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Abstract: Accidental falls are the major cause of serious injuries in toddlers, with most of 

these falls happening at home. Instead of providing immediate fall detection based on 

short-term observations, this paper proposes an early-warning childcare system to monitor 

fall-prone behaviors of toddlers at home. Using 3D human skeleton tracking and floor 

plane detection based on depth images captured by a Kinect system, eight fall-prone 

behavioral modules of toddlers are developed and organized according to four essential 

criteria: posture, motion, balance, and altitude. The final fall risk assessment is generated 

by a multi-modal fusion using either a weighted mean thresholding or a support vector 

machine (SVM) classification. Optimizations are performed to determine local parameter 

in each module and global parameters of the multi-modal fusion. Experimental results 

show that the proposed system can assess fall risks and trigger alarms with an accuracy rate 

of 92% at a speed of 20 frames per second. 
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1. Introduction 

Toddlers are likely to fall because their heads are heavier in proportion to the rest of their bodies 

and they are still learning how to find their balance at this stage. According to Morrongiello’s  

study [1], falls are the most common cause of serious injury in toddlers. Moreover, toddlers and 
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preschoolers experience most fall injuries at home. Consequently, fall detection, prediction, and 

prevention to assist parents’ supervision become critical issues for toddler healthcare at home. 

Starting from a balanced state, a typical human fall usually involves the transition of a series of 

states: losing balance, impacting with objects or the floor, and finally lying down after the impact. In 

contrast to fall detection (detect after lying down) [2–7] and pre-impact detection (detect descending in 

just a few milliseconds before the first impact) [8–11], we propose an early-warning system to identify 

fall-prone behaviors, assess fall risks, and predict potential fall dangers in the relatively long-term 

future (a few seconds). It is extremely important to trigger an alarm early so toddlers are alerted to stop 

behaving dangerously and caregivers have time to intervene to avoid accidental falls. However, 

providing early-warning of fall risks poses significant computational difficulties and multi-modal 

fusion problems, particularly in the case of toddlers, who are relatively vivacious and energetic 

compared to adults. Moreover, making an accurate and quick decision is critical in a fall risk 

assessment system. Missed and late detections can lead to dangerous situations, and false alarms can 

cause users to lose trust in a system and ignore system alerts. 

Figure 1. Flowchart of the proposed fall risk assessment and early-warning system. 

 

Fall risks can be influenced by intrinsic, environmental, and behavioral factors. The intrinsic factors 

include individual health conditions and medical records. The environmental factors involve potential 

dangers found in a living space, such as a slippery floor, floor clutter, or furniture with sharp edges. 

The behavioral factors involve body postures or movements that may lead to falls. This paper  

focuses on the identification of these behavioral factors by monitoring the actions of toddlers using a 

Kinect [12] at home. Distinguishing fall-prone behaviors from other activities of daily life (ADL) 

accurately is the key issue in establishing an effective fall risk model. Particularly, four essential 

criteria (posture, motion, balance, and altitude) were applied to design eight fall-prone behavioral 

modules of toddlers. The final assessment was generated by a multi-modal fusion using either a 

weighted mean thresholding or a support vector machine (SVM) [13] classification. A local 
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optimization was applied to determine the parameter inside each module, and a global optimization 

was performed to determine the parameters for the multi-modal fusion. Figure 1 shows the hierarchical 

framework of the proposed fall risk assessment system for toddler behaviors at home. 

The remaining parts of this paper are organized as follows: Section 2 provides the literature review. 

Section 3 explains the fall risk assessments using various independent modules. Section 4 presents the 

local and global parameter optimizations and proposes two schemes for the multi-modal fusion of fall risks. 

Section 5 discusses the experimental setup and comparison results, and Section 6 offers a conclusion. 

2. Background 

Various wearable sensors, such as accelerometers and gyroscopes, have been proposed to detect 

elderly falls [2,3] for making automatic emergency calls. To reduce the severity of injury, a few 

approaches tried to detect a fall in its descending phase before the first impact [8,10,11]. With the 

capability of the pre-impact fall detection, a wearable airbag or inflatable device can be triggered to 

provide impact protection [9]. Table 1 compares various approaches using wearable inertial sensors for 

fall and pre-impact detections. Approaches using a tri-axis accelerometer [2,8] can measure 

magnitudes and directions of 3D vibrations. The bias caused by the gravity can be cancelled by a 

calibration process. Subsequently, a rough 3D translation can be approximated through double 

integrals of the measured accelerations. Approaches using a gyroscope [3] were capable of measuring 

angular velocity that can be further aggregated to obtain an angular displacement through a single 

integral. Combining the individual characteristics of the accelerometers and gyroscopes in an inertial 

measurement unit (IMU), the latest hybrid approaches [9–11] can detect falls or pre-impacts more reliably. 

However, the requirement of wearing the equipment was intrusive and increased the fall risk itself. 

Table 1. Comparison of various wearable sensors for fall and pre-impact detection. 

