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Abstract: This paper presents a new segmentation-based algorithm for oil spill feature 

extraction from Synthetic Aperture Radar (SAR) intensity images. The proposed algorithm 

combines a Voronoi tessellation, Bayesian inference and Markov Chain Monte Carlo 

(MCMC) scheme. The shape and distribution features of dark spots can be obtained by 

segmenting a scene covering an oil spill and/or look-alikes into two homogenous regions: 

dark spots and their marine surroundings. The proposed algorithm is applied simultaneously 

to several real SAR intensity images and simulated SAR intensity images which are used 

for accurate evaluation. The results show that the proposed algorithm can extract the shape 

and distribution parameters of dark spot areas, which are useful for recognizing oil spills in 

a further classification stage.  

Keywords: Voronoi tessellation; Bayesian inference; feature extraction; oil spill; dark spots 

 

1. Introduction 

Oil spills from operational discharges and ship accidents always have calamitous impacts on the 

marine environment and ecosystems, even with small oil coverage volumes. Remote sensing solutions 
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using space-borne or airborne sensors are playing an increasingly important role in monitoring, 

tracking and measuring oil spills and are receiving much more attention from governments and 

organizations around the world. Compared to airborne sensors, satellite sensors, with their large extent 

observation, timely data available and all weather operation, are proven to be more suitable for 

monitoring oil spills in marine environments, whilst the latter can be easily used to identify polluters 

and oil spill types but are of limited use due to costs and weather conditions [1]. Currently, the 

commonly used SAR sensors for this purpose include RADARSAT-1/2, ENVISAT, ERS-1/2, and so 

on [1–4]. The detectability of oil spills by SAR sensors is based on the fact that oil slicks dampen the 

Bragg waves on the ocean surface and reduce the radar backscatter coefficient. Unfortunately, other 

physical phenomena, for example, low-wind areas, wind-shadow areas near coasts, rain cells, currents, 

upswelling zones, biogenic films, internal waves, and oceanic or atmospheric fronts, can also generate 

dark areas, known as look-alikes, in SAR images [5,6]. Another factor which influences the 

backscatter level and the visibility of oil slicks on the sea surface is the wind level. Oil slicks are 

visible only for a limited range of wind speeds [4,6]. 

Generally speaking, oil spill recognition includes three stages: dark spot detection, dark spot feature 

extraction and oil spill classification [6–8]. The work in this paper focuses on the feature extraction of 

detected dark spots [9]. The task at this stage involves defining and acquiring the features existing in 

SAR images, which can be efficiently used in the classification stage to distinguish oil spills from 

look-alikes. Commonly defined features for this purpose include the geometry and shape of the dark 

spot area, textures, contrast between dark spots and their surroundings, and dark spot contextual 

information [6,7,10,11]. In this paper, a new segmentation-based approach to extract the areas and 

outlines of dark regions and Gamma distribution parameters of dark regions in SAR images is 

presented. Many researchers have focused on their work on SAR segmentation issues. The 

segmentation algorithms for dark spot detection include threshold segmentation [12,13], edge 

extraction based segmentation, wavelets [14], and fuzzy clustering [15]. SAR images are highly 

speckled due to coherent processing [16]. The analysis of SAR images is usually required for region 

and statistics-based methodology in order to reduce the speckle effect. Following this idea, a new 

algorithm for segmentation of SAR images is considered, which is based on Voronoi tessellation [17] 

and Bayesian inference [18–21]. Voronoi tessellation has been widely used to characterize models for 

many natural phenomena or processes in crystallography, metallography, physics, astrophysics, 

biology, ecology, geology, geography, etc. [17] To segment a SAR intensity image, it is reasonable to 

approximate the homogenous regions in an SAR image by Voronoi polygons. The number of Voronoi 

polygons is assumed unknown. The intensities of pixels within a region defined by the polygons are 

distributed according to identical and independent Gamma distribution, with the parameters dependent 

on the homogenous region to which the polygon belongs. Following the Bayesian paradigm, the 

mathematical form of a posterior distribution is obtained up to an integrating constant. In order to 

simulate the posterior, a Markov Chain Monte Carlo (MCMC) scheme is developed, in which the 

