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Abstract: Vehicular communication platforms that provide real-time access to wireless 

networks have drawn more and more attention in recent years. IEEE 802.11p is the main 

radio access technology that supports communication for high mobility terminals, however, 

due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular 

networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, 

vehicular communication is characterized by its short time span in association with a 

wireless local area network (WLAN). Moreover, for the media access control (MAC) 

scheme used for WLAN, the network throughput dramatically decreases with increasing 

user quantity. In response to these compelling problems, we propose a reinforcement sensor 

(RFS) embedded vertical handoff control strategy to support mobility management. The 

RFS has online learning capability and can provide optimal handoff decisions in an adaptive 

fashion without prior knowledge. The algorithm integrates considerations including 

vehicular mobility, traffic load, handoff latency, and network status. Simulation results 

verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users 

to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are 

adequate, thereby guaranteeing a high quality user experience. 

Keywords: vehicular communication; heterogeneous network; vertical handoff; machine 

learning; automatic control 
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1. Introduction 

Vehicular communication platforms that provide real-time access to safety and entertainment 

services are attracting more and more attention. Infotainment applications are the key to opening up 

and expanding this new market because they can dramatically improve the driving experience. 

Traditional cellular networks can provide global wireless coverage, however, the IEEE 802.11p 

network, which is designed for high mobility terminals, represents a competitive alternative for 

vehicular communication [1]. This network mode can enhance data transmission, further enabling 

various infotainment applications. Additionally, it facilitates services for road safety and traffic 

management (i.e., electronic tolls, traffic control, parking lot management) [2,3]. Therefore, roadside 

802.11 access points, also called Roadside Units (RSUs), are important to supplement the cellular 

network for vehicular communication. In general, cellular systems perform better with high mobility 

services, even though these services provide lower data rates than WLANs. Heterogeneous wireless 

network technologies also help satisfy the diverse Quality of Service (QoS) demands from different 

users. It is evident that the inter-working and cooperation of both types of wireless networks will 

become an important issue in the future of vehicular communication. 

Because different radio access technologies satisfy different QoS demands for different users, 

establishing a connection with the most suitable network under any given condition, which is called 

Always Best Connected (ABC), represents an interesting concept for increasing the diversity of 

wireless networks [4]. To realize this concept, heterogeneous mobility management has been 

comprehensively investigated. Vertical handoff (i.e., the transfer of an active session across 

heterogeneous access networks) is an integral component of heterogeneous mobility management. 

When a user tries to switch to a more suitable network to optimize performance and monetary cost, a 

vertical handoff process will be initiated. This provides the capability of seamless communication and 

better QoS It is also the most relevant issue for meeting the goal of ABC heterogeneous networks. To 

implement this strategy, multiple radio interfaces need to be equipped on a terminal to support the 

vertical handoff. Such devices have been widely available in the market for several years. Vertical 

handoff can be categorized into two classes with respect to the types of networks involved in the 

handoff process. When the terminal switches from a large coverage network (e.g., cellular) to a small 

coverage network (e.g., WLAN), the process is describe as a Downward Vertical Handoff (DVH). 

When the terminal switches from a small coverage network to a large coverage network, the process is 

described as an Upward Vertical Handoff (UVH). 

Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) are the two enabling modes for 

vehicular communication by Intelligent Transportation System (ITS). In this work, we focus on a 

vehicular heterogeneous wireless network consisting of a global coverage cellular network 

complemented by a V2I communication mode, illustrated in Figure 1. The cellular network and the 

WLAN are loosely coupled. The main components of the cellular network are the Base Transceiver 

Station (BTS), Base Station Controller (BSC), Packet Control Function (PCF), and other components 

in the packet switch domain. Vehicles are equipped with On-Board Units (OBUs) that enable 

connections to RSUs. Because WLAN potentially provides better channel conditions with lower (or free) 

monetary costs, V2I communication is expected to improve QoS, enabling higher throughput and better 

balance for the network load.  
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Figure 1. The reference scenario for the vehicular heterogeneous wireless network. 
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However, vehicular communication is characterized by its short span of time in association with a 

RSU. Moreover, the MAC scheme for WLAN dramatically decreases network throughput with 

increasing user quantity. Therefore, a reasonable handoff control strategy should be devised to 

guarantee that the network works efficiently. As a counter-example, an inappropriate handoff controller 

may result in degeneration of the overall network performance when many vehicles try to switch to the 

same RSU. This will, in effect, lower the achievable data rate for WLAN relative to the cellular network 

due to increased congestion delays. Furthermore, this will decrease the Quality of Experience (QoE) for 

the user. For heterogeneous networks, many types of vertical handoff algorithms have been proposed 

to improve performance. A brief summary of these systems is provided below. 

