe that the sensor in accord with the output evidences of most sensors is 

relatively reliable. We calculate the inconsistency by our improved dissimilarity measure method. 

Suppose the total number of sensors is K and the conflict between the BBAs of different reliability 

sensors has been found out, according to the explanation in [7], which means that there is at least an 

unreliable sensor. When the number of sensors is large, these sensors are more reliable and other 

sensors against them are not, if the output evidences from most of sensors have enormous support on 

one category or a few categories. Then, as described in [2], the dynamic reliability evaluation should 

be achieved on the basis of the opinion for majority sensors, the dynamic reliability and discount factor 

should be the consistency embodiment between the output of each sensor and the majority opinion. 

In order to measure the consistency between the output of each sensor Sk (k ϵ {1,…, K}) and the 

majority opinion, while we should construct the majority opinion first. To the BBA mk (k ϵ {1,…, K}) 

of K sensors output, this paper regards the mean value of BBAs    as a characterization of the majority 

opinion. To      ,    is calculated as follows: 

 (18) 

The foundation of constructing a majority opinion is the set supported by most of mk and it will also 

obtain more support in   ; on the other hand, the corresponding set acquires less support degree in   .  

The dissimilarity measure                  between each mk and    can be calculated by 

Equation (13). Larger                 means that the output BBA mk of sensor Sk is more 

inconsistent with the majority opinion, and its reliability is lower, thus, the discounting factor should 

be higher. On the other hand, if the output BBA mk of sensor Sk is more consistent with the majority 

opinion, then its reliability is higher, and the discounting factor should be lower. 

Therefore,                  can be used as the dynamic discount factor of sensor Sk: 

 (19) 

and: 

 (20) 

which is the relative dynamic reliability factor of sensor Sk. The superscript d denotes the dynamic 

reliability and discount factor. We can also obtain absolute reliability of the sensor Sk: 

 (21) 
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4.5. Analysis of Several Evaluation Methods 

Compared with other methods, the advantages of our evaluation methods are: 

(1). We can calculate the dissimilarity measure between BBAs directly, which are derived 

from the reading of the sensor and actual value of data. The output category based on 

maximum pignistic probability is regarded as conditions of fine discounting, which 

can use the samples fully and there is no additional loss in the calculation process. 

(2). The dissimilarity measure and mean operation can correspond to either certain training 

samples or general training samples, and also have considerable flexibility. 

(3). Compared with other methods, our method has no information loss, the computational 

complexity of our method is fairly lower, and the reliability evaluation would be more 

reasonable and accurate. 

5. The Adaptive Combination Method of Static and Dynamic Discounting Factor 

In this section, we will study the combination of static and dynamic discounting factor penetratingly. 

Based on [2], this paper has proposed an adaptive combination method of static and dynamic 

discounting factor, and this method can adapt to environmental changes such as noise and false target, 

which provides a new thought of the combination for the static and dynamic discounting.  

5.1. Problem Description 

Guo [2] has argued that the discounting factor from static evaluation can be regarded as a 

performance indicator of sensors, or the prior knowledge for subsequent application. When the sensor 

is used in different situations or at different stages, its reliability will change. Dynamic discounting 

factor has obtained by real-time training reflects the current performance and background information 

of the sensor. In normal conditions, a priori (or static) reliability of a dynamic environment is very 

important, and it should be combined with the fusion process. Guo [2] has put forward a combination 

method for two kinds of discounting factors, and chose a combination method which used weighted 

average to get the comprehensive discounting factor: 

 (22) 

where pk ϵ [0,1] is a static weight. In particular, if the current actual environment is quite different from 

the static learning condition, the sensor is sensitive to the change of the background, then taking  

pk ≤0.5 is appropriate. On the contrary, if the actual environment is similar with static evaluation 

condition, we should assume pk ≥0.5. The implementation process of Guo’s combining method is 

shown in Figure 2. 

While in this method, the static weight pk is determined beforehand by empiric completely, and  

cannot really change along with the actual environment. When the environmental condition has a big 

change, the sensor may be affected by a lot of factors, which eventually leads to the sharp decline of 

fusion system performance. Therefore, we must develop a new combination method which is adaptive 

to the environment. 

