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Abstract: Infectious diseases such as pneumonia take the lives of millions of children in
low- and middle-income countries every year. Many of these deaths could be prevented
with the availability of robust and low-cost diagnostic tools using integrated sensor
technology. Pulse oximetry in particular, offers a unique non-invasive and specific test for
an increase in the severity of many infectious diseases such as pneumonia. If pulse
oximetry could be delivered on widely available mobile phones, it could become a
compelling solution to global health challenges. Many lives could be saved if this
technology was disseminated effectively in the affected regions of the world to rescue
patients from the fatal consequences of these infectious diseases. We describe the
implementation of such an oximeter that interfaces a conventional clinical oximeter finger
sensor with a smartphone through the headset jack audio interface, and present a
simulator-based systematic verification system to be used for automated validation of the
sensor interface on different smartphones and media players. An excellent agreement was
found between the simulator and the audio oximeter for both oxygen saturation and heart
rate over a wide range of optical transmission levels on 4th and 5th generations of the iPod
Touch™ and iPhone™ devices.
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1. Introduction

Every year, millions of young children die of common diseases such as pneumonia and diarrhea [1],
in most cases due to the onset and progression of an inflammatory state of the body called sepsis.
Sepsis affects the ability of the lungs to transfer oxygen to the hemoglobin molecules in the blood,
which is essential for the function of cells in the body. A short interruption in the supply of oxygen
will impair cellular function, and a sustained interruption will rapidly cause cellular injury and
eventually death. Detection of reduced oxygen levels in the blood is therefore a key indicator of
patients requiring immediate intervention.

Pulse oximetry is a non-invasive optical sensing technology that is able to measure arterial oxygen
saturation. This technology has contributed significantly to reducing the risk of death associated with
anesthesia and surgery. The pulse oximeter has become a standard monitoring device in modern
hospitals [2,3], mandatory in North America, much of Europe and many other regions around the
world. However, there are still locations globally where pulse oximeters are not routinely used during
anesthesia, as they are not available, and an estimated 77,000 operating rooms worldwide are without
oximeters [4]. The World Health Organization (WHO) is addressing this shortfall through the Global
Oximetry (GO) initiative [5,6]. As a result, representatives of the Association of Anesthetists of Great
Britain and Ireland, the WFSA, and the Harvard School of Public Health, have created a charity called
the “Lifebox” to facilitate access to low-cost pulse oximeters suitable for use in anesthesia [7].
The Lifebox oximeter is supplied for US $250 and supported by international donations.

The pulse oximeter also has the potential to act as a diagnostic device in respiratory [8] and cardiac
diseases [9], as well as systemic diseases such as pre-eclampsia and sepsis that affect multiple body
systems including the lungs [10,11].

A pulse oximeter works by shining light from two Light Emitting Diodes (LEDs) at different
wavelengths, typically 660 nm (visible red) and 910 nm (near infrared), through the arterial blood of a
finger or an ear and detecting the transmitted light with a photodiode. Hemoglobin molecules with and
without oxygen attached have different optical absorption characteristics at these wavelengths, and the
oxygen saturation, SpO,, can be deduced from the ratio of the transmitted light at the two wavelengths.
SpO;, is the percentage of hemoglobin molecules that have oxygen attached compared to those that are
not bound to oxygen.

A healthy individual has an oxygen saturation level above 95%. A decrease below 95% is a strong
indicator of an oxygen delivery or consumption imbalance, for example caused by impeded gas
exchange in the lungs resulting from severe respiratory diseases like pneumonia and asthma [12-15] or
due to an increase in consumption as well as impeded gas exchange seen in other systemic
inflammatory and infectious diseases [10]. In this way, pulse oximetry can for example be used to
differentiate severe pneumonia from the common cold or other mild infections.