Methods [2] [8] [3] [9] [10] [11] 

Hardware Accelerometer Gyroscope Accelerometer + Gyroscope 

Detection stage Fall Pre-impact Fall Pre-impact Pre-impact Pre-impact 
Targets Elder Elder Elder Elder Elder Elder 

Algorithm 
Vertical 

angle 
HMM + 

SVM 

Angular velocity + 
Acceleration + 

trunk angle 
SVM 

Vertical 
velocity 

Thigh + 
Torso 

angular data 
Intrusion Yes Yes Yes Yes Yes Yes 
Tracking No No No No No No 

Shadow handling Yes Yes Yes Yes Yes Yes 

In contrast, cameras installed at home can provide a non-intrusive way for fall detection. Table 2 

compares fall detectors using different types of cameras including infrared cameras, color cameras, 

depth cameras, and Kinects. For methods using infrared cameras, Sixsmith and Johnson [4] developed 

an intelligent fall detector, called SIMBAD, based on neural networks and a low-cost array of infrared 

detectors. Tao et al. [5] utilized an infrared ceiling sensor network and SVM to recognize eight 

activities including walking, tidying, watching, reading, taking, using PC, lying, and sweeping. For 

methods using a typical color camera, Rougier et al. [6] detected simulated falls of seniors based on 
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motion history images (MHI) and human shape variations. Na et al. [14] presented a vision-based 

toddler tracking system that performed regional merges and splits to handle partial visual occlusions. 

Fall risk factors were identified by detecting floor clutter and checking if a toddler moved near or 

leaving the floor area boundary. Apart from fall detections, Nomori et al. [15] trained an infant 

climbing control model by putting a set of rectangular parallelepipeds with various sizes in the daily 

living space. 

Table 2. Comparison of fall detection approaches using distinct kinds of cameras. 

Methods [4] [5] [14] [15] [6] [16] [7] [17] This work 

Hardware Infrared Camera Color Camera Depth Camera Kinect 

Detection Stage Fall Fall 
Track 

off floor 

Behavior 

modeling 
Fall Fall Fall 

Get-up 

event 

Early-

warning 

Targets Elder Elder Toddler Infant Elder Elder Elder Patient Toddler 

Algorithm 
Neural 

network 
SVM 

Optical 

flow 

Bayesian 

network 

MHI + 

Shape 

change 

MBR ratio + 

Velocity + 

Depth variation 

Skeleton 

+ Floor 

MHI + 

HOG + 

HOF 

Skeleton + 

SVM + 

Floor 

Intrusion No No No No No No No No No 

Tracking Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Shadow handling Yes Yes No No No Yes Yes Yes Yes 

For methods using a depth camera, Lee and Chung [16] exploited depth information for fall 

detections based on the analysis of shape features and 3D trajectories. Because the depth information was 

invariant to the existence of shadow, the problem of shadow removal was also addressed. Diraco et al. [7] 

proposed an elderly fall detection system based on an active depth camera. After a self-calibration 

process, a floor plane was detected and a human skeleton was extracted to recognize four postures: 

lying, sitting, standing, and bending. For methods using a Kinect, Ni et al. [17] presented a get-up 

event detector to prevent potential falls in hospitals based on RGBD images captured by a Kinect. 

Features of MHI, histogram of oriented gradients (HOG), and histogram of optic flows (HOF) were 

extracted and combined through a multiple kernel learning. Except for fall detections, Mozos et al. [18] 

utilized a mobile robot equipped with a Kinect to categorize indoor places including corridor, kitchen, 

laboratory, study room, and office. Unlike these methods, we proposed an early-warning childcare 

system to assess fall risks by monitoring eight fall-prone behaviors of toddlers using a Kinect at home. 

A multi-modal fusion was carried out to integrate fall risk measurements from eight behavioral 

modules in four distinct criteria for the alarm triggering. 

3. Fall Risk Assessments for Four Distinct Modules 

To model toddler behaviors in daily life at home, 160 video clips (each clip being 3 s in duration) 

containing normal ADL or fall-prone actions were captured. To acquire the ground truths of fall risks, 

each video was evaluated by a childcare expert using the questionnaire in Table 3. Based on manual 

categorization, Table 4 showed five typical safe and another five typical fall-risky types of toddler’s 

behaviors. For each type of behavior, the childcare expert identified the criteria that were useful to 

classify the behavior type as safe or fall-risky, for example, upright posture and good balance were 
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useful criteria to classify “jumping rope” as safe; high motion and high altitude were useful criteria to 

classify “high-jumping” as fall-risky. The analysis of these toddler behaviors was helpful in identifying 

the essential criteria (posture, motion, balance, and altitude) for fall risk assessments. 

Table 3. Questionnaire completed by a childcare expert to determine the ground truths of 

fall risks in each video. 

very safe ← …← …← …← not sure → …→ … → … → very fall-risky 

p = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 p = 1 

Table 4. Various behaviors in daily life of a toddler at home. The last row indicates the 

criteria that are useful to classify each behavior as fall-risky or safe. 

Classification Safe Fall-risky 

Behaviors of 

toddlers in 

daily life 

sitting 

on floor 

or chair 

standing 

on floor 

walking, 

strolling 

jumping 

rope 

dancing, 

hula 

hooping 

rush 

running 

high 

jumping 

tumbling, 

crawling 

climbing 

table or 

stair 

standing 

on chair 

or table 

1. Posture sit upright upright upright upright upright upright varying climb upright 

2. Motion low low medium medium medium high high medium medium low 

3. Balance lean good good good lean lean good 
lean + 

sway 

lean + 

sway 
good 

4. Altitude low low low medium low low high low high high 

Criteria 124 1234 134 13 14 23 24 13 134 4 

Figure 2. Names and locations of the twenty skeletal joints in a Kinect [12]. Blue line 

segments represent the set of bones used for body height estimation. 