In 2004, McNair and Zhu proposed a comprehensive handoff algorithm that considered service type, 

monetary cost, network conditions, etc. [5]. In 2007, Lee et al. presented a movement-aware vertical 

handoff trigger scheme for WLAN/WiMAX heterogeneous networks that used an adaptive dwell timer 

to improve terminal connections [6]. In the same year, a SINR based vertical handoff algorithm was 

provided by Yang. This algorithm converted the SINR value from one network to an equivalent value 

for the target network to enable the handoff decision [7]. Soon after, Chang proposed an adaptive 

vertical handoff algorithm using predictive RSS. Simulation results were used to validate this 

algorithm, which was designed to reduce unnecessary handoff and improve dropping rate [8]. In 2011, 

Haider et al. used intelligent fusion of adaptive threshold, signal trend and dwell timer as the inputs of 

vertical handoff trigger algorithm and obtained a better result than many of traditional algorithms [9]. 

More recent studies were reported by Tabrizi in 2012. A Q-learning based strategy was adopted to 

achieve network selection with the goal of maximizing quality of experience. They found that the 

number of handoffs obtained through Q-learning algorithm can be significantly reduced compared to 

the optimum algorithm [10]. However, conventional handoff decision making algorithms are mainly 

based on the network status and the user’s preference. They seldom consider the high mobility of a 

terminal, which is the most important characteristic of vehicular communication. When a handoff 

decision is executed, there can be trouble with switching to a WLAN network and then immediately 

switching back to the original cellular network. Therefore, vehicular mobility should be taken into 

account with respect to the feasibility of vertical handoff decisions.  
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Only a few studies have investigated the vertical handoff decision making mechanism using high 

mobility patterns for the users. A centralized Location Service Server (LSS) has been proposed for 

vertical handoff decisions [11]. Using this strategy, vehicles periodically report their current positions 

and receive information about potential nearby networks. A utility function is then used to calculate 

the satisfaction of the users with the available networks. This information is fed back to the LSS. 

Finally, the handoff decisions are provided by the LSS and reported back to the users. In [12], the 

authors proposed a distributed vertical handoff strategy for V2V and V2I communication and assessed 

the communication cost and transmission time. This work presented a heuristic analytical handoff 

strategy based on an ideal scenario, where the coverage radius of the WLAN and the data rate for the 

cellular network and the WLAN were fixed. Moreover, studies in [11,12] were based on the 

assumption that vehicles are equipped with GPS units that provide accurate positions at any time. This 

prerequisite might limit the feasibility and universality of the proposed strategies. In [13], the authors 

developed a vertical handoff control algorithm that took into account load balancing and battery 

lifetime maximization. In addition, they devised a route selection algorithm for forwarding data 

packets to the most appropriate attachment point for the same objective. In addition to these studies, an 

adaptive MAC scheme for WLAN has been proposed that uses traffic density data [14]. This algorithm 

can adjust the back off time for different traffic conditions and network conditions, achieving a lower 

collision and drop rate than traditional methods. Finally, a vehicular-IP MAC scheme that addresses 

the limitation of 802.11p standard for operation of IP applications was proposed in [15].  

However, there are still many challenges for vertical handoff control in vehicular heterogeneous 

networks. To data, relatively little effort has been devoted to exploring vertical handoff strategies in 

realistic scenarios (e.g., multiple vehicles simultaneously accessing a RSU, and MAC layer adopts 

adaptive Modulation and Coding Scheme (MCS). Moreover, traditional vertical handoff control 

algorithms are mostly designer controlled. The handoff decisions are calculated by a predefined flow 

that integrates a number of metrics about network load, terminal status, and user’s preference, etc. 

However, it is usually hard to establish a model for mapping from numerous related input parameters 

to arrive at an optimal decision. In particular, many metrics differ from case to case, such as channel 

parameter with respect to attenuation factor and standard deviation of shadow fading. These parameters 

vary based on the environment [16]. Furthermore, they need to be measured practically, which may be 

financially costly. These challenges severely restrict the feasibility and universality of traditional 

vertical handoff algorithms. This is the motivation for the work in this paper. 

The key contribution of this paper is stated as follows: we propose an RFS embedded vertical handoff 

control strategy for vehicular heterogeneous networks. In contrast to traditional designer-controlled 

handoff algorithms, our proposed sensing system is based on robust control and employs adaptive  

real-time learning. Our system is objective-oriented, continuously exploring optimal solutions with 

respect to system performance. We apply our system for improving infotainment applications. These 

applications benefit from high throughput and are not sensitive to delay and jitter. The WLAN supplies 

relatively long service time by providing a higher data rate than the cellular network. For low traffic 

density, this handoff strategy can enlarge the valid area, allowing a higher number of users and 

increasing the accessing duration. The strategy can also shrink the valid area to enhance network utility 

and in avoid degeneration of the overall network performance. This strategy guarantees that RSUs can 

serve as high-throughput hotspots to supplement the cellular network. The algorithm integrates 
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vehicular mobility, traffic load, handoff latency, network status, and link level data transmitting 

conditions. It can adjust the handoff policies for different input metrics, providing optimal handoff 

decisions without prior knowledge. It can also reduce the effort required to measure channel parameters 

such as attenuation factor and standard deviation of shadow fading, which are recognized as general 

requirements for traditional algorithms. Besides that, relative research verifies that channel parameters 

can be affected by temperature, humidity, and other environmental factors [17], decreasing the utility 

of handoff control strategy. This can be overcome by adaptively sensing environmental characteristics 

using our proposed algorithm. 

