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Abstract: We formulate a multi-matrices factorization model (MMF) for the missing sensor
data estimation problem. The estimation problem is adequately transformed into a matrix
completion one. With MMF, an n-by-t real matrix, R, is adopted to represent the data
collected by mobile sensors from n areas at the time, T1, T2, . . . , Tt, where the entry, Ri,j ,
is the aggregate value of the data collected in the ith area at Tj . We propose to approximate
R by seeking a family of d-by-n probabilistic spatial feature matrices, U(1), U(2), . . . , U(t),
and a probabilistic temporal feature matrix, V ∈ Rd×t, where Rj ≈ UT

(j)Tj . We also present
a solution algorithm to the proposed model. We evaluate MMF with synthetic data and a
real-world sensor dataset extensively. Experimental results demonstrate that our approach
outperforms the state-of-the-art comparison algorithms.

Keywords: matrix factorization; sensor data; probabilistic graphical model;
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1. Introduction

In this work, we study the following missing sensor data imputation problem: Let the matrix,
R ∈ Rn×t, consist of the data collected by a set of mobile sensors in spacial areas S1, S2, . . . Sn at time
points T1 < T2 < · · · < Tt, where the entry, Ri,j , is the aggregate value collected by the sensors in Si
at Tj . In particular, if there is no sensor in Si at time Tj , we denote the value of Ri,j as “ ⊥ ”, which
indicates that it is missing. Our focus is to find the suitable estimations for the missing values in a given
incomplete matrix, R. Results of this research could be helpful in recovering missing values in statistical
analyses. For example, to predict floods, people usually place geographically distributed sensors in the
water to continuously monitor the rising water levels. However, some data in a critical period of time
might be corrupted, due to, e.g., sensor hardware failures. Such a kind of data needs be recovered to
guarantee the prediction accuracy.

Many efforts have been devoted to the missing sensor data imputation problem. Typical examples
include k nearest neighbor-based imputation [1], multiple imputation [2], hot/cold imputation [3],
maximum likelihood and Bayesian estimation [4] and expectation maximization [5]. However, despite
the various implementations of these methods, their main essence is based on the local consistency of
the sensor data, i.e., the data collected at adjacent time points within the same spacial area should be
close to each other, as well as the data collected at the same time from neighboring areas. We refer to
them as local models. As is well known, these local models suffer from the cumulative error problem in
scenarios where the missing ratio is high.

Matrix factorization (MF), as a global model, has caught substantial attention in recent years.
Typically, in the Netflix rating matrix completion competition [6], some variations of the MF model,
e.g., [7,8], achieved state-of-the-art performances, showing their potential to recover the missing
data from highly incomplete matrices. On the other side, many well-studied MF models, such as
non-negative matrix factorization [9], max margin matrix factorization [10,11], and probabilistic matrix
factorization [7], are based on the i.i.d.assumption [12], which, in terms of our problem, implies that the
neighborhood information among the data is disregarded and, hence, leaves vast room for improvement.

We in this paper, we propose a multi-matrices factorization model (MMF), which can be outlined as
follows. For a matrix, X , denote Xj the jth column of X . Given a sensor data matrix, R, we seek
a set of matrices, U(1), U(2), . . . , U(t) ∈ Rd×n, and a matrix, V ∈ Rd×t, such that for i = 1, 2, . . . , t,
UT
(i)Vi ≈ Ri. Here, U(i) is referred to as the spatial feature matrix, in which the jth column, U(i),j , is the

feature vector of area Sj at Ti. Similarly, V is referred to as the temporal feature matrix, in which the
jth column, Vj , is the temporal feature vector of Tj . To predict the missing values in R, we first fit the
matrices, U(1), U(2), . . . , U(t) (single sub-indexes of matrix mean columns) and V , with the non-missing
values in R; then, for each Ri,j = “ ⊥ ”, we take its estimation as R̂i,j = UT

(j),iVj .
The remainder of the paper is organized as follows: Section 2 summarizes the notations used in

the paper. Section 3 studies the related work on matrix factorization. In Section 4, we present our
multi-matrices factorization model. The algorithm to solve the proposed model is outlined in Section 5.
Section 6 is devoted to the experimental evaluations. Finally, our conclusions are presented in Section 7,
followed by a presentation of future work, acknowledgments and a list of references.
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2. Notations

For a vector V = [v1, v2, ...vn]
′ ∈ Rn, we use ||V ||0, ||V ||1 and ||V ||2 to denote its 0-Norm, 1-Norm

and 2-Norm, respectively, as follows:

- ||V ||0 =
∑n

i=1 I(vi 6= 0), i.e., the number of nonzero entries of V ;

- ||V ||1 =
∑n

i=1 |vi|;

- ||V ||2 =
√∑n

i=1 v
2
i .

