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Abstract: In order to develop a novel voice sensor to detect human voices, the use of 

features which are more robust to noise is an important issue. Voice sensor is also called 

voice activity detection (VAD). Due to that the inherent nature of the formant structure 

only occurred on the speech spectrogram (well-known as voiceprint), Wu et al. were the 

first to use band-spectral entropy (BSE) to describe the characteristics of voiceprints. 

However, the performance of VAD based on BSE feature was degraded in colored noise 

(or voiceprint-like noise) environments. In order to solve this problem, we propose the  

two-dimensional part-band energy entropy (TD-PBEE) parameter based on two variables: 

part-band partition number upon frequency index and long-term window size upon time 

index to further improve the BSE-based VAD algorithm. The two variables can efficiently 

represent the characteristics of voiceprints on each critical frequency band and use  

long-term information for noisy speech spectrograms, respectively. The TD-PBEE 

parameter can be regarded as a PBEE parameter over time. First, the strength of voiceprints 

can be partly enhanced by using four entropies applied to four part-bands. We can use the 

four part-band energy entropies for describing the voiceprints in detail. Due to the 

characteristics of non-stationary for speech and various noises, we will then use long-term 

information processing to refine the PBEE, so the voice-like noise can be distinguished 

from noisy speech through the concept of PBEE with long-term information. Our 

experiments show that the proposed feature extraction with the TD-PBEE parameter is 

quite insensitive to background noise. The proposed TD-PBEE-based VAD algorithm is 

evaluated for four types of noises and five signal-to-noise ratio (SNR) levels. We find that 

the accuracy of the proposed TD-PBEE-based VAD algorithm averaged over all noises and 

all SNR levels is better than that of other considered VAD algorithms. 
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1. Introduction 

So far, user-friendly voice interfaces have been widely used in consumer devices, such as 

interactive digital TV, personal digital assistants and cellular phones [1–3]. Voice sensor (also called 

voice activity detection, VAD) refers to the problem of distinguishing speech from non-speech regions. 

It is found that VAD is a critical component in voice-command application. However, the use of 

features which are more robust to noise is an important issue. Various types of different approaches to 

VAD have been proposed recently. In early VAD algorithm designs, short-term energy, zero-crossing 

rate and LPC coefficients [4] were used as feature parameters for detecting voices. In addition, some 

algorithms further used cepstral features [5], formant shape [6], and least-square periodicity measures [7]. 

Others have used correlation coefficients [8], wavelet coefficients [9], entropy measures [10], and a set of 

metrics [11]. Remirez et al. recently formulated long-term spectral divergence (LTSD) between speech and 

non-speech segments as a discriminative speech feature [12]. Ma et al. further proposed a long-term 

spectral flatness measure (LSFM) to improve speech detection robustness for lower SNR [13]. More 

complex algorithms use statistical model-based features [14,15], which have decision rules derived from 

the likelihood ratio test. 

In fact, a robust VAD algorithm in the presence of different types of noises is necessary and critical. 

Depending on the characteristics of the human voice, a variety of parameters has been proposed for 

VAD. In general, no particular feature or specific set of features has been shown to perform uniformly 

well under different noise conditions. For example, energy-based features do not work well at low  

SNR [16]. Similarly, entropy measures fail to distinguish speech from noise with good accuracy due to 

the colored spectrum of speech [17]. SNR estimation is also a critical component in many of the 

existing VAD schemes, which is particularly difficult for non-stationary noise [18]. The use of features 

which are more robust to noise is an important issue for develop a robust VAD algorithm. Due to the 

fact that the inherent nature of the formant structure only occurred on speech spectrograms and is the 

well-known as the “voiceprint”, Wu et al. were the first to use band-spectral entropy (BSE) to describe 

the characteristics of voiceprints [19]. However, the performance of BSE-based features for VAD was 

degraded under colored noise environment conditions.  

