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Abstract: Driving while fatigued is just as dangerous as drunk driving and may result in 

car accidents. Heart rate variability (HRV) analysis has been studied recently for the 

detection of driver drowsiness. However, the detection reliability has been lower than 

anticipated, because the HRV signals of drivers were always regarded as stationary signals. 

The wavelet transform method is a method for analyzing non-stationary signals. The aim of 

this study is to classify alert and drowsy driving events using the wavelet transform of 

HRV signals over short time periods and to compare the classification performance of this 

method with the conventional method that uses fast Fourier transform (FFT)-based 

features. Based on the standard shortest duration for FFT-based short-term HRV 

evaluation, the wavelet decomposition is performed on 2-min HRV samples, as well as  

1-min and 3-min samples for reference purposes. A receiver operation curve (ROC) 

analysis and a support vector machine (SVM) classifier are used for feature selection and 

classification, respectively. The ROC analysis results show that the wavelet-based method 

performs better than the FFT-based method regardless of the duration of the HRV sample 

that is used. Finally, based on the real-time requirements for driver drowsiness detection, 

the SVM classifier is trained using eighty FFT and wavelet-based features that are 

extracted from 1-min HRV signals from four subjects. The averaged leave-one-out (LOO) 

classification performance using wavelet-based feature is 95% accuracy, 95% sensitivity, 

and 95% specificity. This is better than the FFT-based results that have 68.8% accuracy, 

62.5% sensitivity, and 75% specificity. In addition, the proposed hardware platform is 

inexpensive and easy-to-use. 
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1. Introduction 

Driving while fatigued is just as dangerous as drunk driving and may result in car accidents. It is 

easy to detect drunkenness using alcohol sensing devices, but no reliable, inexpensive, and easy-to-use 

device for detecting driver drowsiness exists. The standard clinical tests for measuring drowsiness are 

the Multiple Sleep Latency Test (MSLT) and the Maintenance of Wakefulness Test (WMT) combined 

with polysomnography (PSG) datasets [1]. These measurements are very expensive and cumbersome 

to perform. It is also impossible to apply these methods to the task of detecting driver drowsiness in 

actual driving environments. For instance, wearing multiple sensors is uncomfortable for the driver and 

may also impede the driver‟s movements. 

Photoplethysmography (PPG) is a low-cost and noninvasive means of sensing the cardiovascular 

blood volume pulse through variations in transmitted or reflected light [2]. Therefore, if driver 

drowsiness can be detected using only PPG recordings, it will be possible to detect driver drowsiness 

simply, inexpensively, and less intrusively. Several previous studies have concluded that the heart rate 

(HR) varies significantly between the alert state and drowsy state [3,4]. Furthermore, several studies 

have confirmed that HRV-based methods are able to recognize driver drowsiness [5–9]. HRV signals 

are defined as the constant change of the interval between heart rate. In general, HRV signals are easily 

obtained and can be used as indicators of the responses of the autonomic nervous system (ANS) to 

stress, drowsiness, and other related factors, because the ANS is influenced by the sympathetic nervous 

system (SNS) and the parasympathetic nervous system (PNS). HRV signals are usually calculated by 

analyzing a time series of beat-to-beat intervals that are measured by an electrocardiography (ECG) or 

derived from a pulse wave signal that is measured using the PPG waveform. In the frequency domain, 

the HRV is usually grouped into very low frequency (VLF: 0.003–0.04 Hz), low frequency  

(LF: 0.04–0.15 Hz), and high frequency (HF: 0.15–0.4 Hz) by means of FFT-based power spectrum 

density (PSD). It is worthwhile to note that FFT is only applied to equidistantly sampled series so that 

the raw HRV time series needs to be converted to equidistantly sampled series by interpolation 

methods prior to FFT analysis [10,11]. In this study, the cubic spline interpolation was used. The 

LF/HF ratio is defined as the ratio of power in LF band to power in HF band [10]. There is a strong 

relationship between the LF/HF ratio and the driver‟s fatigue level [8], although the findings related to 

LF/HF ratio are less consistent. For example, Shin et al. [5], Mahachandra et al. [6], and Jiao et al. [7] 

all concluded that the LF/HF ratio increases when driver drowsiness occurs, while Yang et al. [8] and 

Patel et al. [9] found that the LF/HF ratio decreases progressively as the driver progresses from an alert 

state to a drowsy state. 