  

(1 )s d
k k k k kp p    
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Figure 2. Implementation framework of Guo’s combining method. 
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5.2. Our Adaptive Combining Method 

To achieve adaptive combining of static and dynamic discounting factor, we use a new 

implementation framework, showing in Figure 3. The expression is: 

 (23) 

N is the number of test samples; pk(oj) is a static variable changing along with the target 

classification or recognition process. When the background environment changes, the value alters with 

the change of the sensor performance, which leads to the real-time change of the sensor performance; 

hence, the core of the problem is the estimate of static weight. 

Figure 3. Implementation framework of the our combining method. 

 

In order to simplify the problem, this paper makes the following assumptions: in the whole sensor 

group, the performance of single sensor or several sensors will be affected by the environment, and the 

performance of most of the other sensors remains the same, which is more common and reasonable in 

the heterogeneous sensors. 

In accordance with the above assumptions, we come up with the following ideas. First of all, from 

the training samples, we obtain the sequence of dynamic discounting factor for each sensor, and then 

use the nonparametric estimation method to acquire the probability density function of dynamic 

discounting variables. In the testing process, according to the real-time dynamic discounting of each 

target, we can calculate the matching degree between the current sensor performance and static 

environment sensor performance and catch hold of the sensor performance. This paper has arranged 

two steps to realize the adaptive combination of static and dynamic discounting factors. 
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5.2.1. Based on the Training Samples, the Parzen-Window Estimate Method is Used to Obtain 

Dynamic Probability Density Function of Discounting Variables 

Question: given a sequence of independent and identically distributed random variables x1, x2,…, xn 

with common probability density function f(x), how can f(x) be estimated? In practical problems, in the 

sequence values of sensor dynamic discounting often do not know the overall distribution form, and 

the function of some parameters cannot be constructed. Therefore, this paper uses the Parzen-window 

estimate probability density function of dynamic discounting based on the training samples. 

The Parzen-window estimate method [27,28] is an effective nonparametric estimation method 

which is able to take advantage of the known samples to estimate the overall distribution of density 

function. The basic idea is using the mean value of each point within a certain range of density to 

estimate the overall density function. The specific method is: 

Assuming x is any point in the n-dimensional space, in order to estimate distribution probability 

density p(x) of x, we form a hypercube whose center is x and side length is hn, so its volume is      
  

and n is the number of total samples. 

In order to calculate the number     of samples which fall into the volume Vn, we construct a function: 

 (24) 

Now, the number of samples with Vn is        
    

  
  

   , in the point x, the estimation value of 

the probability density p(x) is: 

 (25) 

Equation (25) is the basic formula of the estimation method of Parzen window (Vn uses in the 

formula, of course, is not necessarily limited to the cube, and can also be a more general form), and 

define the kernel function (or the window function): 

  

and K(x, xi) satisfies two conditions: (1) K(x, xi) ≥ 0; (2) ʃK(x, xi)dx = 1. 

Common window function has a variety of forms. The window function and normal window 

function are most widely used, and the specific form is: 

(a) The window function: 

 (26) 

 

(b) The normal window function: 

 (27) 

Note that, in the basic formula for estimation method of the Parzen-window, window width hn is a 

quite important parameter. When the number of samples is limited, hn has a major influence on the 
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effect of estimation. In practical calculations, we adopt the normal window function and set hn = 1/  . 

Without loss of generality, we get the estimation of overall probability density function    (x) which is 

shown in Figure 4. 

Figure 4. The estimation of overall probability density function    (x). 

x

ˆ ( )np x

1x 2x ix nxxmaxx
 

For n targets in the training samples, we denote the dynamic discounting factor of the sensor as 

(  
        

          
      . In Equation (25), let vn = hn = 1/  , xi =   

     , then the probability 

density function of test target o is: 

 (28) 

Let    (  
       ) = 

   
 

      
          , for test target o, if    (  

    ) is much closer to the 

maximum value    (  
      ), then it represents that this sensor is much closer to the performance of 

static environment. Thus, the environment has no change or effect on the current sensor. On the 

contrary, the current sensor performance varies greatly, if    (  
    ) is far more away from the 

maximum value    (  
      ), which shows that the current performance of sensors has a big gap with 

the static performance. Hence, we use a ratio of the area marked by the oblique line in Figure 4 and the 

total area under the probability density function to represent the matching degree for current 

performance of sensor and the static performance naturally: 