For a matrix, X ∈ Rn×m, we denote its Frobenius norm as ||X||F =
√∑n

i=1

∑m
j=1X

2
i,j .

3. Matrix Factorization

The essence of the Matrix Factorization problem is to find two factor matrices, U and V , such
that their product can approximate the given matrix, R, i.e., R ≈ UTV . As a fundamental model of
machine learning and data mining, the MF method has achieved state-of-the-art performance in various
applications, such as collaborative filtering [13], text analysis [14], image analysis [9,15] and biology
analysis [16]. In principle, for a given matrix, R, the MF problem can be formulated as the optimization
model below:

{U∗, V ∗} = min
U,V

Loss(UTV,R) (1)

where the lose function, Loss, is used to measure the closeness of the approximation, UTV , to the target,
R. Usually, Loss(UTV,R) can be decomposed into the sum of the pairwise loss between the entries of
UTV and R; that is, Loss(UTV,R) =

∑n
i=1

∑m
j=1 loss((U

TV )i,j, Ri,j). Some of the most used forms
include the square loss (loss(x, y) = (x − y)2) [7,8,17], the 0-1 loss (loss(x, y) = I(x = y)) [11] and
the divergence loss (loss(x, y) = xlog x

y
− x+ y) [9].

It is notable that for Equation (1), if {U∗, V ∗} is a solution to it, then for any scalar, κ > 0,
{κU∗, 1

κ
V ∗} is also another solution; hence, problem (1) is ill-posed. To overcome this obstacle,

various constraints on U and V are introduced, such as constraints on the entries [15], constraints
on the sparseness [18,19], constraints on the norms [7,20] and constraints on the ranks [21,22]. All
these constraints, from the perspective of the statistical learning theory, can be regarded as the length
of the model to be fitted. According to the minimum description length principle [23,24], a smaller
length means a better model; hence, most of them can be incorporated into Model (1) as the additional
regularized terms, that is:

{U∗, V ∗} = min
U,V

Loss(UTV,R) + P (U, V ) (2)

where the regularization factor, P (U, V ), corresponds to the constraints on U and V .
As a transductive model, Model (2) has many nice mathematical properties, such as the generalization

error bound [10] and the exactness [17,25]. However, as is well known, when compared with the
generative model, one of the main restrictions of the transductive model is that it can hardly be used to
describe the relations existing in the data. In particular, in terms of our problem, even though Model (2)
may work well, it is laborious to express the dynamics of the data over time.
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4. The Proposed Model

In this section, we elaborate on our multi-matrices factorization (MMF) approach. Given the sensor
data matrix, R, in which the entry, Ri,j (1 ≤ i ≤ n and 1 ≤ j ≤ t), is collected from Si at Tj , our goal is
to find the factor matrices, U(1), U(2), . . . , U(t) ∈ Rd×n and V ∈ Rd×t, such that: for j = 1, 2, . . . , t,

Rj ≈ UT
(j)Vj (3)

where U(j) is regarded to be composed of the spatial features of all areas at Tj and V is treated as
consisting of the temporal features of all time points. We denote the i th column of Uj as U(j),i, which
corresponds to the spatial feature value of Si at Tj , and denote the j th column of V as Vj , which
corresponds to the temporal feature value of Tj .

Taking advantage of the knowledge of the probability graph model, we assume that the dependent
structure of the data in U(1), U(2), . . . , U(t), V and R is as illustrated in Figure 1. More specifically, we
have the following assumptions:

I. Columns of U(j) (1 ≤ j ≤ t) are linearly independent, i.e.,

Pr(U(j)) =
n∏
i=1

Pr(U(j),i)