Our paper is organized as follow: Section 2 provides a general description of the work, 

demonstrating the overall framework of the proposed vertical handoff controller. Section 3 presents the 

mathematical model for the RFS. Section 4 presents the simulation scenario and the numerical results. 

Section 4 also compares two basic types of handoff control methods, which are based on a threshold 

and a dwelling-timer. Finally, Section 5 provides our conclusions. 

2. General Description 

We focus on a typical vehicular communication scenario that is covered by both a cellular network 

and a WLAN, as depicted in Figure 1. The motivations for this choice are the widespread availability 

of dual-mode terminals for these technologies and the complementary characteristics of cellular 

networks and WLAN, where the cellular network provides a global coverage with relatively lower 

throughput and the WLAN provides support for higher data rates but with limited coverage. In the 

overlapping radio area of for the cellular network and the WLAN, the vehicle has the option of using 

either of them. Because the coverage range of WLAN is generally much smaller than the length of a 

major road, we confine the analysis in the spatial domain to a single direction of moving vehicles. We 

consider infotainment applications (i.e., file transmitting, non-real time streaming) as the service type 

of communication. These services benefit from a high data rate, and they are not sensitive to delay or 

jitter. This is widely accepted as a necessary precondition for switching from cellular to WLAN. The 

proposed algorithm is expected to achieve autonomous control for the handoff requests to guarantee 

that vehicular terminals always connect to the best network with the highest individual throughput. 

Note that there are two modes for V2I communication allowed by 802.11p. Association or 

authentication is not required when the management information base (MIB) attribute 

“dot11OCBEnabled” is “true”. This access scheme benefits certain types of services that require low 

latency (e.g., safety related services). On the other hand, the shortcoming is that such stations are 

neither associated nor authenticated, and the authentication and data confidentiality cannot be 

guaranteed. The other mode is that, an on-board unit for which “dot11OCBEnabled” is “false” still 

needs to complete an association and authentication procedure, which are the same as in the 802.11 

managed mode. In this paper, we adopt the second mode due to the fact that the proposal focuses on 

private data services, which are not safety related. Therefore, the access procedure is the same with 

802.11 managed mode, for which a vertical handoff procedure always follows a considerable latency. 

To obtain relatively realistic simulation results, different data rates based on the channel condition, are 

adopted in the MAC layer of WLAN. 
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Q-learning is a classical reinforcement learning algorithm with outstanding self-adaptive capability 

that is used as the core component of the RFS. It can function for sensing and learning. Originally 

proposed by Watkins and Dayan [18], Q-learning has been widely explored in the field of automatic 

control. In the original literature, the overall framework of the learning procedure is demonstrated. 

Many componential functions of Q-learning (e.g., membership function and reward sensing function) 

are not specified in the original work. These issues are left up to scholars and engineers who want to 

develop the algorithm for specific problems. We propose a complete judging, sensing and learning 

procedure (detailed in Section 3). Meanwhile, to overcome the limitations of classical Q-learning (e.g., 

discrete state perception and discrete actions), a Neural Fuzzy Inference System (NFIS) is adopted to 

retain continuous perception of the state space. This algorithm infers the global policy, which is 

relative to the state, from local policies associated with each rule of the learner. With respect to 

machine learning, NFIS is embedded to introduce generalization in the state space and generate 

continuous actions. On the other hand, with respect to fuzzy logic’s point, Q-learning is used to tune 

the fuzzy controller.  

Our proposed strategy senses the feasibility of handoff decisions and explores optimal solutions for 

different traffic and channel conditions. It can be used as an independent unit in the RSU for handoff 

control. Therefore, we regard it as a generalized sensor, although it does not sense physical 

measurements. The proposed algorithm is considered to be a centralized handoff controller. It can be 

integrated as a module in the RSU. In contrast to distributed handoff controlling strategies, it avoids 

high latencies and loss of large numbers of packets during the handoff process [19]. Another advantage 

of its centralized structure is that it can guarantee network performance from an overall point of view, 

which cannot be achieved using a distributed structure. We assume the information needed by handoff 

control can be sent by periodically broadcast beacon messages. RFS is designed to work before the 

authentication process. If the handoff decision is “yes”, then the conventional authentication and 

association procedure will be triggered. On the other hand, if the handoff decision is “no”, then the 

request will be ignored and dropped. The OBU needs to wait after the interval of handoff request to 

initiate the next handoff request.  