Pulse oximetry therefore has the potential of being a powerful tool in the prevention of childhood
mortality in low- and middle-income countries. Unfortunately, these areas of the world remain largely
without access to the technology. Part of the problem is that conventional pulse oximeters are
expensive and bulky devices intended for use in modern hospitals, and are unsuited for use in resource
low settings [16-18].
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In order to make pulse oximetry more available we have previously developed a so-called Phone
Oximeter [19], that interfaces a commercial microcontroller-based pulse oximeter module with a
smartphone. Phones are widely available even in the most remote areas [20], and have become a
cornerstone in developing economies and the livelihood of people everywhere. For example, Africa
has seen a tremendous growth in mobile phone usage in recent years, with 648.4 million mobile phone
subscriptions in 2011, more than in the United States or the European Union [21]. Furthermore,
the smartphone portion of the mobile market is set to surpass that of basic and feature phones, driven
mainly by the growth in the emerging markets [22].

Usability studies of the Phone Oximeter prototype previously undertaken both in Canada and
Uganda gave overall usability scores of 82% and 78% respectively, indicative that a phone can be a
functional oximeter interface [23]. The use of the phone as the display and power source of the pulse
oximeter can overcome some of the challenges of distributing the technology, but the microcontroller
oximeter modules are still prohibitively expensive. In this paper we describe the further development
of a low-cost smartphone-based oximeter that requires no intermediate microcontroller, interfacing the
sensor directly to the phone (Figure 1). By leveraging the full capabilities of the phone in this fashion,
the total cost of the new device is reduced to that of the finger probe itself, and all supporting
infrastructure is inherent to the host mobile phone. A clinical oximeter finger probe can be
manufactured for almost two orders of magnitude less than the price of the not-for-profit Lifebox
oximeter, thus potentially giving the Phone Oximeter significant global reach.

Any viable implementation of a clinical sensor that relies on consumer electronics must have
an effective way of verifying performance across different devices. We present an automatic
simulator-based test system that can be used to systematically examine the entire clinically relevant
range of operation of the low-cost smartphone oximeter and validate the system across many different
smartphone hardware versions.

Figure 1. Principle of the low-cost smartphone oximeter. An oximeter finger sensor with
two light emitting diodes and a photodiode is interfaced to a smartphone running a

software pulse oximeter application.
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2. Experimental Setup
2.1. Sensor Interface

A conventional oximeter sensor contains two LEDs for actuation and a photodiode for detection
(Figure 1). The audio interface of any phone or smartphone is well suited to drive such a sensor. The
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audio interface has a high-current output capable of driving the low impedance load of the LEDs and a
high-gain input designed to interface to a high-impedance Junction-gate Field Effect Transistor (JFET)
electret microphone pre-amplifier, equally suitable for amplifying the photodiode signal.

The sensor LEDs of the audio-based smartphone oximeter are driven directly by the speaker output of
the phone (Figure 2). The LEDs are wired in reverse polarity to facilitate alternating activation at
opposite polarities of a driving signal. With the peak-to-peak amplitude of the speaker output larger than
the forward voltage threshold of the LEDs, this can be accomplished by sending a suitable audio signal
to the speaker output. The forward voltage thresholds of the red and infrared diodes are approximately
1.3 and 1.8V, respectively. The Apple iOS family of mobile devices (iPhone, iPod Touch, iPad and iPad
Mini) was found to generate sufficient output voltages to perform clinical measurements.

The oximeter sensor photodiode was interfaced to the microphone pin of the phone with an un-biased
AC-coupled JFET photodiode preamplifier circuit (Figure 2). A straight connection of the photodiode
directly to the pin was also found to produce a limited clinical measurement, but the low-transmission
resolution was unsatisfactory. The unbiased photodiode pre-amplifier configuration was chosen because
it has the optimal signal to noise ratio, and sufficient bandwidth to handle the signals from the LEDs.
The pre-amplifier is powered by the line power present on the microphone pin. The phone microphone
pin is connected through an internal resistor to the power supply of the phone, to facilitate driving a JFET
in conventional electret microphones. The oximeter input channel thus closely resembles that of the
conventional electret microphone.