Despite the impressiveness of LF/HF ratio monitoring, a common drawback of the previous studies 

is that HRV signals have been regarded as stationary signals with frequencies that did not vary over 

time. Additionally, the FFT method, which is the most well-known method for analyzing stationary 

signals, was usually used to generate the features (e.g., LF/HF ratio) that are used for further 

http://www.iciba.com/electrocardiogram
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classification. However, in actual working environments, drivers often try to remain alert even  

though they are feeling sleepy already. Thus, the HRV dynamics for drowsy drivers are complex,  

non-stationary, and changing over time. It is not uncommon to use non-stationary analysis methods, 

such as the wavelet analysis, when studying physiological signals. For example, Jahankhani et al. [12] 

used wavelet-based electroencephalograph (EEG) features to diagnose epilepsy. Khandoker et al. [13] 

used wavelet multi-scale analysis to estimate the risk of falls for the elderly. In addition, in 2009, 

Khandoker et al. [14] conducted a study about the automated detection of obstructive sleep apnea 

using ECG signal and wavelet transform. Haddad et al. [15] concluded that most physiological signals 

are non-stationary signals. In the field of driver drowsiness detection, several studies have successfully 

extracted wavelet-based features from EEG signal [16], eyelid signals [17] and even steering wheel 

movements [18]. In a more recent work, a hybrid algorithm using EEG, electrooculogram (EOG), 

ECG and wavelet-packet-based feature is addressed for driver drowsiness detection [19]. The 

combination of three physiological signals achieved an overall classification accuracy of 97% for all 

subjects. However, there has been little research that has focused on the non-stationary analysis of 

HRV signals, especially in the field of driver fatigue detection. Regarding the design of the classifier  

(a mathematical model used to classify drowsy and alert events), the Bayesian network (BN) was used 

in our previous studies [20,21]. The BN is based on the posterior probabilities of training data. Thus, it 

can provide early detection results as compared to general linear or nonlinear classifiers. However,  

the calculation of posterior probabilities depends on a conditional probability table that is based on 

time-consuming, empirical studies. Recently, SVM has emerged as a powerful technique for pattern 

recognition. The primary advantage of SVM is its ability to minimize both structural and empirical  

risk [22], thereby leading to better generalizations for new data classifications, even with limited 

training datasets. Thus, in this study, our goal is to assess whether a method that uses wavelet-based 

features of HRV can detect driver drowsiness more effectively than methods that use the conventional 

FFT-based LF/HF ratio. The aim is to develop a reliable driver drowsiness detection system that 

combines SVM with an inexpensive and easy-to-use hardware platform. We will also include a built-in 

alertness boosting application in our solution. 

2. Proposed Hardware Platform 

Figure 1 shows the system configuration, which is comprised of a PPG sensor, a microprocessor 

unit (MCU), a wireless transmitter, a smartphone, and a server PC that connects to the internet. The 

wireless PPG sensor incorporates an MCU and a Bluetooth module and can be attached to the steering 

wheel. The outputs from the PPG sensor node are transmitted wirelessly via Bluetooth communications 

to a smartphone that extracts the HRV time series. After this, the smartphone [Transmission Control 

Protocol (TCP) client] transmits the HRV signals to an external PC (TCP server) for feature 

generation, feature selection, and classification. Finally, the classification result is fed back to a 

friendly user interface (smartphone) for self-monitoring or activating the alarm and the built-in 

alertness boosting solution. 
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Figure 1. Schematic diagram of the proposed driver drowsiness detection system. 

 

2.1. PPG Sensor Node 

There are two types of probes used in medical instruments for PPG measurements. The first type is 

a transmission probe that has an emitter on the opposite side from the detector. The second type is 

known as a reflection probe. This type of probe has an emitter that is on the same side as the detector. 