2.1. DVH Process 

Figure 2 shows the approximate flow for the handoff processing based on RFS. In the left part of 

the figure, when an OBU approaches an RSU and receives the beacon signal, it will initiate the vertical 

handoff process. We assume the information needed by handoff control, including the measures of 

           ,     , and     , can be sent by periodically broadcast beacon messages, where   is the time 

instant. A similar approach was used in the work of [12]. According to the protocol [1], “Vendor 

Specific” of beacon frame can be used to carry the needed information. Considering the potential range 

of the measurements, each of them can be recorded and transmitted by using 7 bits, which includes  

128 levels. Therefore, the overhead for each beacon frame is 21 bits. Here we use the mean value of 

the RSS between the interval of current handoff request and the previous request. This can reduce the 

deviation caused by shadow fading according to the maximum likelihood estimation principle. Symbol 

V and D are the velocity of OBU and the data quantity to be transmitted, respectively. The handoff 

controller sends these measurements, along with S, which is the quantity of real time users, to the 
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reinforcement sensor. RSS and V relate to the vehicular position and motion information. D reflects the 

necessity of vertical handoff. For services involving known data transmission (e.g., file downloading 

and video streaming), D is used as an input to avoid unnecessary handoffs. For example, an OBU can 

switch into WLAN for a better data rate, even though the session is already going to be finished. Note 

that the data to be transmitted cannot be obtained for every type of service. For some cases, this 

parameter is set as an infinite value. The data to be transmitted is then regarded as a large quantity by 

fuzzification function. It will not affect the judgment of the handoff decision. Based on the MAC 

scheme for 802.11p, the quantity of real-time users denoted by S directly reflects the current network 

performance. We take these metrics as the input for the vertical handoff decision making system. 

Figure 2. The architecture of the RFS embedded vertical handoff controller. 
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The reinforcement sensor consists of Q-learning and NFIS, where Q-learning is used to achieve an 

adaptively sensing ability and NFIS is used to retain a continuous perception of the state space. A 

handoff decision will be given as the output of the RFS. The NFIS follow Takagi-Sugeno [20] 

structure, whereby each fuzzy rule is in the form of: 

IF             is       AND      is       AND      is       AND 𝑆    is       

THEN handoff action is   with  , 

where       is the linguistic    th variable related to the  th input metric, and   is the reinforcement 

sensing value that guides the self-learning of RFS. A detailed description is presented in Section 3. 

2.2. UVH Process 

When the vehicle is departing the RSU, the RSS becomes weak and the MCS level becomes low. 

As a result, the data rate will decline gradually. Because the vehicle has already associated with the 

RSU, the individual throughput is known. Therefore, the handoff strategy from the WLAN to the 

cellular network can be relatively simpler than the reverse procedure. To reduce the computational 

complexity, we apply an algorithm that integrates the threshold and Fast Fourier Transformation based 

Decay Detection (FFT-DD) [21], as depicted in the right part of Figure 2. FFT-DD is employed to 

determine the trend of the WLAN signal and identify the vehicle as it approaches and departs the RSU. 
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For this purpose, we calculate the imaginary part of the fundamental component of the FFT for the past 

  WLAN signal samples, as shown in Equation (1): 

       𝑆𝑆  −       
−   

 
 

   

   

 (1)  

A positive value for      indicates a rising signal trend, while a negative value reflects a decaying 

signal trend. The duration of the vehicle association with the RSU is relatively short. Therefore, we 

assume that the cellular data rate is steady during this period and is used it as a reference for the 

handoff judgment. The UVH process is initiated when the data rate is lower for WLAN than for 

cellular and the FFT-DD indicates that the RSS signal is decaying. When an OBU switches back to the 

cellular network, the backward propagation of the RFS is triggered. This procedure achieves the 

sensing and parametric learning functions. The handoff controller evaluates the complete handoff 

actions of the DVH and UVH. It then tunes the parameters for the RFS. The sensing and learning 

process can be switched off to reduce computational complexity when the handoff control system 

collects enough knowledge and achieves stability. The detailed scheme for the RFS is described in the 

next section. The pseudo-code for the proposed handoff control scheme is presented in Table 1. 

Table 1. Pseudo-code for the proposed handoff control scheme. 

Procedure at OBU 

if communicating with cellular network and an RSU is detected 

 Send beacon frame periodically with terminal measures                         

elseif communicating with RSU 

 Send beacon frame periodically with terminal measures        

endif 

Procedure at RSU (loop by handoff control interval) 

DVH control for new user i 

Receive terminal measures                         

Send measures                   𝑆          to RFS 

Handoff control according to the output of RFS 

UVH control for associated user j 

Receive terminal measures        

Judge the trend of WLAN signal according to FFT-DD 

Handoff control according to the output of FFT-DD and threshold 

Calculate reward sensing value   

Update reinforcement sensing signal q 

3. Mathematical Model 

The topology of the reinforcement sensor is shown in Figure 3. The neurons in the different layers 

achieve different functions. The only information available for learning is the system feedback, which 

is the reinforcement sensing signal according to the last action it performed in the previous state  

(e.g., switching out of the RSU). We use   
 
 and   

 
 to represent the input and output of the     node in 

     layer, respectively. To demonstrate the mathematical model in a universal manner, we include 

equations with unfixed dimensions for the input state vector  𝑁  and membership function    .  
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Figure 3. The topology of the reinforcement sensor. 
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3.1. Forward Propagation 

L1 input layer: This layer consists of 𝑁 neurons, all of which transmit the input value directly by:  

  
    

           …  𝑁  (2)  