 
(29) 

5.2.2. Dynamic Learning of Discounting Weights Based on Fuzzy Set Theory 

After obtaining the matching degree of current performance and the static performance based on 

each sensor, we need to realize dynamic learning of static and dynamic discounting weights. Because 

the matching degree can reflect that the current sensor is in a static environment, or away from the 

static environment, or in the intermediate state, which has a certain ambiguity, so the fuzzy set  

theory [29] has been used. The integration researches of belief function theory and fuzzy set theory can 

be found in [30–34]. In this paper, the matching degree is decomposed into three fuzzy variables, as 

shown in Figure 5. 
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Figure 5. Relational graph of fuzzy variables and static matching degree. 
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Dynamic fuzzy variable µd, intermediate state fuzzy variable µm, and static fuzzy variable are listed 

below respectively: 

 
(30) 

 

(31) 

 

(32) 

Let the numbers of training samples and test samples be n and N respectively, we design the 

adaptive dynamic and static combination method: 

 
 (29) 

(33) 

The weight of the static discounting in Equation (23) is computed by Equation (33) as follows: 

 (34) 

Before the test, the dynamic and static weights are 0 and 1 respectively, which is logical. Because 

there is no dynamic information before that. When the test goes on, we can match the current 

performance of the sensor and static performance. Then from three fuzzy variables, we accomplish the 
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self-learning to environment interference and other unknown factors. The intermediate state variable 

µm is an important factor for improving system robustness. After two steps, this paper builds the basic 

framework of adaptive combination of dynamic and static sensor reliability evaluation. 

6. Experimental Results and Discussion 

We perform three series of experiments. The performances of various static methods are firstly 

compared to those of classifiers trained using the U.C.I datasets. Then we research the behavior of 

several static methods. In the third series of experiments, we can obtain the related conclusions by 

comparing two combination methods of static and dynamic discounting in different situations.  

The experimental setup is described in Section 6.1, and the results are presented and discussed in 

Sections 6.2–6.4. 

6.1. Experimental Setup 

6.1.1. Experimental Datasets 

The datasets used in these experiments are summarized in Table 6. All targets in the dataset are divided 

into three equal parts. In fact, datasets for generating BBAs reflect the performance of the classifier. 

Table 6. Description of the datasets [35] used in the experiments. 

Dataset Classes Features 
Number of Patterns 

For BBAs  Training Test 

Yeast 10 8 495 495 494 

Glass 6 9 72 71 71 

Segment 7 19 770 770 770 

Waveform 3 21 1,667 1,667 1,666 

Pendigits 10 16 3,664 3,664 3,664 

6.1.2. Construction of Basic Belief Assignment 

In a single dataset, all the features are divided into three groups, each group contains several features 

and each group is the basis of classifiers. The description of generating classifiers is shown in Table 7. 

Table 7. Description of generating classifiers. 

Dataset Features 
Feature Distribution 

k Value 
Classifier 1 Classifier 2 Classifier 3 

Yeast 8 1 2 3 5 6 8 15 

Glass 9 1 3 4 6 7 9 12 

Segment 19 1 10 11 13 14 19 2 

Waveform 21 1 8 9 13 14 21 7 

Pendigits 16 1 5 6 10 11 16 3 

To fairly compare the various methods, we adopt the construction method of [36] uniformly. The 

degree of support is defined as a function of the distance between two vectors, and the evidence of the 
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k nearest neighbors is then pooled by using the Dempster’s rule of combination. The main parameters 

(k, αo, γq, β ([36], p. 809)) of generating BBAs are fixed in order to compare different methods. Let  

αo = 0.95 and γq be determined separately for each class as 1/  
 

, where dq is the mean distance 

between two training vectors belonging to class ωq. The choice of k lists in Table 7 and β = 1 is 

adopted in our experiment. 

6.2. Comparison of Methods for Evaluating the Static Discounting Factor 

6.2.1. Methodology 

Let B be a dataset composed of L vectors (objects). Results obtained from different classifiers are 

given as follows: 

(1). All targets in the dataset B are divided into three groups: the dataset for generating 

BBAs BBBAs, the training dataset Btrain, and the test dataset Btest. 