In order to solve this problem, we propose a two-dimensional part-band energy entropy  

(TD-PBEE) method in this paper to improve the robustness of the proposed VAD method in colored 

noisy environments. The TD-PBEE parameter can be regarded as the relation of spectral entropy 

versus time index. In summary, the TD-PBEE is based on two variables: part-band number (N) upon 

frequency index and long-term size (R) upon time index. First, the four part-bands (the optimal is  

N = 4) derived from 17 log-energies by a Mel-scaled filter bank are partitioned as a lowest frequency 

(1–8 Mel) part, a low frequency (9–12 Mel) part, a high frequency (13–15 Mel) part and a highest 

frequency (16–17 Mel) part. Consequently, the strength of voiceprints can be more enhanced by four 

PBEEs than that by BSE. Secondly, we will use long-term information processing to refine the PBEE 
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due to the non-stationary characteristics of speech and various noises. Each part-band has different 

long-term window R sizes. Through different R  values, the TD-PBEE dependent on each part-band 

will be determined to efficiently represent the voiceprint characteristics in each critical frequency 

band. Consequently, the voice-like noise can be distinguished from noisy speech through the concept 

of PBEE with long-term information. Our experiments show that the proposed feature extraction of  

TD-PBEE is quite insensitive to background noise. The proposed TD-PBEE-based VAD scheme is 

evaluated for four types of noises and five signal-to-noise ratio (SNR) levels. We find that the accuracy 

of the proposed TD-PBEE-based VAD method averaged over all noise and all SNR levels is better 

than that of other considered VAD algorithms. 

The remainder of this paper is organized as follows: in Section 2, the procedure of determining  

the TD-PBEE parameter is described. In Section 3, the proposed VAD based on TD-PBEE is 

schematically introduced. In Section 4, experimental results demonstrate the effectiveness of the 

proposed TD-PBEE VAD method. Finally, Section 5 concludes the paper. 

2. The Proposed Two-Dimensional Part-Band Energy Entropy (TD-PBEE) Measure  

According to the findings from [18], Wu et al. were the first to use BSE to describe the voiceprint 

characteristics of speech-only spectrograms. It is found that the BSE can detect the human-voice 

signals. In this subsection, we further improve the BSE and propose a novel feature extraction of the 

TD-PBEE parameter. The definition of the TD-PBEE will be shown in detail. Figure 1 shows the 

procedure of feature extraction of TD-PBEE. Observing Figure 1, we can find the procedure of the 

TD-PBEE is based on (R, N). The input speech signal is frame windowed (32-ms length and 16-ms 

shift) using the Hamming window. In order to spectrally flatten the signal and to make it less 

susceptible to finite precision effects later in the signal processing, the digitized speech signal is first 

put through a first-order pre-emphasis filter with pre-emphasis coefficient 0.97: 

1( ) 1 0.97H z z   (1) 

After the pre-emphasis process, a speech signal is divided into frames by multiplying a Hamming 

window. In order to avoid sharp changes, we make the windows overlap with each other. Hence, the 

utterance is segmented into a sequence of overlapped frames. Secondly, a Discrete Fourier Transform 

(DFT) is applied to obtain the short time spectrum of each frame. We then multiply the spectrum by the 

common Mel-scale filter bank weighting factors and compute the energy of each frequency band. We 

generate the output energy of each filter of the 17-channel Mel-scale filter bank. Then, the  

short-partition band number, N, is used in the paper. The value of N is four and comprises a set of LLN , 

LHN , HLN  and HHN  (  ,  ,  ,  LL LH HL HHN N N N N ), so the four part-band energy (PBE) is denoted as 

( , )LLPBE m  , ( , )LHPBE m  , ( , )HLPBE m   and ( , )HHPBE m  . Each of the short-partition bands shows a 

lowest frequency (1–8 Mel) part ( 8LLN  ), a low frequency (9–12 Mel) part ( 4LHN  ), a high frequency 

(13–15 Mel) part ( 3HLN  ) and a highest frequency (16–17 Mel) part ( 2HHN  ). The strength of 

voiceprints can be partly enhanced by using four part-band energy entropies (PBEE) applied to the four 

part-bands. Consequently, the voiceprint-like noise will not be detected in noisy speech. The inherent 

characteristic of voiceprints can be better characterized by PBEE than by the BSE parameter. 
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Figure 1. The block diagram of the feature extraction for TD-PBEE measurements. 