We use            ,     , 𝑆    and      for the input state vector. Therefore the input can be 

represented by Equation (3): 

         
       

       
       

                        𝑆          (3)  

L2 input linguistic layer: The neurons in this layer perform fuzzification. As shown in Equations (4) 

and (5),      is the linguistic variable related to the input value. Namely   
  is the fuzzy membership 

value with respect to input metric. It reflects the degree that the input value corresponds with       

(i.e., the degree of             related to linguistic variable “high” is 0.8 and the degree of      related to 

linguistic variable “very low” is 0.2). The output of layer 2 is presented in Equation (4), where the 

Gaussian Function is used as the parameterized membership function. The relationship between input 

and output of each neuron is shown in Equation (5). Each row in matrix      is a linguistic variable 

set related to one dimension of the input state vector. Increasing the dimension of linguistic variable set 

will lead to a high accuracy of the reinforcement sensor, while the computational complexity will rise 

exponentially. Based on this consideration, we use a five dimensional linguistic variable set. Our 

simulations verify that this quantity of linguistic variables can guarantee the accuracy of the sensor 

with a low computational complexity: 
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  (4)  

       
       −

 

 
 
  

 −     

    
 

 

          …  𝑁          …     (5)  

L3 rule layer: This layer achieves the fusion of the fuzzy rules. The output is equal to the fuzzy 

multiplication operation for each input value. It implements the precondition of the T-S logic. 

According to the functions of layer 2, the continuous state space of input metrics has been divided by 

the membership functions into discrete sub-state spaces.    and    
 are the sub-state and the  

entire sub-state space, respectively. Therefore,              …      . For the   th dimension,  

the membership set of the input vector    𝑁  is            
           

            
      

        …  𝑁 , where   is the quantity of membership function.    
 is the rule space mapping the 

discrete sub-state space. Each element in    
, which is denoted by       , can be regarded as 

weighting for the sub-state   . The rule value is calculated by Equation (6), where         …     : 

                          
   

              
   

         

         
   

        
(6)  

Equation (7) is the output of layer 3, where     
  is the     membership of     input metric: 

  
              

 

 

         
   

         
   

       

 

 

        …  𝑁          …             …      

(7)  

L4 output linguistic: Every neuron in this layer includes a local action-reinforcement pair, which is 

represented as        . The action set is a predefined finite set including the probable solutions in 

output space. For example with regard to a vertical handoff decider, the local action set is defined as 

                                                                     . Although there are only 

two final handoff decisions (i.e., access and reject), here we use a more detailed action set including 

four local actions in pursuit of higher resolution for the output linguistic space, which can enhance the 

accuracy of the system. Corresponding to each sub-state   , the local action      is guided by the 

related local reinforcement         . Assuming the optimal local action is   
 , satisfying Equation (8): 

  
        

  

                         …      
(8)  

The output of layer 4 is the normalized local action and the local reinforcement value. They are 

denoted as Equations (9) and (10), respectively: 

  
           

          
  

   
 

  

   
    

      
 

  

   
 

  

 (9)  

   
                

           
  

   
 

  

   
         

       
 

  

   
 

  

 (10)  
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L5 defuzzy & ouput layer: The neurons in the last layer achieve defuzzification by linear summation. 

The global action   and global reinforcement   (see Definitions 1 and 2) are obtained by the fusion of 

the local action and local reinforcement as shown in Equations (11) and (12), respectively: 

  
     

 
  

   
 (11)  

   
      

 
  

   
 (12)  

Definition 1: let          be the global action base on the input state vector      ; then 

          is the optimal global action combined by every optimal local actions   
 , which are all 

guided by        
  . 

Definition 2: let                   be the global reinforcement value with respect to the  

state-action pair                 ; correspondingly,                    is the optimal global 

reinforcement related to the optimal global action          . 

Overall, the global action   and the global reinforcement   value can be represented as follows: 

                     
          

  

   
 

  

 
  

   
 (13)  

                                   
           

  

   
 

  

 
  

   
 (14)  

3.2. Backward Propagation 

According to Figure 2, the backward propagation of the RFS will be triggered after an OBU 

switching back to the cellular network. The backward propagation phase achieves the sensing and 

parametric learning functions. The handoff controller evaluates the complete handoff actions involving 

the DVH process and UVH process and then calculates the reinforcement sensing signal according to 

the policies we predefine below. The parametric conclusions in layer 4 of the RFS associated with all 

possible combinations of the linguistic variables can be tuned by the reinforcement sensing signal. 