II. U(1),i (1 ≤ i ≤ n) follows the same Gaussian distribution with a mean of zero and a covariance
matrix σ2

UI , i.e.,

Pr(U(1),i|σU) = (2πσ2
U)
− d

2 exp{−
||U(1),i||22
2σ2

U

}

III. U(j),i (1 ≤ i ≤ n) are dependent in time order with the pre-specified priors, ζU and σU , i.e.,

Pr(U(j),i|ζU , σU) = Pr(U(1),i|ζU , σU)×
t∏

j=2

Pr(U(j),i|U(j−1),i, ζU , σU)

Moreover, for j > 1, we assume U(j),i is a Laplace random vector with location parameter U(j−1),i

and scale parameter ζU , namely:

Pr(U(j),i|U(j−1),i, ζU , σU) =
1

2ζU
exp{−

|U(j),i − U(j−1),i|
ζU

}

Figure 1. The structure assumptions.
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IV. The columns of V are linearly dependent in time order with the pre-specified priors, ζV and
σV , i.e.,

Pr(V |ζV , σV ) = Pr(V1|ζV , σV )×
t∏

j=2

Pr(Vj|Vj−1, ζV , σV )

We also assume that, for j > 1:

Pr(Vj|Vj−1, ζV , σV ) =
1

2ζV
exp{−|Vj − Vj−1|

ζV
}

V. The (i, j)th entry of R (1 ≤ i ≤ n , 1 ≤ j ≤ t) follows Gaussian distribution with a mean of
UT
(j),iVj and variance σ2

R, i.e.,

Pr(Ri,j|UT
(j),iVj, σ

2
R) = (2πσ2

R)
− 1

2 exp{−
(Ri,j − UT

(j),iVj)
2

2σ2
R

}

Now, given R and the priors, σU , σV , σR, ζU , and ζV , let U = {U(1), U(2), . . . , U(t)}; below, we find a
solution to the following equation:

{U∗, V ∗} = arg
U,V

maxPr(U, V |R, σU , σV , σR, ζU , ζV ) (4)

First, applying Bayes’ theorem, we have:

Pr(U, V |R, σU , σV , σR, ζU , ζV ) =
Pr(U, V,R|σU , σV , σR, ζU , ζV )
Pr(R|σU , σV , σR, ζU , ζV )

Since R is observed and σU , σV , σR, ζU and ζV are pre-specified, the denominator,
Pr(R|σU , σV , σR, ζU , ζV ), can be treated as a constant. Therefore:

Equation (4)⇔
{U∗, V ∗} = arg

U,V
maxPr(U, V,R|σU , σV , σR, ζU , ζV ) (5)

Combing Assumptions (I.) ∼ (V.) and the dependency structure illustrated in Figure 1, we have:

Pr(R,U, V |σU , σV , σR, ζU , ζV )
= Pr(R|U, V, σU , σV , σR, ζU , ζV )× Pr(U, V |σU , σV , σR, ζU , ζV )
= Pr(R|U, V, σR)× Pr(U |σU , ζU)× Pr(V |σV , ζV )

=
n∏
i=1

t∏
j=1

Pr(Ri,j|U(j),i, Vj, σR)×
t∏

j=1

Pr(U(j)|σU , ζU)× Pr(V |σV , ζV )

=
n∏
i=1

t∏
j=1

Pr(Ri,j|U(j),i, Vj, σR)×
t∏

j=1

Pr(U(j),1|σU)
n∏
i=1

t∏
j=2

Pr(U(j),i|U(j−1),i, ζU)

× Pr(V1|σV )×
t∏

j=2

Pr(Vj|Vj−1, ζV )

∝ exp(− 1

2σ2
R

n∑
i=1

t∑
j=1

(UT
(j),iVj −Ri,j)

2))× exp(− 1

2σ2
U

n∑
i=1

||U(i),1||22)

×
n∏
i=1

exp(−
t∑

j=2

|U(j),i − U(j−1),i|
ζU

)× exp(− 1

2σ2
V

||V1||22)× exp(−
t∑

j=2

|Vj − Vj−1|
ζV

)
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Taking the logarithm on both sides and take the missing values into account, then we have:

Equation (5)⇐⇒

{U∗, V ∗} = arg
U,V

min{
n∑
i=1

t∑
j=1

(Ri,j − UT
(j),iVj)

2I(Ri,j 6=′⊥′) + α

t∑
j=1

||U(j),1||22

+ γ

n∑
i=1

t∑
j=2

||U(j),i − U(j−1),i||1 + β||V1||22 + λ

t∑
j=2

||Vj − Vj−1||1} (6)

where α =
σ2
R

σ2
U

, γ =
σ2
R

ζU
, β =

σ2
R

σ2
V

and λ =
σ2
R

ζV
are the regularization parameters.