move types are designed, including: (1) updating the distribution parameters; (2) updating the label for 

a polygon which indicates a homogenous region including the polygon; (3) updating the generating 

point and birth and death of generating points. For simplicity, a Maximum A Posteriori (MAP) 

criterion is used to obtain the optimal image segmentation and feature extraction. 
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The paper is organized as follows: Section 2 describes in detail the algorithm developed in this 

paper. In Section 3, the proposed algorithm is tested by several simulated 4-looks SAR intensity 

images and applied to RADARSAT-1 SAR intensity images for oil spill extraction. Finally, Section 4 

contains concluding remarks and perspectives for further research. 

2. Description of the Proposed Algorithm 

2.1. Image Model 

In a spatial statistic model, SAR backscatter energy can be characterized by a random field defined 

on a domain D ⊂ R
2
, {Z(x, y); (x, y) ∊ D}, where Z(x, y) is a random function defined at the location  

(x, y). Under this framework, a SAR intensity image with n pixels can be viewed as the set of  

spatial samples from the random field at n discrete sites. A conventional sampling scheme is uniform 

sampling, in which regularly spaced positions are used. Therefore, a conventional digital SAR 

intensity image can be expressed by a set of random variables, that is, Z = {Zi = Z(xi, yi);  

(xi, yi) ∊ D, i = 1, …, n} where i is the index of pixels, (xi, yi) is the location of pixel i, Zi is the intensity 

variable of pixel i. The basic idea behind the segmentation algorithm for dark spot feature extraction 

lies in partitioning D into two homogenous regions D1 and D2 corresponding to the dark spot areas  

and its surroundings, respectively. To this end, D is partitioned into m sub-regions, that is,  

D = {Pj; j = 1, .., m}, where m is assumed unknown and with a prior distribution p(m), and a label  

Lj ∊ {1, 2} is assigned to the sub-region, say Pj, to indicate the homogenous region to which Pj 

belongs. The set of labels for all sub-regions forms a label field, that is, L = {Lj; j =1, …, m}. The 

intensities of pixels included in a sub-region are assumed to satisfy identical and independent Gamma 

distribution with parameters in terms of its label, so the joint probability distribution for the intensities 

of all pixels in the sub-region Pj, Zj = {Zi; (xi, yi) ∊ Pj}, can be written as: 
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where (xi, yi) ∊ Pj, Γ() is Gamma function, α and β are the shape and scale parameters of the Gamma 

distribution. Let Θ = {α1, α2, β1, β2} be the set of parameters for Gamma distributions corresponding to 

dark spill regions and its surroundings, respectively. For a flexible and convenient tessellation, the 

Voronoi tessellation [17,22] is used for partitioning D into sub-regions called Voronoi polygons. 

Those polygons are specified by m generating points located at (uj, vj) ∊ D, where (uj, vj) are  

assumed to be independently distributed on D with a probability density function p(uj, vj). Let  

G = {(uj, vj) ∊ D; j = 1, …, m} denotes the set of all generating points. Given G, the Voronoi 

tessellation partitions D into a set of polygons, that is, D = {Pj; j = 1, …, m}, in which the jth Voronoi 

polygon Pj associated with the generating point (uj, vj) is comprised of the points nearest to (uj, vj) than 

to others in G, that is: 
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Given Θ, L, G and m, Z can be characterized by the likelihood function, p(Z |Θ, L, G, m),  

as follows: 
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2.2. Bayesian Model 

Using a Bayesian paradigm, the inference about parameters {Θ, L, G, m} given Z will be 

determined based on the joint posterior p (Z |Θ, L, G, m), which can be written as: 

)()|()|()(),,,|()|,,,( mpmpmppmpmp GLΘGLΘZZGLΘ 
 

(4) 

where p(Z |Θ, L, G, m) is the likelihood defined by Equation (3), p(Θ) is the prior distribution for 

Gamma distribution parameters. Under the assumptions that all distribution parameters are 

independent, have p(Θ) = p(α1)p(α2)p(β1)p(β2). Furthermore, assume that the scale (resp. shape) 

parameters are drawn from Gaussian distribution with mean µβ (resp. µα) and standard deviation σβ 