The OBU state transition is                  
       
               . According to the update 

principle from classical Q-learning [18], the global reinforcement signal is updated by Equation (15), 

where   is learning rate,   is discount factor,   is reward sensing value, and    is the handoff latency: 

                   

   −                                       
              

(15)  

The difference of Q value is represented by Equation (16): 

                      −                    

    −                                 
              

(16)  

http://dict.cn/%5B%E8%AE%A1%5D%20state%20transition
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According to an ordinary gradient decent principle, the local reinforcement q value can be updated 

by Equation (17): 

        
          

             
                     

  

   
 

  

 (17)  

The reward sensing value   in the form of a positive or negative value is evaluated according to the 

validity of the handoff decision after the OBU logs out of the RSU. It is applied to tune the local q 

value. It should be set as a normalized value that reflects the system performance. As discussed in 

Section 2, handoff behaviors for high individual throughput should be encouraged. Positive reward 

sensing should therefore be used. On the other hand, if a terminal switches to a RSU and obtains a 

lower average individual throughput than that the cellular network, it should be given a negative 

reward sensing value. The absolute value of the reinforcement sensing value reflects how well the 

handoff decision satisfies or dissatisfies the objective. To distinguish the symbol of reward sensing 

from the symbol of the individual throughput, we present the former in a script style. 

The    and       are the average individual cellular and WLAN throughput at time instant  , 

respectively. When the OBU switches into RSU, the immediate individual throughput is lower than the 

cellular network. The reward sensing is given as follow, where       is the time instant for the duration 

of handoff latency due to the association and authentication procedures. 

If             , then the reward sensing signal is defined as: 

  
         −   

  
 (18)  

Assuming an OBU is approaching a RSU,         is the timing that the OBU initiates the first 

handoff requests, and        is the timing that the OBU initiates the procedure of UVH. To explore the 

feasibility of the handoff and the best handoff timing, we define the reward sensing as follows, where 

       is the average individual throughput during the period of        −         . The calculation for 

       is shown in Equation (19). The average individual throughput includes the data transmission for 

both cellular and WLAN: 

       
 

      −            
           

        

       

        
      

     

 

 
 

      −            
          −   −                  

      

     

  
(19)  

If          , as we discussed before, positive reward sensing is given by: 

  
      −   

      
 

  −           −                       −   −                  
      

     

 

  

 

(20)  

In this paper, we suppose data to be transmitted is known information. However, for the cases that 

data to be transmitted cannot be known from each handoff request, if          , several conditions 

need to be considered as follow: 

(a) OBU does not finish data transmitting during the period of associating with RSU; 
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(b) OBU finishes data transmitting during the period of associating with RSU, and data to be 

transmitted is known information; 

(c) OBU finishes data transmitting during the period of associating with RSU, and data to be 

transmitted is unknown information. 

For conditions (a) and (b), a negative reward sensing is given by Equation (21). Note that, a 

particular case is presented in condition (c). A wrong handoff decision is taken, and the problem is that 

we do not know if the car had or not traffic to send. It should be the best decision with the information 

available. Trying to reject similar handoff requests afterwards is not right. Generally, condition (c) 

happens at a low probability (data transmitting finished immediately after handoff triggered). It is hard 

to evaluate the feasibility of handoff decision for this type of handoff requests. In avoid of causing the 

degeneration of the system performance, reward sensing is given by     for condition (c):  

  
      −   

  
 

 
 

         −             
          −   −                  

      

     

 −   

(21)  

Here we demonstrate an example to explain the working schemes for Equations (18)–(21). If a 

vehicle switches to a WLAN but then stops exchanging traffic immediately, the proposed mechanism 

will judge the reasonability of the handoff behavior according to the parameter        in Equation (19). 

Because the OBU suffers from handoff latency, but benefits little from WLAN, it is likely to be an 

unnecessary handoff, which is not encouraged. If          , the OBU achieves lower average 

individual throughput after executing the handoff than if it stayed in the cellular network. The reward 

sensing value is calculated by Equation (21). A negative reward  , which also can be recognized as a 

punishment signal, is obtained and used to tune the reinforcement system. For the adaptive learning 

capability, the proposed mechanism will remember this handoff behavior, and try to reject similar 

handoff requests thereafter. 

4. Performance Evaluation 

A typical outdoor vehicular heterogeneous wireless communication scenario covered by cellular 

and WLAN is shown in Figure 1. We assume RSUs are deployed at the road side with 400 m  

inter-distance and are 10 m away from the roadway. They operate at 5.9 GHz and adopt the same PHY 

as IEEE 802.11a, except that only 10 MHz channel spacing is used instead of 20 MHz, for the reason 

of the increased RMS delay spread in the vehicular environments. Due to the 10 MHz channel spacing, 

two-folded timing parameters provide longer guard interval to offset increased RMS delay, and 

therefore, preventing inter-symbol interference. [22]. Depending on MCS level, the WLAN can 

provide data rate ranging from 3 Mbps to 27 Mbps including signaling cost. The Distributed 

Coordination Function (DCF) with binary exponential backoff algorithm is adopted in MAC layer, and 

the related packet transmitting parameters are demonstrated in Table 2. As discussed in Section 2, we 

suppose MIB attribute is set to “false”, so that vertical handoff behavior always followed by a 

relatively considerable latency. 

  

http://en.wikipedia.org/wiki/Binary_exponential_backoff
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Table 2. Simulation parameters. 