As a supplement, we have the following comments on Model (6):

I. On the selection of the Gaussian prior: In our model, since no prior information is available for
the columns of the matrices, U(1) and V , hence, according to the max entropy principle [26], a
reasonable choice for them is the Gaussian prior distribution.

II. On the ability to formalize the dynamics of the sensor data: The ability to characterize
the dynamics of the sensor data lies in the terms γ

∑n
i=1

∑t
j=2 ||U(j),i − U(j−1),i||1 and

λ
∑t

j=2 ||Vj − Vj−1||1. Obviously, for any two adjacent time points, Tj−1 and Tj , if the interval
is small enough (namely, |Tj − Tj−1| → 0), then for any area, Si, the values, Ri,j−1 and Ri,j ,
should be close to each other (namely, |Ri,j −Ri,j−1| → 0). This can been enforced by tuning the
parameters, γ and λ (see the following elaboration).

First of all, since for any x ∈ Rn, ||x||2 ≤ ||x||1, we have:

||Ri,j −Ri,j−1||2 = ||UT
(j),iVj − UT

(j−1),iVj−1||2
= ||(U(j),i − U(j−1),i)

TVj + UT
(j−1),i(Vj − Vj−1)||2

≤ ||U(j),i − U(j−1),i||2||Vj||2 + ||U(j−1),i||2||Vj − Vj−1||2
≤ ||U(j),i − U(j−1),i||1||Vj||2 + ||U(j−1),i||2||Vj − Vj−1||1 (7)

Secondly, it is obvious that greater regularization parameters (i.e., α, β, γ and λ) result in
smaller corresponding multipliers (i.e.,

∑t
j=1 ||U(j),1||22, ||V1||22,

∑n
i=1

∑t
j=2 ||U(j),i − U(j−1),i||1

and
∑t

j=2 ||Vj − Vj−1||1). In particular:

γ →∞⇒ ||U(j),i − U(j−1),i||1 → 0 (8)

and:
λ→∞⇒ ||Vj − Vj−1||1 → 0 (9)

Hence, combining Equations (7)–(9), when |Tj − Tj−1| → 0, we can simply take γ → ∞ and
λ→∞ and achieve ||Rj −Rj−1||2 → 0.

On the other side, when |Tj−Tj−1| → ∞, as is well known, the values inRj andRj−1 are regarded
as being independent. In this case, we can take γ → 0 and λ → 0, allowing Rj to be irrelevant
to Rj−1.
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III. On the `1 norm: It is straightforward to verify that, if we replace the `1 terms in Equation (6)
with the `2 terms (equivalently, use the Gaussian distribution instead of the Laplace distribution in
Assumptions (III.) and (IV.)), e.g., replacing ||Vj − Vj−1||1 with ||Vj − Vj−1||22, ||Rj −Rj−1||2 can
still be bounded via tuning the regularization parameters, γ and λ. The reason for adopting the `1
norm here is two-fold: Firstly, as shown above, the `1 terms can lead to the bounded difference
norm, ||Rj − Rj−1||2, and hence, the proposed model accommodates the ability to characterize
the dynamics of the sensor data; secondly, according to the recent emerging works on compressed
sensing [27,28], under some settings, the behavior of the `1 norm is similar to that of the `0 norm.
In terms of our model, this result indicates that the `1 terms can restrict not only the magnitudes of
the dynamics happening to the features, but also the number of features that changed in adjacent
time points. In other words, with `1 norms, our model gains more expressibility.

5. The Algorithm

Below, we present the algorithm to solve Model (6). We denote:

W = arg
U,V

min
n∑
i=1

t∑
j=1

(Ri,j − UT
(j),iVj)

2I(Ri,j 6=′⊥′) + α
t∑

j=1

||U(j),1||22

+ β||V1||22 + γ
n∑
i=1

t∑
j=2

||U(j),i − U(j−1),i||1 + λ
t∑

j=2

||Vj − Vj−1||1

Apparently, W is convex with respect to U(j),i and Vj (1 ≤ i ≤ n and 1 ≤ j ≤ t). Therefore, we can
obtain the local minimum solution via coordinate descent [29].