 

Depth imaging technology has advanced dramatically over the last few years. The latest consumer 

market depth camera, Kinect, was proven practical in various applications. The proposed toddler fall 
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risk assessment system employed the Kinect which captured both color and depth images at thirty 

frames per second with 640 × 480 resolution. A pixel in a depth image indicated the calibrated depth 

of a 3D point in the scene. Each depth image was segmented into a dense probabilistic body part 

labeling by dividing a human body into thirty-one parts [19]. The body parts were defined to be 

spatially localized near twenty skeletal joints, hence the 3D locations of the skeletal joints can be 

determined by back-projecting these inferred parts into a world space. As shown in Figure 2, a 

complete skeleton was recorded in a sixty-dimensional vector containing 3D coordinates of twenty 

skeletal joints. A stream of the skeletal vectors over time was taken as the input data for fall risk 

assessment in multiple criteria: posture, motion, balance, and altitude. 

3.1. Posture 

Static human postures provide important clues for fall risks and can be recognized without using 

temporal information. In particular, we focused on recognizing the most fall-prone posture: the 

climbing. SVM is widely used to recognize static patterns by using a supervised learning. A nonlinear 

SVM can transform the input space to a higher dimensional space and construct a hyperplane to 

separate two classes in the transformed space. As shown in Figure 3, climbing postures can be divided 

to two kinds: the push-up climb (pushing a lower object by hands to raise the human body) and the 

pull-up climb (pulling a higher object by hands to raise the human body). Two kinds of climbing 

postures significantly differed in nature, so they were separately modeled by distinct SVMs. In our 

experiments, ninety frames with push-up climb postures, ninety frames with pull-up climb postures, 

and ninety frames with other postures were used to train two SVMs of the push-up climb and the  

pull-up climb individually. 

Figure 3. Posture module (a) push-up climb and (b) pull-up climb. 

(a) (b) 

To handle the scaling problem, a standard normalization was performed on the stream of skeletal 

vectors by subtracting the mean and then dividing by the standard deviation in each feature dimension. 

For the j-th frame in the training set with l frames (l = 90 in this case), a sixty-dimensional vector xj 

contained the 3D coordinates of twenty skeletal joints and a Boolean flag yj indicated the ground truth 

of whether the frame contained a climbing posture: 
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1       , if -th frame contains a climbing posture

1                                                      , otherwisej

j
y

+
= −

 (1)

Given a set of labeled pairs (xj, yj), the SVM became an optimization problem to find a separating 

hyperplane with the maximum margin. The margins of the hyperplane can be described by the 

following equations: 

1  if  1

1  if  1
j j

j j

w x b y

w x b y

⋅ − ≥ + = +
 ⋅ − ≤ − = −

 (2)

The search of the parameters (w, b) of the optimal hyperplane can be represented by a quadratic 

programming optimization: 

2

( , )

1
min   subject to   ( ) 1

2 j jw b
w y w x b⋅ − ≥  (3)

The Karush-Kuhn-Tucker condition implied that the solution can be expressed as a linear 

combination of the training vectors, i.e., 
1

n

j j j
j

w y xα
=

=  where αj were positive real numbers that 

maximize the following terms: 

( )
1 ( , ) 1

1
max  ( , )     subject to   0 and 0

2j

n n

j j k j k j k j j j
j j k j

y y K x x y
α

α α α α α
= =

 
− ≥ = 

 
    (4)

The training vectors xj were transformed into a higher dimensional space by a kernel function K. 

The effectiveness of SVM depended on the selection of the kernel. After experimenting a linear kernel 

and various nonlinear kernels, we found that the quadratic polynomial provided the most accurate 

classification of the climbing posture: 
2( , ) ( 1)j k j kK x x x x= +  (5)

The final decision function was 
1

( ) ( ( , ) )
n

j j j
j

f x sign y K x x bα
=

= − , i.e., if the decision function f(x) 

returned a positive value, the frame with skeletal feature x was classified as a climbing posture; 

otherwise, it was classified as a non-climbing posture. 

Furthermore, a performance-based method was applied for feature reduction in the training stage of 

SVM. If removing a feature improved the overall accuracy rate of cross-validation, the feature was 

considered redundant; if removing a feature degraded the overall accuracy rate of cross-validation, the 

feature was considered important. An iterative procedure was performed to improve the accuracy rate 

by removing one redundant feature at a time until no feature could be removed without a loss of 

accuracy. We found that the accuracy rate can be improved (from 88% to 90%) with a reduced set of 

features (from 60 to 55) in the SVM classification of the climbing posture. 

In addition to the posture classifications, a confidence measure of each classification was required 

for fall risk assessment. According to Platt’s work [20], a signed distance d between a feature point and 

the SVM’s hyperplane can be used as the confidence measure of the classification. The bigger the 

positive distance d was, the more probable the person was in a climbing state, and the higher the fall 
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risk should be. Thus, the fall risk related to the push-up climbing state p (push_up_climb) was 

calculated as: 
2

1/1   ,  if 0
( _ _ )

0             ,  otherwise

de d
p push up climb

α− − >= 


 (6)

Similarly, the fall risk based on the pull-up climbing state p(pull_up_climb) was evaluated as: 
2

2/1   ,  if 0
( _ _ )

0             ,  otherwise

de d
p pull up climb

α− − >= 


 (7)

Besides, a posture of sitting was trained and classified using a SVM in the same manner. As shown 

in Figure 1, the classification result of the sitting posture did not directly contribute to the fall risk but 

was employed to trigger a seated mode that disabled the body sway and foot altitude modules as 

described later in Sections 3.3 and 3.4. 