(resp. σα), that is, β ~ N(µβ σβ) (resp. α ~ N(µα,σα)). As a result, the probability distribution function 

p(Θ) can be expressed as: 
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p(L|m) is the prior distribution for label field which characterizes the relationship among labels. In this 

paper, the label field is modeled by a Markov Random Field [23], and an improved stationary Potts 

model [24] with 2 labels is used to model the prior distribution p(L|m). Two Voronoi polygons Pj and 

Pj are neighbors if and only if they have a mutual boundary, denoted Pj ~ Pj. For a polygon Pj with 

label Lj, given its neighboring polygons NPj = { Pj; Pj ~ Pj }, the conditional distribution of Lj on  

{Lj ; Pj ∊ NPj } is expressed as: 
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where b > 0 is the constant to control the neighborhood dependences, and t (x, y) = 1, if x = y, 

otherwise t (x, y) = 0. As a result, the prior distribution p(L | m) can be written as:  
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Assume that the locations of generating points (uj, vj) are independent and drawn from D uniformly, 

so the prior distribution p (G | m) is:  
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where |D| is the area of D. In this paper, the number of generating points m is assumed to satisfy a 

Poisson distribution with mean λ, that is: 
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The posterior distribution defined in Equation (4) can be derived according to the prior distributions 

of Equations (5)–(9) and image model in Equation (3) as follows: 
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2.3. Simulation 

In order to segment an SAR intensity image, it is necessary to simulate it from the posterior 

distribution in Equation (10) and to estimate its parameters. Let Ф = (Θ, L, G, m) be parameter 

vectors. It is worthy to note that when m is variable, the dimension of the parameter vector Ф is varied. 

In this paper, Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm [21] is used for this 

simulation. According to [21], at each iteration a new candidate Ф
*
 for Ф is proposed by an invertible 

deterministic function Ф
*
 = Ф

*
(Ф, s) (assume that the dimension of Ф

* 
is higher than that of Ф). s is a 

random vector defined for accomplishing a transition from (Ф, s) to Ф
*
 with dimension matching, that 

is, |Ф| + |s| = |Ф
*
|. The appropriate acceptance probability for the proposed transition is given by: 
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where q(s) is the density function of s and r(Ф
*
) and r(Ф) are the probabilities of a given move type in 

the states Ф
*
 and Ф, respectively. The Jacobian |∂(Ф

*
)/∂(Ф, s)| arises from the change of variable from 

(Ф, s) to Ф
*
. The move types designed in this paper include: (1) updating Gamma distribution 

parameters; (2) updating the labels; (3) updating the positions of generating points; (4) birth or death of 

generating points. 

Move 1: updating the gamma distribution parameters. Rewriting Θ = {Θk, k = 1, 2} where  

Θk = (αk, βk). Assume that the probability distributions for the proposals αk
*
 and βk

*
 are Gaussian 

distributions with means αk and βk, and standard deviations εαk and εβk, respectively, that is,  

αk
*
 ~ N (αk., εαk) and βk

* 
~ N (βk, εβk). The acceptance probability for the proposals αk

*
 and βk

*
 can be 

obtained by: 
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where Jk = {j, Lj = k}, k∊ {1, 2}. 

Move 2: updating labels. A label randomly drawn from the label fields L, say Lj, is updated by 

proposing a new label Lj
*
, which is uniformly drawn from {1, 2}. The acceptance probability for Lj

*
 

can be written as: 
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Move 3: moving the position of generating points. One of generating points in G is drawn at random, 

say (uj, vj). A proposed position is (uj
*
, vj

*
) by drawing uniformly in Pj. The new proposed position 

gives rise to the local changes of Pj and its neighbour polygons to {Pj
*
, NPj

*
}. The acceptance 

probability for the move turns out to be: 
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Move 4: birth or death of generating points. Suppose that the current number of generating points is 

m and let the probabilities of proposing a birth or death operation be bm or dm, respectively. Consider a 

birth operation which increases the number of generating points from m to m+1 and assume that the 

new generating point is labelled with m +1 and its location (um+1, vm+1) is drawn uniformly from D.  