First, we introduce the signum function, sgn, for a real variable, x:

sgn(x) =


1 if x > 0

−1 if x < 0

0 if x = 0

For X = [x1, x2, ...xn]
′ ∈ Rn, we denote sgn(X) = [sgn(x1), sgn(x2), ..., sgn(xn)]

′.
Then, we calculate the partial subgradient of W with regard to U(j),i (1 ≤ i ≤ n and 1 ≤ j ≤ t)
as follows:

For j = 2, 3, . . . , t, define Fj,i,1 = γsgn(U(j),i − U(j−1),i).
For j = 1, 2, . . . , t− 1, define Fj,i,2 = −γFj+1,i,1.
Let F1,i,1 = Ft,i,2 = 0, and we have:
For i = 1, 2 . . . , n:

∂W

∂U(1),i

= 2αU(1),i − 2(Ri,1 − UT
(1),iVj)VjI(Ri,j 6=′⊥′) + F1,i,1 + F1,i,2

For i = 1, 2 . . . , n and j = 2, 3, . . . , t:

∂W

∂U(j),i

= −2(Ri,j − UT
(j),iVj)VjI(Ri,j 6=′⊥′) + Fj,i,1 + Fj,i,2

Similarly, we calculate the partial subgradient of W with regard to Vj (1 ≤ j ≤ t):
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For 2 ≤ j ≤ t, define Gj,1 = λsgn(Vj − Vj−1).
For 1 ≤ j ≤ t− 1, denote Gj,2 = −Gj+1,1.
Let G1,1 = Gt,2 = 0, and we have:

∂W

∂V1
= 2βV1 − 2

n∑
i=1

(Ri,1 − UT
(1),iV1)U(1),iI(Ri,1 6=′⊥′) +G1,1 +G1,2

and for j > 1:

∂W

∂Vj
= −2

n∑
i=1

(Ri,j − UT
(j),iVj)U(j),iI(Ri,j 6=′⊥′) +Gj,1 +Gj,2

Finally, with the results above, we present the solution algorithm in Algorithm 1.

6. Applications on Missing Sensor Data Imputation

In this section, we evaluate our approach through two large-sized datasets and compare the results with
two state-of-the-art algorithms in terms of parametric sensitivity, convergence and missing data recovery
performance. The following paragraphs describe the set-up, evaluation methodology and the results
obtained. To simplify the parameter tuning, we set α = β and λ = γ in the algorithm implementation.

6.1. Evaluation Methodology

Three state-of-the-art algorithms are selected for comparison to the proposed MMP model. The first
one is the k-nearest neighbor-based imputation model [1]. As a local model, for every missing entry,
Ri,j , the knnmethod takes the estimation, R̂i,j , as the mean of the k nearest neighbors to it. Let N (x) be
the set consisting of the k non-empty entries to x; then:

R̂i,j =
1

k

∑
Ri,l∈N (Ri,j)

Ri,l (10)

The second algorithm is the probabilistic principle components analysis model (PPCA) [30,31],
which has achieved state-of-the-art performance in the missing traffic flow data imputation problem [31].
Denote the observations of the incomplete matrix, R, as Ro. Let x ∼ N(0, I); to estimate the missing
values, PPCA first fits the parameters µ and C with:

{µ∗, C∗} = arg
µ,C

maxPr(x|Ro) ∼ N(xσ−2(I + σ−2CCT )−1CRo, (I + σ−2CCT )−1) (11)

where σ is the tunable parameter. Then, with Ro, µ∗ and C∗, it takes the estimation of the missing values
(denoted as Rm) as:

R̂m = arg
Rm

maxN(Rm|CTx, σ2I) (12)

The third algorithm is the probabilistic matrix factorization model (PMF) [7], one of the most popular
algorithms targeting the Netflix matrix completion problem. PMF first seeks the low rank matrices, U
and V , that:

{U∗, V ∗} = arg
U,V

min
n∑
i=1

t∑
j=1

(Ri,j − UT
i Vj)

2I(Ri,j 6=′⊥′) + α

n∑
i=1

||Ui||22 + β

t∑
j=1

||Vj||22 (13)
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then for the missing entry Ri,j , it takes the estimation as

R̂i,j = UT
i Vj (14)

Algorithm 1: The Multi-Matrices Factorization Algorithm.
Input: matrix R; number of the latent features, d; learning rates, η1, η2, η3 and η4; regularization

parameters, α and λ; threshold ε.
Output: the estimated matrix, R̂.
// Initialize U and V .