 

Finally, collecting a sequence of PBEE coefficients along the time axis, we can get a PBEE over 

time. Applying the long-term spectral information processing for R size, the value of each TD-PBEE is 

depended on different R : ( LLR , LHR , HLR  and HHR ). The value of LLPBEE  over LLR  consecutive frames 

is determined at the specific thLL  part-band. Similarly, the value of LHPBEE  is determined over LHR  

consecutive frames at the specific thLH  part-band. The value of HLPBEE  is determined over HLR  

consecutive frames at the specific thHL  part-band. The value of HHPBEE  is determined over HHR  

consecutive frames at the specific thHH  part-band. Consequently, the TD-PBEE parameters are 

chosen from the set of - LLTD PBEE , - LHTD PBEE , - HLTD PBEE  and - HHTD PBEE  coefficients over  

long-term average processing. The TD-PBEE parameter can be regarded as the relation of spectral entropy 

versus time index, so we also call it the TD-PBEE matrix. In this section, we will first introduce the 

definition of the PBEE based on N. Then, the TD-PBEE based on R will be presented later. 
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2.1. Definition of the PBEE Based on N  

In order to further improve the advantage of characterizing voiceprints though band-spectral 

entropy (BSE), we adopt a novel concept of part-band spectral entropy (PBEE). This concept lets  

full-bands be partitioned into some little part-bands. Through spectral entropy determined from each 

part-band, the voiceprint can be more partially described.  

Figure 2 shows the partition structure of the Mel-scaled filter bank. It is found that higher sub-band 

numbers are focused on the lower frequencies. Inversely, the lower sub-band numbers are focused on 

higher frequencies. Observing the Figure 2, each part-band has a different band number. Although 

many part-band numbers can clearly describe the voiceprint, this will need more computer power. In 

Table 1, we observe the fact that a higher number of part-band partitions can achieve higher VAD 

accuracy, but we need more computing time to run the VAD algorithm. Inversely, a lesser number of 

part-band partitions leads to lower VAD accuracy. Considering the trade-off between accuracy and 

real-time requirements, the number of part-band partitions, N equal four is best compromise. The 

numbers of each part-band are 8LLN  , 4LHN  , 3HLN   and 2HHN  , respectively. The four  

part-bands comprise 0~1 kHz (LL part-band LL : 1–8 Mel), 1~2 kHz (LH part- band LH : 9–12 Mel), 

2~3 kHz (HL part-band HL : 13–15 Mel) and 3~4 kHz (HH part-band HH : 16–17 Mel). Consequently, 

the PBEE parameter at each part-band is computed as below:  

1
( , ) ( , )log ( , )

LLN

LL LL LLPBEE m P m P m


  


   (2) 

1
( , ) ( , )log ( , )

LL LH

LL

N N

LH LH LHN
PBEE m P m P m


  



 
   (3) 

1
( , ) ( , )log ( , )

LH HL

LH

N N

HL HL HLN
PBEE m P m P m
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1
( , ) ( , )log ( , )

HL HH

HL
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HH HH HHN
PBEE m P m P m


  



 
   (5) 

where 
1

( , )
( , )

( , )
LL

b
NLL

bk

E m
P m

E m k









 is the probability corresponding to 17 band-energies.  

Band-energy for each frame is denoted as 
2

( , ) ( , ) .bE m X m   

Similar, the other probabilities are defined as below: 
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 (8) 

Figure 3 shows the four PBEE values determined from four part-bands. We can find that the PBEE 

value is dependent on the different frequency band numbers N. Due to the fact that the voiceprints 

mostly focus on middle or low frequency band, more band numbers are required. Inversely, less band 

numbers are assigned to the higher frequency band due to the fact that the higher band is almost 

always dominated by noise components. 
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Table 1. The number of part-band partitions related to the VAD accuracy and delay time. 

The Number of Part-Band Partitions N  VAD Accuracy (%) Delay Time (s) 

2 68.3% 0.64 

4 82.3% 0.94 

6 82.5% 1.24 

8 83.4% 1.96 

Figure 2. The structure of a four part-band partition. 

 

Figure 3. The block diagram of four PBEE values determined from four part-bands. 
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Figure 4. The block diagram of four TD-PBEE values determined from four PBEEs 

over time. 

 

2.2. The TD-PBEE Based on R   

In order to further refine the PBEE parameter, long-term information processing is used to 

determine a reliable evaluation for the strength of voiceprint on part-band. In this subsection, each 

part-band has different long-term windows size corresponding to LLR , LHR , HLR  and HHR . Due to the 

fact that voiceprint-like noise can often focus on high frequency bands, a concept of long-term 

information is required, so the assumption is expressed as LLR  < LHR  < HLR  < HHR  for four PBEE 

parameters of each part-band. In addition, this assumption also reduces the search time decreasing 

computing power for the low frequency band and increasing the accuracy of voiceprint evaluation for 

the entire speech signal. 