3.2. Motion 

Human motion analysis plays an essential role in fall predictions. Though it is impossible to 

completely stop toddlers from running and jumping, toddlers can easily trip on objects left on the floor 

when they run too fast of jump too high. We proposed to detect dangerous motions such as  

rush-running and high-jumping by considering temporal information. Hidden Markov Model  

(HMM) [21] is well-known for applications in dynamic pattern recognition. However, a typical HMM 

contains a large number of parameters that need to be trained using a big amount of sample videos. As 

an alternative, statistics of kinematic parameters of human body motion were analyzed. After 

comparing several simple dynamic features such as mean and variance of velocity and acceleration, we 

found that the mean of the floor plane projected body velocity and variance of the vertical coordinate 

of the body centroid were the dominating features that can well distinct rush-running and high-jumping 

from other ADL. 

A skeletal centroid was defined as the 3D mean location of the distribution of the body mass in 3D 

space, and can be approximated by computing the center of mass of the nineteen bones in the skeleton. 

A 3D floor plane was detected by the Random Sample Consensus (RANSAC) [22] algorithm based on 

the depth image. Supposing that the 3D skeletal centroid projected onto the 3D point Pc on the floor 

plane as shown in Figure 4a, a 3D ground-projected velocity Vc, or called motion vector, can be 

obtained by a temporal subtraction of two ground-projected centroids in 3D between consecutive 

frames. The bigger the magnitude of the ground-projected velocity ǁVcǁ was, the more probable the 

person was in a running state, and the higher the fall risk should be. Accordingly, the fall risk related to 

the rush-running state p(run) was measured as: 
2

3/( ) 1 cVp run e α−= −  (8)

Similarly, a temporal variance σ2 of the vertical coordinate of the 3D skeletal centroid can be 

measured across a sliding window of frames. As shown in Figure 4b, the bigger the temporal variance 

σ2 of the 3D centroid’s y-coordinate was, the more probable the person was in a jumping state, and the 
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higher the fall risk should be. Thus, the fall risk based on the high-jumping state p(jump) was  

estimated as: 
2

4/( ) 1p jump e σ α−= −  (9)

Figure 4. Motion module (a) rush-running and (b) high jumping. 

(a) (b) 

3.3. Balance 

Toddlers are still learning about balance, so imbalance features provide important signs of fall 

dangers. Fall risks can be assessed as the level of sway and lean of the human body. The body sway 

referred to the body movements made by an individual to maintain a balanced position, and was 

measured by the displacement between the ground-projected body centroid and the base of support on 

the floor plane. As shown in Figure 5a, the longer the distance between the body centroid projection 

and the base of support was, the higher the fall risk should be. Supposing that the skeletal joint 

FOOT_LEFT projected onto the floor plane point with coordinate (xl, zl) and the skeletal joint 

FOOT_RIGHT projected onto the floor plane point with coordinate (xr, zr), a 2D base-of-support line L 

on the floor plane representing the base of support was defined using the following equation: (ݔ௥ − ݖ(௟ݔ − ௥ݖ) − ݔ(௟ݖ + ௥ݖ) − ௟ݔ(௟ݖ − ௥ݔ) − ௟ݖ(௟ݔ = 0 (10)

Supposing that the skeletal centroid projected onto the floor plane point Pc with coordinate (xc, zc), 

the distance from the point P to the base-of-support line L was computed using the following equation: ݀( ௖ܲ, (ܮ = ௥ݖ)−| − ௖ݔ(௟ݖ + ௥ݔ) − ௖ݖ(௟ݔ + ௥ݖ) − ௟ݔ(௟ݖ − ௥ݔ) − ௥ݖ)௟|ඥݖ(௟ݔ − ௟)ଶݖ + ௥ݔ) − ௟)ଶݔ  (11)

In case the ground projected coordinates Pf of both feet overlapped, the above point-to-line distance 
can be simplified to a point-to-point Euclidean distance ฮ ௖ܲ −	 ௙ܲฮ. With the availability of the sway 

distance d, the fall risk related to the body sway p(sway) was estimated as: 
2

5( , )/( ) 1 cd P Lp sway e α−= −  (12)

As a special case, when a toddler sat on a chair, the fall risk should not increase even if the  

ground-projected skeletal centroid was not located on the base-of-support line. Therefore, the body 

sway module was disabled if a sitting posture was detected by the SVM as described in Section 3.1. 
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Figure 5. Balance module (a) body sway and (b) body lean. 