1 Draw random vectors, U(1),1, U(1),2, . . . , U(1),n, V1 ∼ N(0, I);
2 for j = 2; j ≤ t; j ++ do
3 Let Vj = Vj−1 + Z; here Z ∼ Laplace(0, 1);
4 end
5 for j = 2; j ≤ t; j ++ do
6 for i = 1; i ≤ n; i++ do
7 Let U(j),i = U(j−1),i + Z; here Z ∼ Laplace(0, 1);
8 end
9 end
// Coordinate descent.

10 W1 =
∑n

i=1

∑t
j=1(Ri,j − UT

(j),iVj)
2I(Ri,j 6=′⊥′) + α

∑t
j=1 ||U(j),1||22

11 +β||V1||22 + γ
∑n

i=1

∑t
j=2 ||U(j),i − U(j−1),i||1 + λ

∑t
j=2 ||Vj − Vj−1||1;

12 W2 = inf;
13 while |W2 −W1| > ε do
14 W2 = W1;
15 for i = 1, 2 . . . , n do
16 Let Unew

(1),i = U(1),i − η1 ∂W1

∂U(1),i
;

17 end
18 for j > 1 and i = 1, 2 . . . , n do
19 Let Unew

(j),i = U(j),i − η2 ∂W1

∂U(j),i
;

20 end
21 V new

1 = V1 − η3 ∂W1

∂V1
;

22 for j = 2 . . . , t do
23 Let V new

j = Vj − η4 ∂W1

∂Vj
;

24 end
25 Replace all U(j),is with Unew

(j),is, and Vjs with V new
j s, recompute W1;

26 end
27 return R̂, where R̂j = UT

(j)Vj;

These three algorithms, as well as the proposed MMF, are employed to perform missing imputations
for the incomplete matrix, R, on the same datasets.

The testing protocol adopted here is the Given X (0 < X < 1) protocol [32], i.e., given a matrix, R,
only X percent of its observed entries are revealed, while the remaining observations are concealed to



Sensors 2013, 13 15181

evaluate the trained model. For example, a setting with X = 10% means that the algorithm is trained
with 10% of the non-missing entries, and the rest of the 90% non-missing ones are held and are to be
recovered. In both of the experiments on synthetic and real datasets, the data partition is repeated five
times, and the average results, as well as the standard deviations over the five repetitions are recorded.

Similar to many other missing imputation problems [1,3–5,7,13,33–35], we employ the root
mean square error (RMSE) to depict the distance between the real values and the estimations: Let
S = {s1, s2, . . . sn} be the test dataset and Ŝ = {ŝ1, ŝ2, . . . ŝn} be the estimated set; here, ŝi is the

estimation of si. Then, the RMSE of the estimation is given by
√

1
n

∑n
k=1 (sk − ŝk)

2.

6.2. Synthetic Validation

To conduct a synthetic validation of the studied approaches, we randomly draw a 100×10, 000 matrix
R using the procedure detailed in Algorithm 2. The rows in R correspond to the areas, S1, S2, . . . , Sn,
and the columns correspond to the time. Thus,Ri,j represents the data collected in Si at time Tj . Notably,
the parameter, ri,j , in Algorithm 2 is used to control the magnitude of the variation happening to Si from
Tj−1 to Tj . Combining lines 4 and 5, we have: for i ∈ [1, n] and j ∈ [1, t], |Ri,j−Ri,j−1

Ri,j−1
| = |ri,j| ≤ 0.1.

This constraint ensures that the data collected in Si does not change too much over time Tj−1 to Tj .

Algorithm 2: Synthetic Data Generating Procedure.

1 for i = 1, 2, . . . , n do
2 Draw Ri,1 ∼ N(0, 1);
3 for j = 2, 3, . . . , t do
4 Let ri,j ∼ Uniform(−0.1, 0.1);
5 Ri,j ← Ri,j−1 + ri,jRi,j−1;

6 end
7 end

We first evaluate the sensitivity of the proposed algorithm to the regularization parameters, α and λ.
Half of the entries in R are randomly selected as testing data and recovered using the remaining 50%
as the training data. Namely, we take X = 50% in the Given X protocol. In the experiments, we first
fix α = 0.01, tune λ via λ = 0.01 × 2n (n = 0, 1, . . . 7) and, then, do the reverse by changing α via
α = 0.01 × 2n (n = 0, 1, . . . 7), but setting λ = 0.01. The average RMSEs with the same parameter
settings on different data partitions are summarized in Figure 2.