An infrared (IR) light is transmitted from the emitter and the IR signal is received by the photo 

detector through the skin and veins. Reflection type PPG sensors were chosen for this study because 

they are more convenient for drivers. The PPG sensor can be mounted on the steering wheel and can 

capture the PPG readings directly from a finger that is resting on the steering wheel. The reflection 

type PPG sensors are less intrusive and, unlike transmission type sensors, do not cause discomfort for 

the driver. We chose the Laxtha RP520 PPG sensor (Laxtha, Daejeon, Korea). Based on the requirements 

of low-cost and low-power consumption, the open-source LilyPad Arduino hardware platform 

(SparkFun Electronics, Boulder, CO, USA) was selected. This open hardware platform is designed for 

wearables and e-textiles [23]. Thus, it can be easily attached to the steering wheel. Table 1 shows the 

specifications of the proposed PPG sensor node. 

Table 1. Specifications of fabricated PPG wireless sensor node. 

Components Items Specifications 

PPG sensor (Reflection type) [24] 
LED 660 nm infrared 

Bandwidth 0.2 to 5.6 Hz 

MCU [25] 
ADC 10 bit 

Sampling rate 40 Hz 

Bluetooth module [26] 

Size 1.75 × 0.65 

Maximum transmission range 106 m 

Averaged power consumption 75 mW, at 3.3 V 

Power Battery 4.5 V 

2.2. Smartphone 

Smartphones have high-speed data transmission capabilities (e.g., 3G, 4G) and have embedded 

microprocessors with capabilities, such as Bluetooth and WiFi, for connecting wirelessly to external 

devices. For this study, the Samsung Galaxy SIII (Android 4.1.2) smartphone was used as a reliable 

and user-friendly Bluetooth-to-Internet gateway. It was also used to display the raw PPG signals and to 

extract 1-min HRV time series. Table 2 displays the specific steps in the HRV extraction procedure, 
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where a 1st-order differential operation is used to remove the artifacts when drivers rotate the steering 

wheel and re-sampling is used to up-sample the raw HRV time series, in order to generate enough 

samples for FFT analysis. The 1st-order differential operation v(x) of PPG signal y(x) in discrete  

time can be demonstrated by Equation (1): 

))1()((
1

)(  xyxy
t

xv


 (1) 

where x is the total number of samples and ∆t is the sampling rate. 

After the HRV extraction, the smartphone sends the HRV signals to an external computer via an 

Internet connection for secondary signal processing, including the calculation of LF/HF ratios, the 

generation and selection of wavelet-based features, and the classification process via the SVM. Next, 

the classification result can be sent back to the smartphone to enable the driver to self-monitor. If the 

driving condition is classified as “fatigued”, a “Searchnearby” service, which is based on the Google 

Map Application Interface (API) and the Google Place API, is activated so that the driver can stop at 

the nearest coffee shop and drink a coffee and boost alertness. Drinking coffee is not uncommon 

among drivers. For example, the British Broadcasting Corporation (BBC) reported this year that  

long-distance lorry drivers who drink coffee have fewer road traffic accidents [27]. 

Table 2. HRV extraction from PPG raw data in smartphone. 

Procedure Purpose 

Step 1: 1st-order differential operation 
Remove artifacts caused by the driver‟s movements on the 

steering wheel 

Step 2: Peak-to-peak detection Calculate P-P intervals 

Step 3: Re-sampling the P-P intervals at 7 Hz using cubic spline interpolation 

2.3. Server PC 

The server PC uses vb.NET application software (Microsoft Corporation, Redmond, WA, USA), 

MATLAB
®

 application software (Mathworks, Natick, MA, USA), and IBM SPSS Statistics software 

(IBM, Armonk, NY, USA) (a commercial statistical analysis tool). The main purpose of using vb.NET 

is to receive HRV time series from the Internet (smartphone). The MATLAB
®
 application is responsible 

for feature generation using the FFT and wavelet decomposition methods and for feature classification 

using the SVM. The combination of vb.NET and MATLAB
®

 application can be easily realized using 

Matlab Builder™ NE. As a result, the vb.NET application is able to make direct use of the math and 

data analysis functions that are built into MATLAB
®

. The SPSS is used to perform ROC analysis for 

feature selection. 