Let the polygon induced by (um+1, vm+1) be Pm+1 and the set of labels of Pm+1’s neighbor polygons  

is Nm+1. The Voronoi tessellation is modified by the addition of this generating point from  

P = {P1, …, Pj, …, Pm} to P = {P1, …, Pj
*
, …, Pm, Pm+1}. Figure 1 shows the modified Voronoi 

tessellation by the addition of a new generating point, in which the original tessellation have six 

generating points and they induce six polygons, see Figure 1a. By proposing a new generating point 

labelled 7, a new polygon is generated by it and denoted P7. It can be observed from Figure 1b that the 

neighbors of P7 include P2, P4, P5 and P6, that is, NP7 = {2, 4, 5, 6}. 

The new label Lm+1 for polygon Pm+1 is uniformly drawn from {1, 2}. It is evident that a birth or a 

death of generating point does not affect the Gamma distribution parameters in Θ. As a result, the 

parameter vector for the birth operation becomes Ф
*
 = (Θ, L

*
, G

*
, m+1) where L

*
 = (L1, …, Lm, Lm+1), 

G
*
 = (G, (um+1, vm+1)). The acceptance probability of the birth can be written as: 

},1min{),( 4
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4 bb Ra ΦΦ  (15) 
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where rbm = bm, rdm+1 = dm+1/(m+1), s = lm+1. The acceptance probability of a death of generating  

point is: 

1
444

*
4   and  ,},1min{),(


 bddd RRRa ΦΦ  (17) 

For any given proposal with acceptance probability a, it is accepted if and only if a  ψ, where ψ is 

drawn from [0, 1] uniformly, that is, ψ ~ U (0, 1). 

Figure 1. (a) Voronoi tessellation with six polygons D1–D6 corresponding to generating 

points (u1, v1)–(u6, v6); (b) Voronoi tessellation with seven polygons D1–D7 formed by 

adding the generating point (u7, v7). 
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2.4. Optimization 

To estimate the parameter vector Θ, its samples are drawn from the above posterior distribution in 

Equation (10) using the RJMCMC scheme. An MAP criterion is used to obtain the final segmentation, 

which is represented by the optimal label filed under maximizing the posterior. The MAP estimator is 

designed as: 

  )|,,,(maxargˆ ZGLΘL mp  (18) 
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3. Experimental Results and Discussion 

To assess the accuracy of the proposed algorithm for extracting features of dark spots, two types of 

data, 4-looks SAR intensity images and simulated SAR intensity images which simulate 4-looks SAR 

intensity images, are used. It has been shown that multilook SAR intensity images can be modeled by 

Gamma distributions with fixed scale parameters, which are equal to the number of looks.  

Table 1 gives the constants used in this experiment, where λ is the mean of Poisson distribution from 

which the number of generating points is drawn. In a certain range, the value of λ does not affect the 

segmentation results. For simplicity, the correlation coefficient b is set as 1. The constants µα  

and µβ are the means of shape parameter α and scale parameter β of the Gamma distributions in 

Equation (5), respectively, i.e., µα= E(α) and µβ = E(β). Given a multi-look SAR image in which the 

intensities of pixels are characterized by Gamma distribution, α is equal to the number of its looks. In 

this paper, since α is considered as a random variable the value µα is set as the number of looks. For 

Gamma distribution with parameters α and β, the product of the two parameters, αβ, is equal to its 

mean. Then the value µα  µα = E(α)E(β) = E(αβ) (the last equation is true, since α and β are 

independent) is taken 128 = 256/2 (i.e., the midpoint of 256 grey levels) since the pixel intensities in a 

grey-scale image vary in the range of 0 and 255. εα and εβ are the standard deviations for the proposal 

densities of the shape and scale parameters, that is, α
*
 ~ N(α 

t
, εα) and β

*
 ~ N(β 

t
, εβ) where α

*
 and β

* 
is 

the proposals, α
 t
 and β 

t
 are the shape and scale parameters at t th iteration. They affect the sampling 

and the convergence of the algorithm under the MCMC scheme [18] suggested choosing the proposal 

variances so that the acceptance probability lies in the interval (0.3–0.7). However we have found that 

the proposal variances causing the acceptance probability around 0.1 still make the algorithm work 

well. T is the number of iterations. Usually, it depends on the complexity of the scene revealed in a 

SAR image and requirement of segmentation accuracy. 