Consequently, the definition of two dimensions for PEBB parameter means that the one dimension 

is the time index and the other dimension is the frequency index. The computation of the TD-PBEE is 

shown as below: 

- ( , ) ( , )
LL

m

LL LL LL

n m R

TD PBEE m PBEE n R 
 

   (9) 

- ( , ) ( , )
LH

m

LH LH LH

n m R

TD PBEE m PBEE n R 
 

   (10) 

- ( , ) ( , )
HL

m

HL HL HL

n m R

TD PBEE m PBEE n R 
 

   (11) 

- ( , ) ( , )
HH

m

HH HH HH

n m R

TD PBEE m PBEE n R 
 

   (12) 

From the above equation can be found that each TD-PBEE is averaged over the long-term window 

size. Figure 4 clearly shows the block diagram of four TD-PBEE values determined from four PBEEs 

over time derived from different long-term window sizes: LLR , LHR , HLR  and HHR .  
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3. The Proposed VAD Based on TD-PBEE Measure 

In this section we propose the TD-PBEE based VAD algorithm as shown in Figure 5. The proposed 

TD-PBEE VAD method consists of four components: (1) Mel-scaled filter bank; (2) TD-PBEE 

estimate; (3) part-band weighting estimation; and (4) the VAD decision. TD-PBEE estimate has been 

introduced in Section 2. The remainder will be introduced in details as follows: first, the PBEE vector 

is applied to determine the part-band weighting estimate for suppressing voiceprints corrupted by 

noise. Secondly, we can use a part-band weighting estimate to adjust a robust TD-PBEE parameter. 

Finally, the VAD decision can adaptively judge whether the current frame is a noise-dominated frame 

or speech-dominated frame through a decision rules. 

 

Figure 5. The block diagram of TD-PBEE based VAD algorithm. 
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3.1. The Normalization of Mel-Scale Filter Bank 

Figure 6 shows in detail the process of including the Mel-scale bank for getting the normalized 

energy. The Mel-scale first suggested by Stevens and Volkman in 1937 [20] is a perceptually 

motivated scale. The scale was devised through human perception experiments where subjects were 

were asked to adjust a stimulus tone to perceptually half the pitch of a reference tone. Equation (1) is 

the Hz to Mel warping used in the experiments [21]: 

= 2595 log(1 700)Mel f   (13) 

where Mel  is the Mel-frequency scale and f  is in Hertz. The filter banks of 17 bands are 

approximated by simulating 17 triangular bandpass filters, ( , )f k (1 17,  0 127)k    , over a 

frequency range of 0–4 KHz. The energy of each frequency band for each time frame of a speech 

signal can be calculated through the Mel-scale frequency bank: 

The spectrum, ( , )freqx m k , of this signal is first calculated by a Discrete Fourier Transform  

(256-point DFT), while considering a given time-domain noisy speech signal, ( , )timex m n , representing 

the magnitude of the thn  point of the thm  frame: 

1

0

( , ) ( , ) exp( 2 ) ,

                    0 1;  0 1

N
kn

freq time

n

x m k x m n j N

k N m M






  

     

  
(14) 

where ( , )freqx m k  means the magnitude of the thk  point of the spectrum of the thm  frame, and M  is 

the number of total frames of the speech signal for analysis.  

First, the spectrum ( , )freqx m k  is then multiplied by the weighting factors ( , )f k  on the Mel-scale 

frequency bank. Then, we can sum the products for all k  to get the energy ( , )x m   of each frequency 

band   of the thm  frame: 

1

0

( , ) ( , ) ( , )

                          0 ;  1 17

N

freq

k

x m x m k f k

m M

 







 

   


 

(15) 

where ( , )f k  also represents the weighting factor of the frequency energy at the thk  point of the  

th  band. 

Figure 6. The processing of the Mel-scale filter bank. 
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Some undesired impulse noise is resulted from our experiments that the energy ( , )x m   obtained in 

Equation (15). Hence, a three-point median filter is further used to get the smoothed energy, ˆ( , )x m  : 

 ˆ( , ) ( 1, ) ( , ) ( 1, ) 3.x m x m x m x m         (16) 

In fact, the noise can focus the same as speech. Based on these finds, we can remove the frequency 

energy of the beginning interval from the smoothed energy, ˆ( , )x m  , to get the pure energy, ( , )X m  : 

4

0

ˆ ˆ( , ) ( , ) ( , ) 5
j

X m x m x j  


   (17) 

where 
4

0

ˆ( , ) 5
j

x j 


  means the frequency energy of the beginning interval estimated by averaging the 

frequency energy of the first five frames of the recording. 