3. Proposed Algorithm 

Figure 2 shows the schematic diagram of the proposed algorithm, where the input is a PPG signal 

and the output is the classification of the driver as alert or drowsy. 
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Figure 2. Flowchart of the proposed method for classifying the driver as alert or drowsy 

based on the PPG signal and the comparison of the FFT and wavelet analyses. 

 

3.1. Event Detection Using PERCLOS 

First, the PPG input signal is divided into 1-min intervals and the two driving events are verified 

based on the average percentage of eyelid closure over pupil over time (PERCLOS) measurements 

over the interval. Detailed information about the calculation of PERCLOS can be found in our earlier 

studies [20,28]. Table 3 describes the specific characteristics of the alert and drowsy driving 

conditions, where a PERCLOS value of 0%~30% indicates alert conditions and 30%~40% indicates 

drowsy conditions. This classification criterion was set through our pilot study when subjects reported 

their sleepiness states using the Karolinska sleepiness scale (KSS) [29]. For example, subjects rated 

their KSS results as #9 (sleepy, some effort to keep alert) when PERCLOS was 30%~40%. The KSS 

measures the subjective level of sleepiness at a particular time during the day. On this scale subjects 

indicate which level best reflects the psycho-physical state experienced in the last 10 min [29]. This is 

why we collected data for 10 min (for more details please refer to Table 5 in the Results section). 

Table 3. Summary of the two different driving conditions. 

Driving conditions Description Specifications PERCLOS 

Alert Driving in the morning at 9:00~11:00 0% to 30% 

Drowsy 
Driving while attempting to remain alert,  

when feeling sleepy at 1:30~2:30 am. 
30% to 40% 
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3.2. Feature Extraction Using FFT and Wavelet Decomposition 

Next, the FFT-based and wavelet-based feature extractions are performed. A discrete wavelet 

transform (DWT), which is based on the Symlet mother wavelet with order 3, is used to extract the 

features of the HRV time series. The DWT gives a decomposition of a given signal into a set of 

approximate (Ai) and detailed (Di) coefficients of level i (i = 1, ..., n). The frequency range of each 

level is calculated as shown in Equation (2), where n is the index of level and fs is the re-sampling rate 

for the HRV time series: 

snn
frangeFrequency 


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2

1
~

2

1
(_

1
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In order to compare with classical HRV frequency analysis, each HRV signal is decomposed into 

eight levels, the frequency range of which is shown in Table 4. For each level the Shannon‟s entropy, 

mean, variance, kurtosis, and spectral component β are extracted from Di (i = 1, …, 8) and  

A8 [13,14,22]. In total, it is possible to obtain 43 wavelet-based features from each 1-min HRV time 

series. Since the standard shortest duration for LF/HF analysis on HRV is 2 min [10], the LF/HF ratio 

is calculated for 2-min durations. For reference purposes, the 1-min and 3-min HRV signals are also 

used to calculate LF/HF ratio, as well as selected wavelet-based features. 

Table 4. Comparison of the frequency ranges of the decomposition at each level and the 

conventional FFT-based HRV frequency domain. 

Wavelet Decomposition 
Frequency Range (Hz) FFT-based HRV frequency domain 

Level 

A8 0.005–0.01 
VLF (0.003–0.04 Hz) 

D8 0.01–0.03 

D7 0.03–0.05 

LF and HF (0.04–0.4 Hz) 
D6 0.05–0.11 

D5 0.11–0.22 

D4 0.22–0.44 

D3 0.44–0.88 

– D2 0.88–1.75 

D1 1.75–3.5 

3.3. Feature Selection Using ROC Analysis 

In order to obtain the relative importance of features, ROC analysis was used [30]. The area  

under the ROC curve is called ROCarea and can be used as an effective criterion for design a  

classifier [13,14,22]. Using ROC analysis, the LF/HF ratio and the best wavelet-based feature with 

higher ROCarea are selected to form feature vectors for training the SVM, respectively. In SPSS, the 