(a) (b) 

In addition to the body sway, the body lean provides another important clue for the balancing. As 

shown in Figure 5b, the body lean was defined as the 3D angle between the body spine vector ݌ݏଓ݊݁ሬሬሬሬሬሬሬሬሬሬሬറ 
and the normal vector ሬ݊റ of the floor plane. The larger the angle between these two vectors was, the 

higher the fall risk should be. The spine vector was approximated by the 3D vector directing from the 

skeletal joint HEAP_CENTER to another skeletal joint SHOULDER_CENTER. Because the cosine of 

the angle θh between the body spine vector and the floor normal vector was equal to the normalized 

inner product of these two vectors, the fall risk based on the body lean p(lean) was computed as: 

2
6/

arccos( )

( ) 1 h

h

spine n

spine n

p lean e θ α

θ

−

⋅=
⋅

= −

 
 

 (13)

3.4. Altitude 

The key to prevent falls from a substantial height is to beware of the body altitude above the 

ground. The body altitude was defined as the distance from the lowest skeletal joint (usually the 

FOOT_LEFT or FOOT_RIGHT) to the floor plane. The higher the body altitude was, the higher the 

fall risk should be. The 3D floor plane F was estimated based on the depth image and defined in the  

following equation: ݔܣ + ݕܤ + ݖܥ + ܦ = 0  (14)

The cosine of the angle θk between the Kinect’s vertical axis (0,1,0)ሬሬሬሬሬሬሬሬሬሬሬሬሬറ and the floor normal vector (ܣ, ,ܤ  ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬറ was equal to the normalized inner product of these two vectors. The cos(θk) was used to(ܥ

perform the 3D scalar projection of the Kinect’s vertical displacement vector to the floor normal 

vector. Supposing that the 3D midpoint of the locations of the skeletal joints of two feet (skeletal joints 

FOOT_LEFT and FOOT_RIGHT) was Pf with coordinate (xf, yf, zf) as shown in Figure 6a, the distance 

from the point Pf to the floor plane F was computed using the following equation: 

(0,1,0) ( , , )
( , ) cos

( , , )
f f f f k f f f

A B C
d P F Ax By Cz D Ax By Cz D

A B C
θ ⋅= + + + ⋅ = + + + ⋅

 
  (15)
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Therefore, the fall risk related to the foot altitude p(foot_altitude) was estimated as: 

2
7( , )/( _ ) 1 fd P Fp foot altitude e α−= −  (16)

As a special case, when a toddler sat on a sofa, the fall risk should not increase even if the feet were 

above the floor. Therefore, the foot altitude module was disabled if a sitting posture was detected by 

the SVM as described in Section 3.1. 

In case the feet were visual occluded as shown in Figure 6b, the human head altitude was an 

alternative for the fall risk assessment. A human body height H was approximated by summing the 

lengths of a set of bones (as shown as the connected blue line segments in Figure 2) in the detected 

skeleton. Supposing that the detected person stood in a upright pose and the location of the skeletal 

joint HEAD was Ph with coordinate (xh, yh, zh), the distance from the lowest possible skeletal joint to 

the floor plane F was computed using the following equation: 

( , ) cosh h h h kd P F Ax By Cz D Hθ= + + + ⋅ −  (17)

Similarly, the fall risk based on the head altitude p(head_altitude) was measured as: 
2

8( , )/1   ,  if 0
( _ )

0                 ,  otherwise

hd P Fe d
p head altitude

α− − >= 


 (18)

Figure 6. Altitude module (a) foot altitude and (b) head altitude. 

(a) (b) 

4. Parameter Determination and Multi-Modal Fusion 

The determination of parameters was critical to the accuracy of the proposed fall risk assessment 

and alarm-triggering system. A local optimization was applied to determine the parameter α inside 

each individual module, and a global optimization was performed to determine the parameters in the  

multi-modal fusion. Figure 7 shows the sigmoid curves describing the relationships between the fall 

risk p(d) and the distance d regarding different values of the local parameter α. For each module, 

twenty video clips (3 s in each clip, 1,800 frames in total) containing normal ADL or corresponding 

fall-prone actions (such as run, jump, body sway, foot and head altitude) to various extents were 

captured. To acquire the ground truths of fall risks, each video was evaluated by a childcare expert 

using the questionnaire in Table 3. The local parameter αi in the i-th module was determined by fitting 
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the twenty temporal means of the estimated fall risks (1 − ݁ିௗ೔మ/ఈ) to the ground truth fall risks (pi) 

according to the method of least squares. The fitting problem can be expressed as an over-determined 

system with a set of linear equations: 

2
,1 ,1

2
,2 ,2

2
,20 ,20

ln(1 )

ln(1 )

: :

ln(1 )

i i

i i
i

i i

p d

p d

p d

α

− −   
  − −    ⋅ =   
  − −     

 (19)

Accordingly, the local parameter αi for the i-th module was chosen as the one that minimizes the 

sum of squared differences between the measured fall risks and their corresponding ground truths. 

Figure 7. Relationship between the distance d and its fall risk p(d) with respect to different 

values of parameter α. 