Table 1. Constants used in the experiment. 

λ b µα σα µβ σβ εα εβ T 

96 1 4 1 32 8 0.5 1 4,000 

3.1. Simulated SAR Imagery 

Figure 2 shows a simulated SAR image, which is generated based on the partition of a domain as 

shown in Figure 2a. In the simulated image in Figure 2b, the intensity values of pixels in each 

homogeneous region are drawn from gamma distributions with shape parameters equal to 4, and the 

scale parameters equal 18 and 28 for dark spill and background classes, respectively. 

Table 2 gives the experimental results after 4,000 iterations of the proposed algorithm, including 

estimated distribution parameters α and β, and the estimation errors for the parameters (e%) 

corresponding to the optimal segmentations. 

Figure 3 shows the changes of estimated parameters. From Figure 3, it can be seen that the estimated 

parameters converge to their stable values well at around 1,000 iterations, consistent with the results 

from the testing on a number of SAR intensity mages. In order to illustrate the convergence and 

stability of the proposed algorithm, 4,000 iterations are carried out. 
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Figure 2. Results of (a) the partition of domain; (b) the simulated SAR image. 
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Table 2. Estimated model parameters and their errors. 

 α eα (%) β eβ (%) 

C1 4.04 1.0 27.37 2.25 

C2 3.95 1.25 18.56 3.11 

Figure 3. Changes of (a) estimated shape parameters and (b) scale parameters during 4,000 iterations. 
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Figure 4 shows the histograms for the homogenous regions in the simulated image and distribution 

curves of Gamma distributions with real and estimated parameters, respectively. From Table 2 and 

Figure 4, it can be seen that the real and estimated values of distribution parameters for dark spot 

regions are very close. The maximum error is only 2.8%. The conclusion can be drawn that the 

algorithm has the capability of extracting the distribution parameters from data. 

Figure 5 shows the final partitions with 152 polygons. Figure 5a, b gives the optimal segmentations 

obtained at 4,000 iterations, in which the segmented homogeneous regions are represented by their 

Figure 7. Changes of (a) estimated shape parameters and (b) scale parameters during 4,000 iterations. 

(a) (b) 
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mean. To visually assess the accuracy for extracted dark spot regions, the extracted outlines of the 

segmented image in red and real outlines which is used for simulating image in yellow are  

both overlaid on the original images, see Figure 5c. Visually, the outlines of extracted oil spill 

regions(yellow) match their real outlines(red) very well. 

Figure 4. Histogram and curves of gamma distributions with real and estimated model parameters. 
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Figure 5. Results of (a) final partition of image domain; (b) optimal segmentation after 

4,000 iterations and Outlines of the real regions (yellow) and segmented regions (red) 

overlaid on the simulated image. 
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In this experiment, two evaluation schemes are used to assess the accuracy of extracted oil spill area 

quantitatively. First of all, some of the common measures are used for accuracy assessment, including 

error matrix, producer’s accuracy, consumer’s accuracy, overall and Kappa coefficient. Table 3 gives 

the error matrixes which compare the segmented homogeneous regions as thematic classes to the real 

homogenous regions as reference.  

The entries in the matrix contain a count of pixels, which is based on the labels assigned to pixels  

in both the segmented image and the synthesizing images. For example, if a pixel is segmented to the 

oil spill region with the label 1 and actually belongs to the water region with label 2, it will be  

counted in the error matrix entry of column 1 and row 2, denoted by C12. The values of diagonal 
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entries represent the count of correctly segmented pixels. The Table also lists row total (ΣC.r) and 

column total (ΣCs.) which account for the total count of pixels segmented to regions r and belonging to 

regions s, respectively, where r, s ∊ {1, 2}. The value in the lower-right entry is the total number of 

pixels in the images. 

Table 3. Error matrix and statistical measurements. 