ROC analysis requires at least two feature vectors. One feature vector is called the “state variable” 

which indicates the verified classification labels. The other feature vector is called the “test variable” 

and contains the wavelet-based feature vectors or FFT-based feature vectors. For two-class feature 

selection, the “state variable” contains two values (e.g., 1: drowsy and −1: alert). The ROCarea value 

can be any value from 0 to 1. If the mean of the feature values from drowsy group is higher than the 
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alert group, then a ROCarea value of 1.00 means that the features are exactly separable. If the mean of 

the drowsy group is lower than alert group, then a ROCarea value of 0.00 means that the features are 

exactly separable. A ROCarea value of 0.50 implies that the features are completely overlapped and thus 

non-separable. In this case, a ROCarea value of 0.7 (or 0.3) implies that the features are acceptable for 

classification [14]. 

3.4. Classification Using SVM 

In this study, the SVM is used to automatically recognize drowsy driving events. SVM theory has a 

long history of development starting from the early 1950s [31]. SVM, introduced by Vapnik and 

Cortes in 1995 [31], is more powerful and already packaged in some analysis tools, such as MATLAB®. 

Just like any other classifiers, the aim of SVM is to find a decision surface that splits the dataset into two 

parts. All data lying on one side of the decision surface will be classified as members of one class and all 

data lying on the other side of the decision surface will be classified as members of another class. However, 

this kind of decision surface is not unique (see Figure 3a). It follows the difference between SVM and other 

classifiers: SVM is able to find the unique decision surface which also has a maximum distance or margin 

between the two datasets. That is to say, SVM is able to find the optimal decision surface. Figure 3b is an 

example with two-dimensional data where each data is represented by two features. Actually, SVM theory 

is particularly helpful for higher-dimensional feature space, which cannot be made such intuitive drawings. 

Figure 3. Example of two-class (+1 & −1) problem. The circles and stars represent 

samples of class +1 and −1, respectively. (a) multiple decision surfaces and (b) optimal 

decision surface. 

  

(a) (b) 

In brief, the theory of SVM introduced by Vapnik and Cortes is as follows [31]: assume that the 

input dataset is represented by N n-dimensional data points 
n

Nxxx 


,...,, 21 and corresponding labels 

y1, y2, …, yn ϵ {−1,+1}, SVM maps each point ix


from the input space n  to the feature space H by 

means of the mapping function )( ix


  and finds a linear decision surface to classify the negative data 

points and the positive ones in the feature space. The linear decision surface is defined as Equation (3) 

with constraint Equation (4): 

0)(  bxw


  (3) 
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where the w


 is a vector perpendicular to the decision surface and b is a scalar (decision surface 

bias). In order to maximize the margin of separation between the classes (
w

2

 or equivalent to 

minimize 
2

2

1
w


), SVM constructs a unique decision surface by applying Lagrange multiplier and 

transforming into the following dual problem: 
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2

1
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
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N
i i y and Ci  0  i  (6) 

where λ = (λ1, …, λN) is the Lagrange multiplier, C is a constant parameter which determines the 

tradeoff between the maximum margin and minimum classification error. In general, C has to  

be selected for the input dataset at hand by the user. K(.,.) is denoted as  

),( kj xxK


 = )()( kj xx


  , which is so-called kernel function. By using kernel function, SVM does 

not need to know explicitly the mapping function )(x


 : n H ; it is sufficient only to know the dot 

product between mappings of two data points. Having determined the optimum Lagrange multiplier, 

the optimum solution for the vector w


 is given by: 

)(1 jj
N
j j xyw


    (7) 

Then SVM is able to classify any input x


 using the function: 

)),(())(()( 1 bxxKysignbxwsignxf j
N
j jj   


  (8) 

In this study, the LF/HF ratio and wavelet-based feature were used as input features to the SVM. 