3.2. Part-Band Weighting Estimation 

We need a parameter will help us know how much the current part-band is corrupted by noise due to the 

influence of noise upon the detection performance. A posterior part-band SNR, ( , )pot

pSNR m   is required in 

order to determine the part-band utility rate on p  part for thm  frame, and it is formulated as: 

10( , ) 10 log ( , ) ( , )pot

p N S p N pSNR m PBE m PBE m  
      (18) 

where ( , )N S pPBE m   means the part-band energy (PBE) range from on thp  part for thm  frame for the 

observed noisy speech signal. ( , )N pPBE m   is the estimated noise part-band energy.  

According to Equation (18), we know that the estimated noise part-band energy, ( , )N pPBE m  , has 

to be estimated while determining the value of a posterior SNR, ( , )pot

pSNR m  . In order to estimate the 

noise-level quickly and accurately, the method tracking the minimum of the noisy speech power 

spectrum energy over a fixed search window length was proposed [22]. We use an efficient method [23] to 

speed up the determination of local minimum of noisy speech spectrum over a search window size, which 

is not constrained by any window length to update noise spectrum estimate, and it is calculated as below:  

min

min min

min

If   ( 1, ) ( , ),

1
then   ( , ) ( 1, ) ( , ) ( 1, ) ,

1

else   ( , ) ( , ).

p N S p

p p N S p N S p

p N S p

PBE m PBE m

PBE m PBE m PBE m PBE m

PBE m PBE m

 


     



 



 



 


        



 

 

(19) 

where min ( , )pP m   denotes the local minimum of power energy of the noisy speech, and it stands for 

noise part-band energy.   and   are experimentally determined constants. 

After obtaining the value of a posterior SNR, the part-band weight coefficient, ( , )pwef m  , is 

calculated by applying a sigmoid function: 

 
1

( , )
1 exp 0.5 ( , ) ( , )

p pot

p p

wef m
SNR m m


  


    
 

 (20) 

where ( , )pm   is a center-offset of the sigmoid function, and it is depended on part-band index. 

Observing Equation (20), we will use this information to weight each part-band if the a posteriori 

SNR and a center-offset of the sigmoid function are known. 
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Figure 7 shows the plots of the weighting coefficients from Equation (20) depending on  . Under 

the fixed value of a posterior SNR, the weighting coefficients decrease towards zero when   is 

increasing. In addition, the values of all the parameters are determined by experimental tests. 

According to the fact that the speech components are almost focused in the lower frequency band, we 

let the sigmoid function with largest   (such as 20  ) locate to the highest frequency band (such as 

the HHth  frequency part). On the contrary, we let the sigmoid function with the smallest   (such as 

5  ) locate to the lowest frequency band (such as LLth  frequency part). 

Figure 7. The plots of weight coefficients against a posterior part-band SNR under variable  . 

 

Consequently, the TD-PBEE parameter can be further weighted and be shown as below: 

- ( , ) - ( , ) ( , )wef

p p pTD PBEE m TD PBEE m wef m     (21) 

where - ( , )wef

pTD PBEE m   denotes the weighted TD-PBEE parameter. 

Thus, summing the four TD-PBEEs from each part-band as a combined TD-PBEE, the combined 

TD-PBEE is expressed as below: 

- ( ) - ( , )
p

HH
wef wef

comb p

LL

TD PBEE m TD PBEE m





   (22) 

Figure 8 shows the results of the combined TD-PBEE compared with TD-PBEE on each part-band. 

The pronunciation of the Mandarin sentence “SHIH-CHIEN-TA-HSIAO” is diagrammatically shown 

in Figure 8a. In detail, the waveform of the sentence under factory noise conditions is displayed in 

Figure 8b. The corresponding spectrogram is also shown in Figure 8c. We find that each TD-PBEE 

parameter accurately indicates the boundary of voice activity under 5 dB factory noise in  

Figures 8d–h. We also observe that the combined weighted TD-PBEE summing up the four  

TD-PBEEs can more accurately extract the voice-activity under 5 dB factory noise conditions than 

each weighted TD-PBEE. 
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Figure 8. The development of the combined TD-PBEE feature parameter. 