Figure 2. Schematic interface of a low-cost smartphone oximeter. The LEDs are driven by
the headset speaker output and the photodiode signal is amplified by a line-powered JFET
amplifier before being detected by the microphone.
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2.2. Software Interface

Since no external oximeter microcontroller module is used, the low-cost smartphone oximeter must
perform the signal processing necessary to calculate the oxygen saturation from the raw photodiode
signal and to interface inputs and outputs to the user. This has been implemented within a single pulse
oximeter software application running on the smartphone. The pulse oximeter application has been
realized in-house using our internally developed cross-platform development environment.

The application consists of a portable payload linked to a system-dependent stub that launches the
application and is responsible for relaying system events to the payload (Figure 3). Data is transferred
between the sensor and the application through the real-time audio layer of the smartphone to a
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portable signal-processing unit and OpenGL based user interface. The real-time audio layer was based
on the AudioUnit framework on i0S-based devices and OpenSL on Android-based devices. These
interfaces are commonly used for Voice Over IP (VOIP) applications requiring full-duplex real-time
communication. The oximeter signal processing routines were written in portable C for maximum
performance and portability between devices and architectures.

Figure 3. Structure of the audio-based smartphone oximeter application.
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The audio oximeter graphical user interface was designed to show key elements required for pulse
oximetry interfaces (Figure 4). The user interface automatically reconfigures according to the
orientation of the device. In landscape (horizontal) mode, a photoplethysmogram is displayed in real
time, updating with the refresh rate of the display, typically 30—60 Hz. The top left shows the current
detected values of oxygen saturation and heart rate, and the bottom bar displays indicators of the signal
quality and the state of the signal-processing algorithm.

Figure 4. Interface of the smartphone oximeter software application. The landscape
orientation features a photoplethysmogram and signal quality indicators, and the portrait
orientation shows the detected values of oxygen saturation and heart rate.

Plethysmogram Oxygen Saturation

Signal Quality Indicator Heart Rate

In portrait (vertical) mode, the currently detected oxygen saturation and heart rate values are
prominently displayed. The oxygen saturation background color changes gradually from light blue at a
normal saturation to purple at low saturation to augment the numerical feedback. Similarly the heart
rate indicator shades its red background color in synchronization with the heartbeat to provide an
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intuitive feedback to the user about the heart rate range. Vertical scales to the left and right of the trend
indicators mark the current trend values in a range with preselected thresholds, allowing the operator to
relate the current values to a population average. A record button in the center of the display facilitates
recording data to the solid-state storage of the device for subsequent data analysis.

2.3. Oximeter Signal Processing

The signal processing chain of the audio-based smartphone oximeter includes a signal multiplexer
for generating the LED signals, a demultiplexer for recovering the interlaced input signal, and
algorithms and filtering for extracting oxygen saturation and heart rate (Figure 5). Unique to the
smartphone implementation is a sampling rate of 8,000 Hz, substantially faster than any conventional
oximeter implementation, and an AC-coupled sensor interface. Conventional oximeter sensor
interfaces are DC-coupled and rely on sampling sustained input signal levels.

Figure 5. Diagram of the signal processing chain of the audio-based smartphone oximeter.
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The first stage of the oximeter sends an audio output signal to the LEDs with alternating polarity.
The resulting pulse train of red and infrared light passes through the small blood vessels of a finger and
is picked up by the photodiode. The photodiode signal contains a series of interlaced peaks due to the
two different wavelength of light, which is de-multiplexed to isolate a signal from each diode, and
down-sampled to increase signal quality and reduce processing overhead. The resulting raw signals
from the red and the infrared diodes are then passed to the second stage of the signal processing chain,
responsible for extracting the oxygen saturation and heart rate from the raw diode signals.