The SVM outputs represent the driving types (−1 = alert, +1 = drowsy). Both of linear and  

non-linear kernel (radial basis function) were studied in order to obtain the highest level of 

classification accuracy. The parameter C and Radial Basis Function parameter γ are optimized using a 

simple search procedure with γ = {10,1,0.1} and C = {10,1,0.1}. In this study, SVM was implemented 

on the MATLAB
®
 SVM toolbox. 

4. Results and Discussion 

Four subjects participated in this study. The subjects included three males (subjects A, B and C) and 

one female (subject D). Each of them was tested for 10 min for data collection during an alert state and 

10 min for data collection during a drowsy state. A total of 40 alert and 40 drowsy samples were 

obtained, with each sample having a duration of 1 min. All subjects were tested in a driving 

stimulation environment which is similar to our previous study [20]. The summary of the subjects‟ 

data is given in Table 5. 

The typical plots of PPG signal before and after the 1st-order differential operation are shown in 

Figures 4 and 5. We can see that the 1st-order differential operation could effectively remove the 

artifacts caused by driver‟s movement on steering wheel, which helps the extraction of peak-to-peak 

intervals of PPG signals. 
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Table 5. Summary of the subjects‟ data. 

Subjects’ details Data collected 

Subject Age Sex Heart disease Hypertensive Alert (Min) Drowsy (Min) 

A 28 Male No No 10 10 

B 28 Male No No 10 10 

C 26 Male No No 10 10 

D 33 Female No No 10 10 

Figure 6 displays the PERCLOS measures and the raw PPG data for subject A when he was alert. 

Figure 7 shows the alertness boosting solution that is activated when a drowsy driver has been detected. 

Figure 4. Typical plots of PPG signal with bad baseline. 

 

Figure 5. Typical plots of PPG signal with good baseline. 

 

Figure 6. Screenshot of a smartphone that shows the measurement of the PERCLOS, the 

display of raw PPG data, and the estimation of the driver‟s level of alertness. 
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Figure 7. Screenshot of a smartphone that shows a demonstration of the “Searchnearby” 

service that indicates the location of the nearest coffee shop. 

 

A typical HRV power spectrum for alert and drowsy driving are shown in Figure 8, where we can 

see that the LF/HF ratio increases when driver drowsiness occurs, which is consistent with the 

previous results [5–7]. 

Figure 8. The typical LF and HF power spectrum computed by our server PC.  

(a) represents alert driving; (b) represents drowsy driving.  

  

(a) (b) 

4.1. Feature Selection Using ROCarea 

The ROCarea for all 43 wavelet-based features from subject A are shown in Table 6. The ROCarea 

values that are higher than 0.7 are in bold and italicized. 

Based on the standard shortest duration for FFT-based analysis of HRV signals, the entropy and 

mean of level A8 are the best two wavelet-based features for all of the male subjects. For the female 

subject, on the other hand, the entropy of level A8 and kurtosis of level D2 are found to be the best two 

features. The maximum and minimum ROCarea of LH/HF ratio are found for subject A (=1.00) and 

subject C (=0.69), as shown in Figure 9. The averaged ROCarea for the four subjects is 0.87, which is 

effective for classifying alert and drowsy events. For the wavelet-based features, the entropy and mean 

(or kurtosis) both have a maximum ROCarea (=1.00) for all of the subjects (except for subject C whose 

ROCarea value is slight less than 1.00). The averaged ROCarea of entropy for the four subjects is 0.98, 

which is excellent for classifying alert and drowsy events. 
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Table 6. Example of the ROC areas for all 43 wavelet-based features based on 1-min  

HRV durations. 

Subject A  

(28, male) 

Level Shannon Entropy Variance Kurtosis Mean 
Multiscale component (β) 

A8 1.00 0.54 0.79 1.00 

D8 0.38 0.36 0.87 0.42 D8, D7 β256-128 0.71 

D7 0.63 0.18 0.77 0.66 D7, D6 β128-64 0.69 

D6 0.36 0.09 0.69 0.51 D6, D5 β64-32 0.50 

D5 0.50 0.21 0.60 0.48 D5, D4 β32-16 0.49 

D4 0.50 0.48 0.61 0.54 D4, D3 β16-8 0.47 

D3 0.50 0.50 0.73 0.48 D3, D2 β8-4 0.46 

D2 0.50 0.50 0.80 0.50 D2, D1 β4-2 0.55 

D1 0.50 0.50 0.76 0.50 – – – 

Figure 9. Comparison of LF/HF and wavelet-based features based on standard HRV duration. 