 

The overall fall risk was measured by integrating the measured fall risks from all modules. The goal 

of the multi-modal fusion was to increase precision and enhance reliability based on redundant 

information gathered from multiple modules [23]. If a module was disabled or failed to locate the 

required skeletal parts, its fall risk was set to zero. To train the global parameters in the multi-modal 

fusion, a Kinect captured 200 video clips (about 18,000 color and depth frames) of which half were 

used for training (training set) and the other half were used for testing (testing set). Each video lasted 

about three seconds and contained a toddler performing a normal ADL, a distinct fall-prone action, or 

a random combination of actions (such as simultaneously swaying and jumping, or climbing at an 

altitude) at home. To obtain the ground truths of fall risks pGT, each video clip was evaluated by a 

childcare expert using the questionnaire in Table 3. The input vector of the multi-modal fusion 

contained the temporal means of the estimated fall risks from n behavioral modules: {p1, p2,…, pn}  

(n = 8 in our case). The output of the multi-modal fusion was a Boolean decision of whether to trigger 

an alarm or not. The multi-modal fusion can be made using either one of the following two approaches. 
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4.1. Thresholding the Weighted Mean of the Estimated Fall Risks from All Modules 

Supposing that the fall risks from n modules were sorted in a descending ordered list {p(1), p(2),…, 

p(n)} in that p(1) was the maximal fall risk and p(n) was the minimal fall risk, an intuitive multi-modal 

fusion was just to take the maximum or the mean of the fall risks among all modules. A more 

sophisticated choice was to take a weighted average in that the modules with higher fall risks received 

bigger weights. All these choices can be generalized in the following equation: 

1
(1) ( )

2

1
(1 β) (β β )      ,     0 β 1

1 β

n
i i

overall in
i

p p p −

=

 = ⋅ − + ⋅ − ≤ < −  
  (20)

The parameter β controls the rate of diminishing weights. Figure 8 shows the curves describing the 

relationships between the ranks in the ordered list and their weights regarding different values of the 

parameter β. 

Figure 8. Relationship between the rank in the ordered list and its weight with respect to 

different values of parameter β. 

 

If the parameter β was set to zero, the overall fall risk was equal to the maximal fall risk p(1). If the 

parameter β was set to 0.5, the overall fall risk was close to p(1)/2 + p(2)/4 + p(3)/8 + … + p(n)/2
n. If the 

parameter β approached one, the overall fall risk approximated the mean of the fall risks from all 

modules, i.e., (p(1) + p(2) + p(3) + … + p(n))/n. The parameter β were determined by fitting the estimated 

overall fall risks poverall to the ground truths of fall risks pGT using a recursive one-dimensional  

grid-based search to minimize the fitting errors over the training set of video clips. Finally, a  

simple thresholding was employed to make the final Boolean decision of the alarm triggering. The 

parameter T controlled the sensibility of the system and can be adaptively adjusted by users (T = 0.5 in 

our experiments): 
1       , if 

_
0       ,    

overallp T
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>
= 

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4.2. Classification by SVM Based On the Estimated Fall Risks from All Modules 

The multi-modal fusion of fall risks for the alarm triggering can also be formalized as a  

multi-dimensional classification by using a SVM. For the j-th video clip in the training set with l video 

clips (l = 100 in this case), a n-dimensional vector xj contained the estimated fall risks from n modules: 

{p1, p2,…, pn} (n = 8 in our case) and a Boolean flag yj indicated the decision of the alarm triggering 

based on the ground truth fall risk pGT:  

1       , if 

1       , 
GT

j

p T
y

otherwise

+ >
= −

 (22)

The parameter T controls the sensibility of the system and can be adaptively adjusted by users  

(T = 0.5 in our experiments). Given a set of labeled pairs (xj, yj), the SVM became an optimization 

problem to find an optimal separating hyperplane with maximum margins. The training vectors xi were 

transformed into a higher dimensional space by the kernel function K. After experimenting a linear 

kernel and various nonlinear kernels, we found that the radial basis function (RBF) provided the most 

accurate classification of the alarm triggering:  
2

( , ) exp( γ )j k j kK x x x x= − −  (23)

The penalty parameter C and RBF parameter γ were determined by a recursive two-dimensional 

grid-based search to maximize the cross-validation accuracy over the training set of video clips. The 

final Boolean decision of the alarm triggering was made by: 

1    , if ( ( ) ) is positive
_

0                               , otherwise

T
jw x b

Alarm triggering
φ +

= 


 (24)

5. Results and Discussion 

The computational platform of the proposed fall risk assessment and early-warning system was a 

PC equipped with a 3.4 GHz Intel Core i7 CPU and the 64-bit Windows 7 operating system. The 

program was coded in C language utilizing the Kinect SDK, LIBSVM [24], and OpenCV [25] library. 

The performance of the proposed fall risk assessment system was evaluated based on the 

aforementioned testing set of 100 video clips captured by a Kinect at home, composed of more than 

9000 color and depth frames. Among those, 50 video clips contained various arranged scenarios with 

different fall-prone actions, and 50 video clips contained normal ADL in home environments. 

This paper focused on the identification of behavioral factors instead of environmental factors. 

However, effort was made to protect the toddler during our experiments. A thick carpet or blanket was 

laid on the floor when necessary. Sharp edges on furniture were covered by silicon corner protectors. 

A soft pad was installed on top of the table. Cushions or pillows were placed over all spots at risk for 

potential collisions. Moreover, two adults stood by either side of the toddler for immediate response to 

any possible slips. Because our goal was to develop an early-warning system for fall risk assessment, 

no real falls happened during our experiments. 
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After the local parameter optimization based on the method of least squares, the fitted sigmoid 

curve in each individual fall-prone behavioral module was shown in Figure 9. Twenty training data for 

the curve fitting were marked as red dots in each sub-figure. Specifically, the determined value of the 

local parameters α for these modules were 0.167, 0.168, 0.009, 0.017, 0.008, 0.115, 0.217, and 0.214 

respectively, with average errors of 0.065, 0.058, 0.036, 0.039, 0.048, 0.044, 0.037, and 0.044 

respectively. The modelling error of the module of push-up climb was relatively high (ε = 0.065) 

because it tended to be confused with other normal ADL. 