In the second stage of signal processing, the oximeter ratio R is determined from:

R _ ACRed/DCRed
AC12/DCrp 1)

where AC and DC refers to the AC and DC components of the red and infrared (IR) diode signals.
DC is determined as a average over a window of approximately eight heartbeats, and AC as the
Root-Mean-Square (RMS) amplitude of the signal calculated over the same interval:
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where N is the number of samples in the interval, i is the sample index, and Red; a sample of the
demultiplexed signal originating from the red LED. Using moving averages to determine the DC and
AC signal amplitudes is a simple and robust solution with very little overhead. The AC values in
Equation (1) are conventionally determined from a difference between signal maximum and minimum.
The alternative quadratic mean expression in Equation (2) provides a statistical measure of AC that
was found to have comparable noise rejection and less complexity.

Once the ratio R has been calculated, the corresponding oxygen saturation is determined. The
oxygen saturation is approximately linearly related to R, but an accurate conversion requires an
empirical relationship between R and oxygen saturation to be determined through invasive blood gas
measurements and stored in a calibration lookup table [24]. The oxygen saturation is finally fed
through a low-pass filter to provide a stable reading for the application display.

The heart rate was determined by feeding the IR diode signal, which is generally the strongest of the
two wavelengths, through a band pass filter, performing simple polarity based peak detection, and
calculating the time between peaks of the same polarity. Simple branching logic is used to drop noisy
signals where the rate is unphysical. The raw heart rate is passed through a low pass filter to generate a
stable reading for the application display.

2.4. Test and Verification

In a prior first test of an audio-based oximeter, synchronous readings from a conventional calibrated
oximeter were compared to the audio oximeter in a hypoxic environment. With ethics board approval
and written consent this was accomplished by recording paired oximeter readings from nine subjects in
a hypoxia chamber by interfacing a commercial microcontroller-based oximeter to an iPhone also
running the audio-based oximeter [25]. The volunteers wore both sensors on the non-dominant hand
and had unrestricted movement during the hypoxic exposure. Data with artifacts in either sensor
reading were discarded, resulting in more than 21 h of valid per-second paired readings. The results
showed good agreement between the two oximeters, and the RMS accuracy was within the 1SO
standard range of 4% [26] in the study population over the clinical range of oxygen saturation
(70%-100%).

However, carrying out human studies under low oxygen conditions carries a risk of complications,
and cannot ethically involve high-risk individuals such as children and patients with severe
cardiovascular diseases, that would represent cases with limited perfusion and transmission. Human
studies are also time- and resource intensive, and it would be impractical to test on humans with every
hardware generation of smartphones. As a case in point, there are more than 25 different hardware
generations in the Apple family of mobile devices at the time of writing. Testing the audio-based
oximeter against all of these devices in human trials is not feasible. Once the sensor has been validated
according to the standard requirements on a reference device, new means for testing are needed to
ensure equivalent performance on other devices.

For these reasons we have developed a simulator-based test system (Figure 6). The advantage of
using a patient simulator is that the full range of skin pigmentation and perfusion levels can easily be
evaluated [27], and many different devices can be systematically tested using a degree of automation.
The setup consists of a Fluke SpotLight™ oximeter simulator, controlled by a computer through the
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serial interface of the simulator. The audio-based oximeter application described above was extended
to provide a web service on port 8080 of the WiFi-connected phone, and to continuously post the
current oxygen saturation and heart rate readings on this server. Scripts running on the computer pull
the readings from the server over the network while the simulator settings are being controlled. The
performance of the oxygen saturation and heart rate algorithms can now be evaluated automatically by
setting the oximeter ratio and heart rate on the simulator, waiting for the oximeter algorithms to settle,
recording the readings from the server, and repeating the measurements over the entire clinical range.

Figure 6. Oximeter simulator test setup for evaluating the audio oximeter device.

Test computer

3. Results and Discussion

All prototyping, testing and trials of the audio oximeter were performed with Apple iPhone and
iPod Touch devices running the iOS operating system. The oximeter pre-amplifier (Figure 2) was
integrated into the 3.5 mm Tip-Ring-Ring-Sleeve (TRRS) connector used to connect the oximeter
finger sensor to the phone audio jack (Figure 7). Multiple finger sensors from Nellcor, Nonin and
Envisen were evaluated and found to perform adequately under simulated conditions. The Nellcor and
Envisen sensors had the best signal strength due to larger area of the photodiode.