 

The ROCarea of the LF/HF ratio and the wavelet-based features, which is based on 1-min and 3-min 

HRV durations, is shown in Figure 10. For both the wavelet-based features and the LF/HF, the ROCarea 

values increase as the HRV durations increase. For example, the entropy and LF/HF for subject C rise 

from 0.87 and 0.69 for the 1-min HRV duration to outstanding measurements of 1.00 and 0.75 for the 

3-min HRV duration. This indicates that the accuracy levels of classifications increase as the HRV 

durations increase, regardless of what measures are being used, whether wavelet-based features or 

LF/HF ratios. However, the averaged ROCarea for LF/HF is still lower than the average ROCarea for 

wavelet-based features, even when the HRV duration is extended to 3 min. For example, the ROCarea 

of wavelet-based features has reached 1.00 for all subjects, even though half of them still have an 

LF/HF-based ROCarea value that is less than 1.00. More specifically, the averaged ROCarea for LF/HF 

with 3-min HRV signals is still lower than the averaged ROCarea for entropy for 1-min HRV signals. This 

result indicates that the wavelet-based feature gives better performances during real-time classifications. 

The changes for entropy and LF/HF values for 1-min HRV signals during 10-min alert state and 

drowsy state driving experiments are shown in Figure 11. The entropy and LF/HF values both increase 

when subjects are driving during a drowsy state. This result indicates the enhancement of SNS 

activities. However, individual differences are easy to recognize. For example, the female subject 

(subject D) had a lower entropy level during the alert state as compared to one of the male subjects 

(subject B), which indicates that the female subject was more relaxed during the alert state. However, 
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her entropy values jumped to approximately 3 × 10
4
 bit (the maximum entropy among the four 

subjects) and then dropped to less than 1 × 10
4
 bit during the drowsy phase. This result indicates that 

the female subject was more nervous than the male subjects during the drowsy state. The LF/HF ratio 

is effective for classifying drowsy and alert states, but the overlap is obvious when comparing entropy 

levels. This point is demonstrated in Figure 10, where the ROCarea of entropy is higher than that of 

LF/HF ratio. 

Figure 10. Comparison of LF/HF and wavelet-based features based on 1-min and 3-min 

HRV durations; (a) ROCarea for 1-min HRV signals; (b) ROCarea for 3-min HRV signals. 

 

The statistic difference tests (independent t-test, p = 0.05) were also carried out for entropy and 

LF/HF values for 1-min HRV signals during 10-min alert state and drowsy state driving experimentsas 

shown in Figure 11. The test results are summarized in Table 7, where we can see that both wavelet-based 

feature (entropy) and FFT-based feature (LF/HF) have significant differences between alert and 

drowsy groups (except the FFT-based feature from subject C whose sig. (2-tailed) = 0.958 > 0.05). 

However, comparing the averaged sig. (2-tailed) values, we can find that wavelet-based feature  

[sig. (2-tailed) = 0.0005] is significantly better than FFT-based feature [sig. (2-tailed) = 0.3045]. 

The driver fatigue detection system should indentify drowsy driving conditions as early as possible. 

Since the wavelet-based feature (entropy at level A8) that is extracted from 1-min HRV signals is more 

powerful than the LF/HF that is based on 3-min HRV signals for both of male and female subjects, the 

1-min entropy of level A8 was selected for training the SVM. 

Table 7. Statistical significance tests results. 

Subject 
Sig. (2-tailed) 

Wavelet-Based Feature (Entropy) FFT-Based Feature (LF/HF) 

A 0.000 0.026 

B 0.000 0.000 

C 0.002 0.958 

D 0.000 0.000 
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Figure 11. Entropy values of level A8 and LF/HF values in the drowsy driving and alert 

driving groups; (a) entropy values; (b) LF/HF values. 