(2). Based on the dataset BBBAs, we can generate three classifiers through the above  

method [36] of generating BBAs. Every object in Btest is used to evaluate the 

performances of three classifiers, whose classification results can be obtained by using 

the maximum pignistic probability rule. (Btrain is not used in this case) 

(3). In order to make a decision, decisions obtained by three classifiers are then  

combined according to the majority vote method and the Dempster rule of combination 

method respectively. 

The correct classification rates of classifiers and two methods are respectively shown in Table 8. 

Table 8. Correct classification rates of classifiers and two methods. 

6.2.2. Implementation 

To implement different methods of evaluating the static discounting factor, the following steps are 

carried out: 

(1). By testing every classifier based on the dataset Btrain, we can use different confusion 

matrices for different classifiers, which will be used by some evaluation methods. 

Then the static discounting factors of different methods are computed. 

(2). For each object, based on the different static discounting factors and Equation (6), 

different BBAs are calculated by every classifier in the test set Btest. 

(3). Once the BBAs are obtained, the final results by the Dempster rule of combination can 

be computed according the formula:            
            . 

  

Data Yeast Glass Segment Waveform Pendigits Average 

Classifier 1 0.4615 0.6197 0.8558 0.6351 0.7268 0.6597 

Classifier 2 0.3664 0.6197 0.8636 0.7293 0.8401 0.6838 

Classifier 3 0.3968 0.6056 0.8896 0.6447 0.8352 0.6743 

Majority Vote 0.3725 0.7042 0.9104 0.7401 0.8799 0.7214 

Dempster (No Discounting) 0.4008 0.7183 0.9221 0.7923 0.9427 0.7552 
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(4). Thus the final object can be classified by the maximum pignistic probability rule. 

(5). Repeat step (2) until all the data in the test set are tested. 

We compare the performances of various methods by evaluating the static discounting factors. The 

classification results via five kinds of methods are shown in Table 9. We can see that, the accuracy 

rates of fusion methods are higher than those of three classifiers. Apparently, our static method can get 

better results than others, which proves that our method is effective. 

Table 9. Correct classification rates of five methods using static discounting factor. 

Data Yeast Glass Segment Waveform Pendigits Average 

Elouedi [6] 0.5304 0.7183 0.9351 0.7791 0.9539 0.7833 

Elouedi(Tf) [9] 0.4615 0.7183 0.9286 0.7809 0.9419 0.7662 

Yang [8] 0.5385 0.7183 0.9390 0.7815 0.9525 0.7859 

Guo [2] 0.4595 0.7183 0.9260 0.7809 0.9421 0.7653 

Our static method 0.5405 0.7324 0.9390 0.7809 0.9531 0.7892 

6.3. Comparison of Methods of Evaluating the Dynamic Discounting Factor 

We have three classifiers based on the dataset BBBAs. To implement different methods of evaluating 

the dynamic discounting factor, the following steps should be carried out (Btrain won’t be used in  

this case): 

(1). For every object, different BBAs are calculated by every classifier in the test set Btest, 

then the dynamic discounting factors of different methods are obtained. 

(2). For the same object, based on the different dynamic discounting factors and Equation (6), 

different BBAs are calculated again by every classifier. 

(3). Once the BBAs are obtained, the final results are gained by the Dempster rule  

of combination. 

(4). Thus the final object can be classified by using the maximum pignistic probability rule. 

(5). Repeat step (1) and (2) until all the data in the test set are tested. 

We compare the performances of several methods using the dynamic discounting factors. As shown 

in Table 10, our dynamic method is better than others. As explained in Section 1, the dynamic 

reliability is calculated in the test process without using the training sets, so the results of the dynamic 

reliability methods are slightly poor than those of the static reliability methods. 

Table 10. Correct classification rates of three methods using dynamic discounting factor. 