Figure 7. Low-cost audio-based smartphone oximeter with integrated pre-amplifier
running on a 3rd generation iPhone device with an ACare commercial clinical finger sensor.
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The oximeter application was evaluated with systematic tests for oxygen saturation and heart rate
against the patient simulator (Figure 8, Table 1). The results show a strong correlation between heart
rate and oxygen saturation values selected on the simulator. For oxygen saturation, the tests were
repeated at optical transmission levels of 5, 10, 50, 100, 200 and 300 parts per million (ppm), which
represents a large range of skin pigmentations. The same per-generation calibration lookup was used at
all transmission levels on the two devices. The overall Pearson correlation coefficients for the oxygen
saturation measurements were 0.9976 and 0.9992 for the iPod Touch 4 and the iPhone 5, both
indicative of excellent correlation (a correlation of 1.0 representing an ideal straight line). The RMS
accuracies of the oxygen saturation readings over all transmissions were 0.85% for the iPod Touch 4
and 0.45% for the iPhone 5 with a bias of 0.12% and 0.05%, respectively. Transmission levels or
hardware revisions did not affect the heart rate algorithm, and the simulator was well correlated with
the device (Pearson correlation coefficient was 0.9997).

Figure 8. Correlation between the audio oximeter and patient simulator for oxygen
saturation and heart rate. Oxygen saturation for six different transmission levels for both
the iPod Touch 4 (circles) and iPhone 5 (squares) is shown.
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Table 1. Accuracy and correlation of tests at different simulator transmission settings.

iPhone 5 iPod Touch 4
Transmission Arws [%0] Bias [%] Correlation  Arus [%0] Bias [%]  Correlation
300 ppm 0.38 -0.14 0.9995 0.65 0.43 0.9990
200 ppm 0.38 0.05 0.9995 0.31 -0.10 0.9997
100 ppm 0.38 —-0.05 0.9994 0.44 0.19 0.9995
50 ppm 0.22 0.05 0.9998 0.65 0.43 0.9992
10 ppm 0.62 0.19 0.9986 0.69 0.19 0.9993

5 ppm 0.62 0.19 0.9992 1.65 —0.43 0.9944
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4. Conclusions and Outlook

We have developed a new low-cost audio-based smartphone oximeter that interfaces a standard
clinical finger sensor to the audio port of a smartphone through a line-powered high-impedance
preamplifier integrated into the sensor connector. The oximeter relies on the internal analog audio
interface of the phone to drive the sensor, and all signal processing is implemented in a standard
software application that can be downloaded to the phone using the conventional app stores. This
solution eliminates almost all of the hardware costs of a conventional oximeter, and allows a
smartphone to be used as a diagnostic tool for diseases such as pneumonia that could save the lives of
millions of children in low and middle-income countries.

The number of smartphones on the market today is staggering, and represents an ever-moving target
for developers. For example, the Google app store currently supports more than 3,500 Android based
smartphones, and new devices are arriving constantly. It is unfeasible to test any clinical sensor on
all of these devices through human trials, and solving this challenge is essential to the success of
sensor-based mHealth applications in general. With the advances of mobile technology and personal
health, new methods and technologies are needed to effectively test medical mobile technology
without human trials. The solution lies in validating the sensors in human studies using a reference
device and then developing automated patient simulator systems that are verified and proven to be
physiologically representative.

We have developed an automated test system based on a commercially available simulator, and
found that the oxygen saturation and heart rate output of our device has excellent correlation and low
RMS error compared with the simulator on both iPod Touch and iPhone devices. More work is needed
to test other hardware generations and investigate variability within each generation. We continue this
work with the goal of developing a robust automatic oximeter simulation system that can be used to
systematically investigate device-to-device variability and allow smartphone-based low-cost oximeters
to be widely deployed across different mobile platforms and device hardware generations.
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