Parameter Value 

Tx power of RSU      100 mW 

Path loss in the first meter      37.3 dB 

Path loss exponent     3 

Gaussian shadow fading       (0,5) dB 

Handoff latency      2 s 

Beacon interval 50 ms 

Data rate in cellular network      0.6 Mbps 

Vehicle’s initial coordinate [0,0] 

RSUs’ coordinates [400,10] m, [800,10] m,…  

Vehicle’s velocity     20–70 km/h 

Vehicle’s arrival rate 0.3–0.5 veh/s 

Average traffic density 11.1 m/veh–64.8 m/veh 

Data bits required to be sent            

Handoff control interval 1 s 

Channel spacing 10 MHz 

RSS sensitivity of different MCS level [−85, −84, −82, −80, −77, −73, −69, −68] dBm 

Saturate data rate at different MCS level [3,4.5,6,9,12,18,24,27] Mbps 

MAC layer IEEE 802.11 DCF 

Minimum backoff window size     16 

Maximum window size        64 

Time duration of short interframe space 28    

Time duration of distributed interframe space 130    

Slot time 51    

PHY header 128 bits 

MAC header 272 bits 

Packet Payload 8,184 bits 

ACK 240 bits 

The simulation is based on MATLAB. For WLAN, the link level parameters can be found in [1]. 

We assume that the OBU can be tuned at an optimal MCS level according to its RSS at any time. The 

saturated throughput and achievable individual throughput can then be calculated according to [23]. 

The CDMA2000 1x-EV network [24] supplies the global coverage. We simply suppose the bandwidth 

of each link of the cellular network is 0.6 Mbps. The service types we include are non-real-time and 

non-safety related applications (e.g., file transmission and non-real time streaming). The initial data 

bits need to be transmitted following a negative exponential distribution with an expectation of 200 Mb. 

The applications benefit from high data rate, while they are not sensitive to delay and jitter. The 

vehicles arrive at the coordinates [0,0] m and initially link with cellular network. The arrival rate 

ranges from 0.3 veh/s to 0.5 veh/s. The coverage of WLAN is relatively small; therefore, we assume 

that during the period that vehicles move into the coverage area, they keep a uniform linear motion 

state with velocities ranging from 20 km/h to 70 km/h. A typical log-normal function is used as the 

propagation model for the WLAN signal, as shown in Equation (22):  

       −   −                 (22)  
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For shared channel (uplink and downlink) of the IEEE 802.11, the simulations involve the 

consideration of both downlink traffic and uplink traffic. The simulation results for throughput are the 

values of downlink plus uplink. We first investigate the performance of the proposed handoff 

controller, based on vehicle velocity and traffic density. As shown in Figures 4 and 5, the simulation 

consists of three stages with different parameters for arrival rate and vehicle velocity, which lead to 

different traffic densities.  

Figure 4. Vertical handoff threshold vs. different traffic conditions. 
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Figure 5. Quantity of users associated with RSU vs. different traffic conditions. 
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The simulation time in each stage is 1,000 s. We switch the parameter setting to another group 

when the simulation time is finished. Due to a lack of a priori knowledge added to the RFS, the 

handoff threshold appears as a stochastic trend at the beginning of each stage, which is depicted as the 

“learning period” in Figures 4 and 5. With more simulation loops, the RFS is tuned by collecting more 

and more knowledge from the sensing signal to produce a stable trend. The improved performance 

validates the adaptive sensing and learning ability of the proposed algorithm.  
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As observed in the simulation results, when traffic density is relatively high, the RFS controller 

tends to compress the accessing area to avoid too many OBUs, which may result in the degeneration of 

the overall network performance. This policy only enables the potential handoff initialized by OBUs 

with relatively higher RSS, and it can enhance the channel utility for heavy traffic loads. The upper 

bound of the vehicle quantity associated with the RSU is 12 according to from Figure 5. This means 

that additional terminal cannot achieve better individual throughput from WLAN than the cellular 

network. As the traffic load becomes lighter, the controller enlarges the accessing area. The threshold 

for the accessing radius reaches approximately 150 at the third stage. However the number of users 

declines as the traffic becomes sparse. Shadow fading causes the threshold to appear as an oscillatory 

trend. This is more obvious in the form of distance. 

The following figures demonstrate the performance with respect to the individual throughput of 

vehicles. Figures 6 and 7 are based on the condition of the first stage in Figure 4. Figures 8 and 9 are 

based on the condition of the second stage in Figure 4. Figures 10 and 11 are based on the condition of 

the last stage in Figure 4, respectively. We use two conventional fixed thresholds plus a dwell-timer 

based handoff controller for comparison. Thresholds 1 and 2 are set to the sensitivity of the lowest 

MCS level plus 5 dB and 10 dB, respectively. The dwell-timer is set to 2 s. In Figures 6, 8 and 10, we 

randomly select one vehicle from the simulation results, and present its handoff process for each of the 

three schemes, describing the individual throughput versus the distance to the RSU. The vehicle 

approaches the RSU and then moves away. During this period, there are many other OBUs 

simultaneously accessing the same RSU. Figures 6, 8 and 10 are expected to give an overall expression 

about the system performance by different vertical handoff strategies. Figures 7, 9 and 11 show the 

simulation results for 100 samples, describing the approximate distribution of individual throughput. 