 

 

4.2. Classification Using SVM 

Altogether, 80 LF/HF and entropy features from 40 drowsy and 40 alert samples are grouped into 

four datasets, each of which corresponds to a particular subject. Each dataset is composed of 20 

entropy values, 20 LF/HF values, and 20 labels (the number of labels for alert and drowsy is 10 each). 
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Each feature vector (entropy and LH/HF) and label in the dataset are denoted as xi and Li (i = 1, ..., 20), 

respectively, and are used to train the SVM: 

{ _ _ 8, / }

{ ( ), ( )}

i

i

x entropy level A LF HF

L drowsy true alert false




 (9) 

The LOO validation method is used to test the SVM classifier. The LOO method is a standardized 

approach for the validation of a classifier, where each feature vector serves as a test sample. The 

specific steps are as follows: (1) Omit a single feature vector from the dataset; (2) Train the classifier; 

(3) Test the omitted feature vector; (4) Repeat the steps that are listed above until each feature vector 

has been omitted and tested once. The LOO classification performance of SVM classifier is shown in 

Figure 8. Accuracy (Ac), sensitivity (Se), and specificity (Sp) are calculated as shown in Equation (10), 

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative: 

FPTN

TN
ySpecificit

FNTP

TP
ySensitivit

FNFPTNTP

TNTP
Accuracy












 
(10) 

The best classification result using γ = 0.1 and C = 1 was obtained and shown in Figure 12, where we 

can see that the entropy measurement performs better than the LF/HF measurement for all of the subjects. 

Figure 12. Performance of SVM classifier when using leave-one-out classification. 

 

The best classification performances for entropy occur with subjects A and B with 100% accuracy, 

100% sensitivity, and 100% specificity. This is what we would expect, because the ROCarea of entropy 

for both subjects A and B is at the maximum, i.e., 1.00. The best classification performance for LF/HF 

occurs with subject D with an accuracy of 90%, a sensitivity of 85%, and a specificity of 95%. This is 
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also what we would expect, because the ROCarea for LF/HF for subject D is 0.79, which is the highest 

value for the four subjects. Based on this classification results, we also found that ROCarea is a much 

better feature selection method compared to t-test. For example, for subject B in Table 7,  

t-test does not show any difference between wavelet-based feature and FFT-based feature because the 

sig. (2-tailed) value is the same zero, however ROCarea in Figure 10a is able to illustrate the difference 

(ROCarea for wavelet-based feature = 1.00, ROCarea for FFT-based feature = 0.73), which follows the 

higher classification accuracy (100%) for wavelet-based feature and lower accuracy (70%) for  

FFT-based feature. 

5. Conclusions 

The standard shortest time for LF/HF analysis on HRV is 2 min. In order to reduce the processing 

time and increase the real-time performance of driver drowsiness detection system, the feasibility of 

using wavelet-based features from shorter durations of PPG-derived heart rate variability data was 

tested. The FFT-based feature (LF/HF ratio) and the wavelet-based feature (entropy at level 8 of 

approximate coefficient) based on 1-min HRV segments were used for training the support vector 

machine classifier. The averaged performance for leave-one-out classification for the wavelet-based 

feature achieved 95% accuracy, 95% sensitivity, and 95% specificity. In contrast, the averaged 

performance for conventional LF/HF ratios is 68.8% accuracy, 62.5% sensitivity, and 75% specificity. 

This classification results indicate that a better real-time driver drowsiness detection system can be 

developed by using wavelet-based feature. In addition, the proposed system is inexpensive and  

easy-to-use. The main features included: 

• A single PPG sensor node that was easy to attach to the steering wheel. 

• Easy-to-use monitoring via smartphone. 

• Tele-monitoring that was achievable via Internet. 

• Built-in alertness boosting solution. This feature was based on Google Map and the Place API 

and displayed the location of the nearest coffee shop. 
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