 

3.3. The VAD Decision 

Based on the description of the combined TD-PBEE using short-partition band number N and  

long-term window length R, the voice activity is determined by the decision rules as shown below: 

if ( - ( ) )    ( )= 1;

else if ( - ( ) )   ( )= 0;

else   ( )= ( -1)

S

N

TD PBEE m Th VAD m

TD PBEE m Th VAD m

VAD m VAD m



  
(23) 

where STh  and NTh  mean the speech thresholds and noise thresholds, respectively.  

The two values can be recursively updated by using the mean and variance of the logarithmic combined 

TD-PBEE to estimate the time-varying noise characteristics [24]. In fact, we assume that the first four 

frames only contain noise and then compute the initial noise mean and variance with the first five frames. 

The scheme of adaptive threshold for the speech and noise can be computed by the following: 

S N S NTh       (24) 

N N N NTh       (25) 



Sensors 2013, 13 16545 

 

 

Similarly, N  and N  represent the mean and the variance of the logarithmic combined TD-PBEE, 

respectively. In addition, S  and N  are the adjustment constants which are used to determine  

the threshold.  

The mean and variance of the logarithmic combined TD-PBEE are updated while the decision rule 

shows a noise period: 

 

2 2 2

22

( ) ( 1) (1 ) -

- ( ) - ( 1) (1 ) -

( ) - ( ) ( )

N N

mean mean

N Nmean

m m TD PBEE

TD PBEE m TD PBEE m TD PBEE

m TD PBEE m m

   

 

 

     

           

   

 

(26) 

where 0.5   is chosen by experiment. We then update the threshold using the updated mean and 

variance of the logarithmic combined TD-PBEE. 

4. Evaluation and Results 

In order to evaluate the proposed TD-PBEE VAD method, the speech database is first described in this 

section. In addition, the performances of comparison with state-of-the-art VAD algorithms (such as  

LSFM [13], BSE [19], G.729B [25], AMR2 [26], LTSD [12] and MTED [27]) will be reported as follows. 

4.1. Database Description 

We used a set of 12 sentences (about 107 s) from four different speakers: two males and two 

females from the TIMIT database to evaluate the advantages of the proposed TD-PBEE feature sets for 

speech detection. The utterances as speech or non-speech frames are corrupted by four different types 

of background noise: white noise, factory noise, car noise and babble noise at different average SNR 

levels ranging between clean and 5 dB (from the NOISEX-92 database). All signals in the database 

were down-sampled to 8-kHz, mono-channel and 16-bits per sample. In addition, the optimal 

parameters for the proposed VAD were: 8LLN  , 4LHN  , 3HLN   and 2HHN  ; 5LLR  , 10LHR  , 

15HLR   and 20HHR  ; 5
HH

  , 10
HL

  , 15
HL

  , and 20
HH

  , while the filter bank decomposed the 

signal into four part-band from Mel-scaled partition. 

4.2. The Performance of Comparison with Sate-of-The-Art VAD Algorithms 

In order to clearly description the performance of VAD algorithms, the speech/non-speech hit rate 

(HR1/HR0) as a function of the SNR has been presented in this section. The average  

speech/non-speech hit rate (HR1/HR0) for each type of noise is employed for comparison between 

each one and calculated as below:  

number of non-speech frames correctly classified
0 100%

number of real non-speech frames
HR    (27) 

number of speech frames correctly classified
1 100%

number of real speech frames
HR    (28) 

The speech/non-speech hit rate (HR1/HR0) as a function of the SNR for the proposed TD-LTE, 

G.729, AMR2, LTSD, MTED, BSE and LSFM VAD algorithms are shown in Figure 9 and Figure 10. 
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In these two Figures, we provide the results of non-speech hit rate (HR0) and speech hit rate (HR1), 

respectively. The results compare the proposed TD-PBEE VAD algorithm to G.729, AMR2, LTSD, 

MTED, BSE, and LSFM VADs from clean to 5 dB under the four types of noise conditions. We 

observe that the LSFM VAD is comparable to the proposed TD-PBEE VAD in term of HR0 analysis 

under lower SNR level. The standard G.729 VAD gives the worst performance among the reference 

VAD algorithms while performing HR0 analysis. Similarly, we also observe that the LTSD VAD is 

comparable to the proposed TD-PBEE VAD in terms of HR1 analysis under lower SNR level 

conditions. In addition, the standard AMR2 VAD has the worst performance among the reference 

VAD algorithms while performing HR1 analysis at lower SNR level. 