Figure 9. Least square error optimization to determine the local parameter α in each 

module. (a) push-up climb; (b) pull-up climb; (c) rush-running; (d) high-jumping; (e) body 

sway; (f) body lean; (g) foot altitude; and (h) head altitude. 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

The global parameters in the multi-modal fusion were optimized based on the aforementioned 

training set of 100 video clips. For the first multi-modal fusion scheme of the weighted mean 

thresholding, Figure 10a plots the 1D grid-based search that determined the best value of the 

diminishing parameter (β = 0.14) with the minimal modelling error (ε = 0.117). Besides, it was noted 

that taking the maximum (β = 0, ε = 0.133) was much better than taking the mean (β = 0.99, ε = 0.339) 

in the multi-modal fusion. For the second multi-modal fusion scheme of the SVM classification, 

Figure 10b shows the 2D grid-based search that discovered the values of the SVM’s parameters  

(C = 2 and γ = 0.5) with the maximal cross-validation accuracy. The grid-based search was an iterative 

algorithm that tried to find out better parameters with higher cross-validation accuracy in each 

iteration. Each color contour in the figure represented the range of parameters with the same  

cross-validation accuracy in a single iteration. 
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Figure 10. Global parameter determination based on a recursive grid-based search.  

(a) diminishing parameter β; and (b) SVM’s parameters: C and gamma γ. 

(a) (b) 

All fall-prone video clips manually marked by a childcare expert (ground truth fall risk pGT > 0.5 in 

our experiments) were called positive samples (P), and all other video clips were called negative 

samples (N). The true positive (TP) was defined as the number of triggered alarms in positive samples, 

the false positive (FP or false alarm) was defined as the number of triggered alarms in negative 

samples, the false negative (FN or miss-detections) was defined as the number of positive samples that 

did not trigger alarms, and the true negative (TN) was defined as the number of negative samples that 

did not trigger alarms. Accordingly, the accuracy rate was measured as (TP + TN)/(P + N). Table 5 

showed the confusion matrices of the proposed early-warning system with the multi-modal fusion 

using either a weighted mean thresholding or a SVM classification. In summary, the former scheme 

(weighted mean thresholding) achieved an accuracy rate of 92%, and the latter scheme (SVM 

classification) achieved an accuracy rate of 91%. A closer look at the mistakes of the alarm triggering 

revealed that most false alarms resulted from the localization errors of the skeletal parts, and most 

miss-detections were caused by the failures of the skeletal tracking. 

Table 5. Confusion matrices of the alarm triggering based on the fall risk assessments of 

toddlers. (a) first proposed scheme: weighted mean thresholding; (b) second proposed 

scheme: SVM classification; and (c) Na’s method [14]. 

GT Decision Positive Negative  GT Decision Positive Negative  GT Decision Positive Negative 

positive 46 5  positive 47 5  positive 16 1 

negative 4 45  negative 3 45  negative 34 49 

 (a)    (b)    (c)  

A true positive rate (TPR) was defined as the number of true positives (TP) divided by the number 

of positive samples (P). A false positive rate (FPR) was defined as the number of false positives (FP) 

divided by the number of negative samples (N). Figure 11 shows the receiver operating characteristic 

(ROC) curve of the proposed early-warning system using the multi-modal fusion of the weighted mean 
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thresholding. To balance the trade-off between the TPR and FPR based on the ROC curve, the 

threshold T was set to 0.5, achieving a TPR of 94% and a FPR of 10%. 

Figure 11. ROC curve of the proposed early-warning system. 

 

As far as we know, the proposed system is the first early-warning and fall risk assessment system 

for toddlers using a Kinect at home. The closest method with a similar goal was Na’s work [14] which 

tracked a toddler using region splitting and merging based on color images captured by a webcam. 

Subsequently, they examined whether the lowest part of the human contour was on, near or leaving the 

floor area boundary to identify fall risks. For comparison purposes, we implemented their algorithms 

and performed evaluations using our testing set of video clips. To focus on the behavioral factors, the 

ground clutter detection was not implemented in both systems. Compared with their system, which had 

an accuracy rate of 65%, the proposed system has an accuracy rate of 92%, making it much more 

reliable. Table 5 compared the confusion matrices of the proposed early-warning system with Na’s 

work. To compare the robustness of the proposed system with Na’s work in more challenging 

conditions, 50 video clips were captured with self-occlusions and partial occlusions. Among those,  

25 video clips contained various arranged scenarios with different fall-prone actions, and 25 video 

clips contained normal ADL in home environments. The accuracy rate was 84% using the proposed 

system, compared to 62% using Na’s algorithm. The improvement in terms of accuracy rate resulted 

mainly from two factors. First, their method computed 2D optical flows solely based on color images, 

whereas our method considered 3D skeletal features with the availability of the Kinect’s depth images. 

Second, they considered only the relationship between the toddler’s lowest body part and the floor area 

boundary, whereas we utilized eight fall-prone toddler’s behavior modules based on four criteria: 

posture, motion, balance, and altitude. 