Data Yeast Glass Segment Waveform Pendigits Average 

Guo [2] 0.4352 0.7465 0.9338 0.7665 0.9301 0.7624 

Xu [12] 0.4352 0.7465 0.9338 0.7725 0.9432 0.7662 

Our dynamic method 0.4453 0.7465 0.9312 0.7773 0.9457 0.7692 

6.4. Comparison of Methods of Combining the Static and Dynamic Discounting Factors 

In order to compare the performances of different combination methods, a typical scenario has been 

designed, which is made up of a series of cases affected by the actual environment. A typical scenario 
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is designed as follows. A reconnaissance ship with three heterogeneous sensors on the sea carries out 

the task of reconnaissance. This kind of scenario may include visual camera (VIS), infrared camera 

(IR) and Radar. There might be many unexpected conditions for reconnaissance ship on the sea, which 

affect the performance of the sensor. Based on this assumption, we design four experiments. 

6.4.1. A Fixed Environmental Interference Leading to the Performance Degradation of One Sensor 

Since sea fog reduces visibility, the performance of the visual camera will decline. Then the dataset 

BBBAs is a reflection for the performance of the sensor. By adding a fixed uncertainty on output of one 

sensor, for example Gauss white noise, this situation is simulated very well. 

In our experiments we superimpose a fixed Gaussian white noise on the actual value of  

one classifier; whose standard deviation equals to two-thirds of actual value. The threshold in 

Equations (30–32) is Г1 = 0.3, Г2 = 0.4, Г3 = 0.5, Г4 = 0.6; and n is the number of training samples.  

We can observe the static weight changes of each classifier in the process of testing; and the correct 

classification rates of four methods: majority vote; Guo’s combination [2] (Guo’s static method and 

Guo’s dynamic method; pk = 0.5); our combination (Guo’s static method and Guo’s dynamic method); 

and our combination (our static method and our dynamic method); which are shown in Figure 6 in 

different datasets. Firstly; we can see that the static weight of the first classifier decreases faster than 

other classifiers; which indicates that our combination method can detect the performance degradation 

on the first classifier. Secondly; in the combination of same methods (Guo’s static method and Guo’s 

dynamic method); our combination method is better than Guo’s. In addition; our combination strategy 

has advantages on our methods than on Guo’s methods; which verifies the effectiveness of our static 

and dynamic method.  

Figure 6. Instant result of different methods in the whole test process on dataset glass (a) 

and pendigits (b).  

  

(a) (b) 

We conduct experiments with the changes of datasets and values of standard deviation in Figure 7. 

The correct classification rates are compared by different methods when the fixed standard deviation 

changes. We design the changes of standard deviation for Gauss white noise as follows: steps for 60, 

step length for 1/60 of the actual values. Each standard deviation corresponds to a test result in 

different datasets as shown in Figure 7. 
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Figure 7. Results of different methods on dataset yeast (a), glass (b), waveform (c), and 

pendigits (d) by adding the fixed Gaussian noise. 

  
(a) (b) 

  
(c) (d) 

It can be observed that, the recognition ability of the first classifier drops sharply because of  

the influence of uncertainty, while the performances of other two classifiers remain the same. 

Experimental results in several datasets prove that, our adaptive combination method (our static 

method and our dynamic method) is the best, our adaptive combination method (Guo’s static method 

and Guo’s dynamic method) lists proxime accessit, and Guo’s combination method (Guo’s static 

method and Guo’s dynamic method) is the third one. The results testify the finer capability of our 

static method, our dynamic method and our adaptive combination strategy. 

6.4.2. A Changing Environmental Interference Impacting the Performance Degradation of One Sensor 

A fixed environmental interference has been discussed before. However, the actual situation is not 

static and marine environment is influenced by many factors. For example, the fog at sea may thicken 

or be thin, which will affect VIS. The detection performance of radar is directly related to the intensity 

of the sea clutter. Then we do an experiment on the dataset BBBAs, by adding a change uncertainty on 

actual value of one sensor, such as Gauss white noise or random noise, those situations are simulated. 