Figure 9. Non-speech hit rate (HR0) from clean to 5 dB under the four types of noise. 
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Figure 10. Speech hit rate (HR1) from clean to 5 dB under the four types of noise. 
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In order to further describe the efficiency of VAD for the different types of noises of the NOISEX 

database, the comparison of performances of VAD algorithms has also been presented in Table 2 and 
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Table 3. We observe that the average accuracy of LSFM VAD is better than the proposed TD-PBEE 

VAD in Table 2. In detail, the LSFM VAD is superior to the proposed TD-PBEE VAD while testing in 

factory noise and car noise. However, the LSFM VAD is worse than the proposed TD-PBEE VAD 

while testing in babble noise. In Table 3, we also observe that the average accuracy of the proposed 

TD-PBEE VAD is best among all reference VAD algorithms, especially in babble noise. The LTSD is 

second accuracy of detecting voice. We summarize that the proposed TD-PBEE VAD attains a 63.55% 

HR0 average value in non-speech detection. Besides, the proposed TD-PBEE VAD also obtains the 

best behavior in detecting speech with a 96.2% HR1 average value. 

Table 2. Non-speech hit rate (HR0) from clean to 5 dB under the four types of noise. 

 NOISEX Database 

VAD Algorithm 
White Factory Car Babble Average 

G.729 71.10% 23.50% 21.30% 20.90% 34.20% 

AMR2 58.70% 37.40% 37.50% 42.80% 44.10% 

LTSD 54.30% 43.40% 45.70% 40.20% 45.90% 

MTED 54.30% 50.40% 43.80% 43.90% 48.10% 

BSE 81.20% 51.70% 52.20% 44.90% 57.50% 

LSFM 82.90% 63.20% 61.50% 48.20% 63.95% 

Proposed TD-PBEE 83.10% 59.70% 58.50% 52.90% 63.55% 

Table 3. Speech hit rate (HR1) from clean to 5 dB under the four types of noise. 

NOISEX Database 

VAD Algorithm 
White Factory Car Babble Average 

G.729 89.70% 90.80% 91.10% 82.40% 88.50% 

AMR2 92.30% 91.70% 92.40% 85.60% 90.50% 

LTSD 98.60% 95.50% 96.20% 92.50% 95.70% 

MTED 90.20% 92.50% 91.40% 89.50% 90.90% 

BSE 97.80% 95.00% 95.10% 90.90% 94.70% 

LSFM 97.50% 92.30% 93.60% 88.00% 92.85% 

Proposed TD-PBEE 98.40% 96.10% 96.50% 93.80% 96.20% 

Then, the error norm of false alarm rates, normE , is used to further quantify the speech/non-speech 

hit rates, and it is defined as: 

2 2(1 1) (1 0)normE HR HR     (27) 

Table 4 shows an average speech/non-speech hit rates ( 0HR  and 1HR ), and overall false error norm 

( normE ) for SNR level from clean to 5 dB. We found that the proposed TD-PBEE achieved the 

minimum false alarm error norm with a 36.65% value and was obviously superior to other  

VAD algorithms. 
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Table 4. Average speech/non-speech hit rates and overall false error norm for SNR level 

from clean to −5 dB. 

             VAD 

Evaluation 
G.729 AMR2 LTSD MTED BSE LSFM 

Proposed 

TD-PBEE 

HR1(%) 88.50% 90.50% 95.70% 90.90% 94.70% 92.85% 96.20% 

HR0(%) 34.20% 44.10% 45.90% 48.10% 57.50% 63.95% 63.55% 

Error norm(%) 66.80% 56.70% 54.27% 52.69% 42.83% 36.75% 36.65% 

5. Conclusions 

In this paper, we present a novel two-dimensional part-band energy entropy (TD-PBEE) based on 

short-partition band number N and long-term window length R. The proposed TD-PBEE-based VAD 

is composed of four components: Mel-scaled filter bank, TD-PBEE feature extraction, part-band 

weighting estimation, and the VAD decision. We found that the two-dimensional entropy improves 

one-dimensional entropy according to the experimental results. We also discussed the estimation of the 

part-band weighting that can help to understand the useful spectral information of each part-band. We 

also observed that the optimal parameters: R and N can increase the accuracy of voice detection. We 

also performed experiments with the VAD decision, the two thresholds for speech and noise can be 

updated to detect the speech voice. Future research will apply this to voice-command applications in a 

realistic environment to increase accuracy. 
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