For simplicity, our experiments considered a single toddler in the Kinect’s field of view and tracked 

only one skeleton at a time. With minor modifications, the proposed system can track up to two 

toddlers simultaneously and assess the fall risks individually. However, a profile of the execution  

time showed that the body skeleton tracking took up a major portion of the CPU time and was the 
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bottleneck of the proposed system. Generally, the proposed system run at 20 frames per second (FPS) 

for a single skeleton, and 13 FPS for two skeletons. 

The field of view (FOV) of a Kinect is 43° vertically and 57° horizontally. Kinect is also equipped 

with a built-in motorized platform that can be programmed with a vertical tilt range of ±27° to extend 

the vertical FOV dynamically. To further extend the viewing perspectives, the Kinect SDK supports up 

to four Kinects simultaneously connected to a single computer. Nevertheless, the infrared light patterns 

emitted by multiple Kinects can interfere with each other and reduce the accuracy of skeletal tracking. 

Moreover, the computation loads of the tracking of multiple skeletons can also slow down the 

execution speed. The Kinect’s specifications show that the optimal distance between a Kinect and its 

target is about 0.8–4.0 m, and the possible working distance is about 0.4–8.0 m. Our experiences 

during the experiments indicated that the Kinect skeleton tracking was reliable in a 3D frustum with a 

size of about 4 m (x-axis) × 3 m (y-axis) × 3 m (z-axis). By choosing a proper installation position and 

angle, a single Kinect should be able to cover the playing area in a small living room or a typical kid’s 

room for most families. 

There are two kinds of occlusions. First, the self-occlusion (some body parts were hidden from the 

viewpoint of the camera) was handled by the Kinect SDK of the skeleton tracking. Because the depth 

information was missing at the hidden parts, the Kinect SDK used a learner discriminative approach to 

handle the self-occlusions [19]. Temporal and kinematic coherence can also be incorporated to infer 

the locations of the missing parts. Obdrzalek et al. [26] have reported the accuracy and robustness of 

the Kinect’s skeleton tracking with respect to self-occlusions. Second, partial occlusions happened 

when some body parts were occluded by closer objects, such as furniture. We concentrated on 

handling the partial occlusions that usually happened on the human lower body, as shown in Figure 12. 

The Kinect skeleton tracking provided a special tracking mode (called seated mode) that focused on 

the tracking of the human upper body. Compared to the default mode that tracked twenty joints, the 

seated mode tracked only ten joints on the upper body and was optimized to track people whose lower 

body was not entirely visible, or who were seated on a chair or couch. Our system switched between 

these two tracking modes automatically by analyzing the skeleton area in the depth images to detect 

occlusions. The depth values in the skeleton area were summed together along the x axis to generate a 

horizontal projection profile. If the average depth of the lower body was reduced suddenly (as shown 

in Figure 12b), it indicated that the lower body was occluded and the skeleton tracking system 

switched to the seated mode to concentrate on tracking the upper body (as shown in Figure 12c). 

Conversely, if the average depth of the lower body returned to the original range that was similar to the 

depth of the upper body, it indicated a leaving of occlusion state and the skeleton tracking system 

switched to the default mode to track the complete body (as shown in Figure 12d). Switching between 

these two modes prevented drift-over-time errors of the skeleton tracking in scenarios with lower body 

occlusions. However, the body sway and foot altitude modules were disabled in the seated mode (as 

shown in Figure 1) and the accuracy rate of the alarm triggering degraded in situations with lasting 

occlusions (from 92% to 84% in our experiments). 
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Figure 12. Partial occlusion on the human lower body. (a) before occlusion; (b) entering 

occlusion: default mode; (c) under occlusion: seated mode; (d) leaving occlusion. And  

(e)–(h) respective depth images. The average depth values in the dashed rectangle (for the 

upper body) and in the solid rectangle (for the lower body) were compared. 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

6. Conclusions 

We proposed an early-warning fall assessment system for toddler healthcare at home. Depth images 

captured by a Kinect system were analyzed to locate 3D human skeletal joints and estimate a floor 

normal vector. Subsequently, eight fall-prone behavioral modules were designed for fall risk 

assessments based on four essential criteria: posture, motion, balance, and altitude. Fall risks measured 

by all modules were integrated using a multi-modal fusion based on either a weighted mean 

thresholding or a SVM classification. Both local and global parameters were trained by a set of video 

clips, and the proposed fall assessment system was tested by another set of video clips. Experimental 

results demonstrated that the fusion by the weighted mean achieved an accuracy rate of 92%, and 

fusion by SVM achieved an accuracy rate of 91%. The frame rate of the proposed early-warning 

childcare system was around 20 FPS. 

The limitation of the proposed work is three-fold. First, current Kinect’s skeleton tracking failed to 

handle some irregular body poses such as lying or upside-down. Second, despite the supports of up to 

four Kinects simultaneously connected to a single computer, the issues of infrared interference, 

calibration, synchronization, computation load, and gallery guarding remain to be solved in the future. 

Third, even though it was possible to track up to two toddlers at a time, their fall risks were assessed 

independently without considering the interaction between them. In the future, we propose to explore 

the possibilities of developing more fall-prone behavioral modules by taking toddlers’ interactions  

into account. 
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