The simulation results in these figures are randomly sampled from the stable period shown in Figure 5. 

In these figures, vehicles move from the left side to the right and periodically exchange handoff 

signaling with the RSU. They initially link with the cellular network and implement DVH and UVH 

according to the vertical handoff controller. The vertical handoff process is considered as a hard 

handoff. The OBUs have to cut off the link with the original network when the handoff is triggered. 

Therefore, the handoff latency, which achieves association and authentication, results in a “gap” of 

individual throughput during each handoff process. According to the distribution of these “gap” values, 

the interval for the handoff can be inferred. 

In Figure 6, the proposed algorithm applies a higher access threshold than the other two algorithms 

for high traffic density. As a result, vehicles within approximately 70 m of the RSU are permitted to 

access the service. Compared with the proposed algorithm, the other two algorithms cannot guarantee 

better throughput performance for WLAN under heavy traffic conditions. The algorithm represented 

by the green curve reflects the fact that, the individual throughput provided by WLAN is lower than by 

the cellular network due to a heavy network load. There has already been a degeneration of the overall 

network performance. From the statistical simulation results in Figure 7, the times at which the 

handoffs are triggered are appropriate. The data rate for WLAN is just higher than that of the cellular 

network when vehicles finish the DVH process. As the vehicles depart from the RSU, they are 

switched back to the cellular network when WLAN cannot supply a better data rate. This keeps the 

terminals connected to the best network. 
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Figure 6. Instantaneous individual throughput vs. distance to RSU (arrival rate = 0.5 veh/s). 
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Figure 7. Distribution of individual throughput vs. distance to RSU (arrival rate = 0.5 veh/s). 
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Compared with the first condition, the traffic density is sparser in the two scenarios shown in 

Figures 8–11. The RFS enlarges the valid coverage area to permit more vehicles and longer service 

time. This is based on the premise that WLAN guarantees a better individual throughput performance.  

From Figure 9 we can observe that the algorithm represent by the green markers adopts large 

accessing area. However, the individual throughput for WLAN is not always better than the cellular 

network. This means that vehicles implement the DVH process too “early”. Correspondingly, the UVH 

process is initiated at a later time than it should be. Compared with the performance achieved by the 

algorithm represented by the blue markers in Figure 9, the RFS based handoff controller provides a 

larger valid coverage. Figure 11 demonstrates that, for light traffic loads, the RFS extends the valid 

coverage area as large as possible to permit more users and longer service time. 
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Figure 8. Instantaneous individual throughput vs. distance to RSU (arrival rate = 0.4 veh/s). 
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Figure 9. Distribution of individual throughput vs. distance to RSU (arrival rate = 0.4 veh/s). 
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Figure 10. Instantaneous individual throughput vs. distance to RSU (arrival rate = 0.3 veh/s). 
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Figure 11. Distribution of individual throughput vs. distance to RSU (arrival rate = 0.3 veh/s). 
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To investigate the QoE, we define a parameter named good experience duration. It is the time 

period that the vehicle achieves a better individual throughput for WLAN than for the cellular network. 

This parameter can reflect the effectiveness of the handoff control algorithm. The other parameter  

we discuss is the average individual throughput. This is the average data rate that users achieve from 

the heterogeneous wireless network without a signaling cost. The simulation results are shown in 

Figures 12–14 with arrival rates of 0.3, 0.4, and 0.5 vehicles per second, respectively. 

Figure 12. Average individual throughput and good experience duration vs. velocity of 

vehicle (arrival rate = 0.5 veh/s). 
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average individual throughput than the proposed algorithm when the traffic is sparse because a high 

threshold is adopted. As a result, the valid accessing area is small and relatively few users are 

permitted to access the WLAN. The channel utility is high because of a low packet collision 

probability. However, potential duration of vehicle association with the RSU is very short, 

correspondingly. This leads to good experience duration, demonstrated by the low blue curves in 

Figures 12–14, are quite low. Besides that, we can observe the good experience duration represented 

by the green curve is the lowest when traffic load is heavy because the handoff threshold is too low for 

the given condition. The inappropriate handoff decisions result in the degeneration of network 

performance. In summary, the proposed algorithm can adjust the handoff control strategy for different 

conditions to ensure that RSUs work optimally, thereby guaranteeing high QoE for users. 

Figure 13. Average individual throughput and good experience duration vs. velocity of 

vehicle (arrival rate = 0.4 veh/s). 

 

Figure 14. Average individual throughput and good experience duration vs. velocity of 

vehicle (arrival rate = 0.3 veh/s). 
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status, and link level data transmitting conditions. Moreover, prior knowledge such as the channel 

parameter is not a necessity for the handoff controller due to its sensing and learning ability. This 

advantage can save substantial human and financial resources for measurement in practical applications. 

We focus on a heterogeneous scenario consisting of a global cellular network complemented by a 

vehicle to infrastructure communication mode. Simulation results verify that, the proposed algorithm 

can provide optimal handoff decisions to keep terminals always connected with the best network under 

different conditions. Furthermore, it can ensure that road side units work appropriately and can 

guarantee a high quality user experience. 
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