This paper designs four typical noises as follows. The effect of several methods is shown in Figure 8. 
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Figure 8. Instant results of different methods in the whole test process on different 

conditions. Add a fixed Gaussian noise on classifier 1 (a), Add a Gaussian noise on 

classifier 1 increasingly in the whole testing process (b), Add a Gaussian noise on classifier 

1 increasingly to intermediate stage (c), Add a fixed random noise of uniform distribution 

on classifier 1 (d), Change partial labels of the targets of classifier 1 (e), Add a fixed 

Gaussian noise on all classifiers (f). 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

• Standard deviation of Gaussian noise adds fixedly in the whole testing process.(Figure 8a) 

• Standard deviation of Gaussian noise adds increasingly in the whole testing process.(Figure 8b) 

• Standard deviation of Gaussian noise adds increasingly until intermediate stage, and then the 

noise disappears in the remaining testing process. (Figure 8c) 

• Noise model changes according to a random noise of uniform distribution. (Figure 8d) 

We can see from Figure 8b, comparing with Figure 8a, that the static weight of the first classifier 

drops slower, but is still higher than other two classifiers, which reflects the increasing trend of the 
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uncertainty. Before the middle stage, the static weight of the first classifier in Figure 8c declines in 

accordance with its static weight in Figure 8b, which is logical. After the middle stage, due to the 

disappearance of noise, the static weight of the first classifier has a rising trend, whose value is close to 

other classifiers. It certifies that the combination mechanism adjusts the weight according to the 

performance change of the sensor. Hence, we change the noise model and obtain the classification 

result in Figure 8d. There is no big difference between two noise models, which also proves the 

applicability of our method. 

6.4.3. The Enemy’s False Goals Leading to the Wrong Recognition of One Sensor 

When a reconnaissance ship detects enemy targets on the sea, sometimes the enemy may release 

some fake targets, which will lead to the completely wrong identification of some sensors on ships. For 

example, the perfect stealth technology of enemy targets can mislead the radar. In this situation, we 

study and analyze the effect of adaptive combination method for static and dynamic discounting 

factors. By changing some labels of actual target for one sensor in the dataset BBBAs, we can simulate 

this situation substantially. By modifying the labels of a third of the targets, the results of several 

methods are obtained in Figure 8e. We find that our adaptive combination mechanism can deal with 

the changes of sensor performance caused by the enemy false target. 

6.4.4. The Enemy’s Intentional Interference Leading to the Performance Degradation of All Sensors 

When enemy targets find that this reconnaissance ship is detected nearby, the enemy targets often 

cause the performance degradation of all sensors, through the omnibearing interference. Under this 

kind of situation, the effect of combining method proposed in this paper is studied by comparing with 

other methods. In our experiment, we superimpose a fixed Gaussian white noise on the actual value of 

all classifiers, whose standard deviation is equal to two-thirds of actual value. The result is shown in 

Figure 8f. The change trend of static weight of all classifiers is consistent basically, and this 

corresponds with the intuitive logic. 

It is important to note that, classification results of the adaptive combination method are better than 

Guo’s combination method and the majority vote method in the above cases, which show the 

effectiveness and applicability of our methods (our static method, our dynamic method and our 

adaptive combination strategy). 

7. Conclusions 

In this paper, a new sensor reliability algorithm is present to correct the basic belief assignment 

from each sensor, which can improve the recognition accuracy and robustness of the fusion system. 

This paper mainly has two innovative aspects: 

First of all, an improved dissimilarity measure based on dualistic exponential function has been 

designed. This paper integrates the advantages of both BBM type and distance type dissimilarity 

measures. The improved measure method is more intuitive for people and overcomes the operational 

problem of the existing dualistic dissimilarity measure methods. On account of this point, we assess 

the static reliability from a training set by the local decision of each sensor and dissimilarity measure 
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between evidences. Meanwhile, the dynamic reliability factors are gained from every test target by the 

dissimilarity measure, which is between the output information of each sensor and the consensus. 

Secondly, based on the Parzen-window estimation and fuzzy theory, this paper introduces an 

adaptive method of combining static and dynamic discounting. The static weight of original method is 

determined beforehand by experts completely and cannot be changed with the actual environment. For 

solving this problem, we adopt the Parzen-window estimate to acquire the matching degree of the 

current performance for sensors and the static performance based on the training samples. Then, our 

implementation mechanism can be suitable for different kinds of target environment via three fuzzy 

variables, which shows the classification accuracy and the robustness of our methods by comparing 

with other methods. 

We have used only the evaluation methods of sensor reliability on the classical discounting. In 

future, we will combine the adaptive method with different discounting mechanisms, which may 

improve the performance of fusion system further. 
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