In Figure 2, the RMSE-1 curve represents the recovery errors obtained by fixing α and changing the
value of λ. The RMSE-2 curve corresponds to the errors with different α values and fixed λ. We can
see that even when λ is expanded by more than 100 times (27 = 128), the RMSE still remains stable.
A similar result also appears in the experiments on the parameter, α, where a significant change of the
RMSE only occurs when n is greater than six, i.e., when α is expanded more than 60 times.

The second experiment we conduct is to study the prediction ability of the proposed algorithm, as
well as that of the comparison algorithms. In the Given X protocol, we set X = 10%, 20%, . . . ,
90% in sequence. Then, for each X value, we perform missing imputations via our algorithm and
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the comparison algorithms. In the all implementations, we set k = 5 for the knn model. As with
the MF-based algorithms, we examine their performance with respect to the latent feature dimension
d = 10 and d = 30 respectively. Furthermore, in the implementation of MMF, we fix α = λ = 0.1,
η1 = η2 = η3 = η4 = 0.01. All results are summarized in Table 1.

Figure 2. Empirical studies on parameter sensitivity.
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Table 1. Recovery errors on the synthetic dataset (mean ± std).

10% 20% 30% 40% 50% 60% 70% 80% 90%

knn 13.41 ± 0.62 6.80 ± 0.19 4.44 ± 0.06 3.12 ± 0.05 2.27 ± 0.02 1.81 ± 0.09 1.72 ± 0.01 1.69 ± 0.05 1.62 ± 0.06
PPCA 17.09 ± 2.08 20.24 ± 1.30 22.75 ± 1.32 23.96 ± 2.19 20.79 ± 1.00 16.67 ± 1.34 18.68 ± 0.81 11.98 ± 0.70 5.11 ± 3.10

d = 10 PMF 3.23 ± 0.23 3.33 ± 0.19 3.29 ± 0.12 3.34 ± 0.07 3.29 ± 0.09 1.69 ± 0.04 1.83 ± 0.02 1.81 ± 0.03 1.85 ± 0.04
MMF 3.07 ± 0.07 2.21 ± 0.10 2.14 ± 0.09 1.98 ± 0.06 1.93 ± 0.06 1.92 ± 0.04 1.75 ± 0.03 1.84 ± 0.02 1.80 ± 0.03
PPCA 19.65±3.01 22.48 ± 0.86 24.86 ± 1.54 23.99 ± 0.61 22.67 ± 0.49 20.22 ± 1.46 17.53 ± 0.70 14.23 ± 1.70 11.14 ± 1.72

d = 30 PMF 3.20 ± 0.21 3.32 ± 0.13 3.35 ± 0.09 3.36 ± 0.11 3.31 ± 0.07 1.78 ± 0.04 1.81 ± 0.02 1.79 ± 0.02 1.86 ± 0.11
MMF 3.06 ± 0.05 2.17 ± 0.08 2.07 ± 0.05 1.94 ± 0.03 1.74 ± 0.03 1.62 ± 0.02 1.64 ± 0.03 1.65 ± 0.01 1.69 ± 0.03

As shown in Table 1, whenX is large, e.g.,X ≥ 50%, knn is competitive with the matrix factorization
methods, while in the other situations, the MF methods outperform it significantly. In terms of the
MF-based methods, we find that our algorithm outperforms PPCA significantly in all settings. The
RMSEs of our algorithm are at most roughly 20% of that of PPCA. Specifically, for X ∈ [30%, 80%],
the RMSEs of the proposed algorithm are even only 10% of that of PPCA. We can also observe that the
parameter, d, has a different impact on the performances of our algorithm and PPCA: When d changes
from 10 to 30, most of the RMSEs of PPCA increase evidently, while for our algorithm, the RMSEs are
reduced by roughly 5%.

When compared with PMF, our algorithm also performs better in most of the settings: PMF achieves
lower RMSEs than MMF only in two cases, in which d = 10, X = 60% and d = 10, X = 80%

respectively. Another interesting finding is that the promotion of the feature number, d (from 10 to 30),
has little impact on the performance of PMF.

We also exam the convergence speed of the proposed algorithm. In the missing recovery experiments
conducted above, for each X setting, we record the average RMSE of the recovered results after every
10 iterations of all data partitions. We can see from Figure 3 that, for all X values, the errors drop
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dramatically in the first 20 iterations and remain stable after the first 100 iterations. We can conclude
that the proposed algorithm converges to the local optimization solutions after around 100 iterations.

Figure 3. Empirical studies on convergence speed.
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6.3. Application to Impute the Missing Traffic Speed Values

To evaluate the feasibility of the proposed approach on real-world applications, in this section, we
conduct another experiment on a traffic speed dataset, which was collected in the urban road network
of Zhuhai City [36], China, from April 1, 2011 to April 30, 2011. The data matrix, R, consists
of 1, 853 rows and 8, 729 columns. Each row corresponds to a road, and each column corresponds
to a five minute-length time interval. All columns are arranged in ascending order of time. An
entry, Ri,j (1 ≤ i ≤ 1, 853, 1 ≤ j ≤ 8729), in R is the aggregate mean traffic speed of the ith road in
the jth interval. Since all the data in R are collected by floating cars [37], the value of Ri,j could be
missing if there is no car on the i th road in the j th time interval. Our statistics show that in R, there are
nearly half of the entries, i.e., eight million entries are missing values.

We perform missing imputation on matrix R using the studied algorithms with parameter settings
k = 5 and d = 10. In the implementation of MMF, we fix α = 0.25, λ = 0.5, η1 = η2 = η3 = η4 = 0.5.
We summarize all results in Table 2, from which both the feasibility and effectiveness of MMF are well
verified. In detail, when X is large enough, e.g., X ≥ 80%, knn is competitive, while in the other
cases, knn cannot work as well as the MF based algorithms. As for the MF algorithms, we see that the
proposed MMF outperforms PPCA and PMF in all X settings. Particularly, when the observations are
few (X = 10% and X = 20%), the errors of our algorithm reduce by 33% compared to those of PPCA
and by 10% compared to those of PMF, respectively. When X > 20%, the RMSE differences between
PPCA and our algorithm tend to be slight, but the overall errors of PPCA are roughly 3% ∼ 5% higher
than those of MMF. For PMF, the RMSEs remain about 10% higher than MMF in all settings.

Table 2. Recovery errors on the transportation dataset (mean ± std).

10% 20% 30% 40% 50% 60% 70% 80% 90%

knn 40.47 ± 0.02 31.79 ± 0.01 25.41 ± 0.02 21.35 ± 0.00 18.33 ± 0.00 15.89 ± 0.01 13.73 ± 0.01 11.67 ± 0.00 9.45 ± 0.02
PPCA 17.90 ± 0.01 17.36 ± 0.01 13.00 ± 0.02 12.25 ± 0.01 11.47 ± 0.01 11.31 ± 0.03 11.19 ± 0.02 11.14 ± 0.04 11.16 ± 0.10
PMF 14.41 ± 0.01 12.83 ± 0.03 12.43 ± 0.01 12.33 ± 0.02 12.36 ± 0.01 12.35 ± 0.01 12.13 ± 0.00 11.99 ± 0.03 11.96 ± 0.02
MMF 11.79 ± 0.02 11.51 ± 0.01 11.43 ± 0.01 11.05 ± 0.02 11.05 ± 0.01 11.01 ± 0.00 10.83 ± 0.01 10.69 ± 0.01 10.70 ± 0.02
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7. Conclusion

Missing estimation is one of the main concerns in current studies on sensor data-based applications. In
this work, we formulate the estimation problem as a matrix completion one and present a multi-matrices
factorization model to address it. In our model, each column,Rj , of the target matrix,R, is approximated
by the product of a spatial feature matrix, U(j), and a temporal feature vector, Vj . Both Uj and Vj are
time dependent, and hence, their product accommodates the ability to describe the time variant sensor
data. We also present a solution algorithm to the factorization model. Empirical studies on a synthetic
dataset and real sensor data show that our approach outperforms the comparison algorithms.

Reviewing the present work, it is notable that the proposed model only incorporates the temporal
structure information, while the information on the spatial structure is disregarded, e.g., the data collected
in two adjacent areas, Sk and Sl, should be close to each other. Hence, our next step is to extend our
model with more complex structured data.
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