 C1 C2 ΣCs Producer’s Accuracy (%) 

C1 39,908 1,448 41,356 94.13 

C2. 971 23,209 24,180 97.61 

ΣC.r 40,879 24,657 65,536 Overall accuracy (%)  

User’s accuracy (%) 95.98 96.95 0.92 96.3 

Except for the error matrix, the associated accuracy estimates are used, including the producer’s 

accuracy, consumer’s accuracy, overall accuracy and Kappa coefficient. Table 3 also gives the values 

of those measures. In conclusion, one would anticipate a high degree of accuracy in the segmented 

results from the proposed algorithm. From Table 3, Kappa coefficients are calculated as 0.92. 

According to the general interpretation rules for thematic accuracy assessment, the Kappa coefficients 

0.81–1.00 can be interpreted as almost perfect [25].  

Another scheme for the accurate assessment of the developed segmentation algorithm is based on 

the degree to which the outlines of segmented homogeneous regions match their alternatives 

delineating the real regions, which is measured by the count of pixels of extracted outlines lying on the 

buffer zone around the real outlines of homogenous regions [9]. 

Figure 6 shows the extracted outlines of the extracted oil spill regions laid on the buffer zones with 4 

pixels width around their real outlines at each side, in which the gray zones are buffer zones and the 

black lines are the outlines of segmented homogenous regions. It can be observed that almost all 

extracted outlines lay on the buffer zones. 

Figure 6. Extracted outlines overlaid on the buffer zones around the outlines of real regions. 

 

Table 4 gives the percents of the outlines for extracted oil spill regions on each buffer layer, where 

B0 means the percent of the outlines exactly matching the outlines for the real oil spill regions in the 

synthesizing images. Bi’s, here i = 1, 2, 3, 4, represent the percents of the extracted outlines of oil spill 

regions lying on the i’th buffer layer of the real outlines. The Table also gives the accumulated 
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percents Σi = B0 + B1+ … + Bi. It can be seen from the Table that over 90% of the outlines of 

segmented homogenous regions are within the buffer zone with two pixel width around the outlines of 

real homogenous regions and almost all outlines (around 99%) of segmented homogenous regions are 

in the buffer zone with four pixel width around the outlines of real homogenous regions. 

Table 4. Percentage of extracted outlines in buffer zones. 

B0 (%) B1/Σ1(%) B2/Σ2 (%) B3/Σ3 (%) B4/Σ4 (%) 

35.7 39.6/75.3 15.6/90.9 5.7/96.6 1.7/98.3 

The results from above two accuracy analyses schemes manifest that the proposed algorithm 

extracts the shape and distribution parameters features of oil spill regions efficiently and effectively. 

3.2. Real SAR Imagery 

Figure 7 shows real SAR intensity images of RADARSAT-I/II HH polarization with oil slicks 

which appears darker compared to the surrounding waters. The initial partitions of image domain D are 

carried out by the Voronoi tessellation, in which the number of generating points m0 is drawn from the 

Poisson distribution with the mean 96 and the locations of m0 generating points are drawn from D 

uniformly. The initial segmentation is performed by randomly assigning a label to each polygon in the 

initial partition of D from the Bernoulli distribution with probabilities pj = 1/2, where j = {1, …, m0}. It 

is found that there is no obvious impact of the initial segmentation on the finial segmentation result. 

Figure 8a1, b1, c1 show the results of the final partitions of D with 36, 95 and 96 polygons, 

respectively. Figure 8a2, b2, c2 show the results of the optimal segmentation in terms of the MAP 

estimation after 4,000 iterations, where the tone for each region is represented by its estimated mean.  

Figure 7. Real 4-looks SAR intensity images in which the dark areas are oil spills. 
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Figure 8a3, b3, c3 show the overlay of the outlines in black on the real SAR intensity images. 

Visually, the segmented regions match their real regions well. Table 5 summarizes estimated α1,2 and 

β1,2 corresponding to the segmented dark spot and sea regions. 

Figure 9 shows the histogram of intensities and Gamma distributions with the estimated shape and 

scale parameters of the segmented dark spots and sea background.  
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It can be observed that the histograms of intensities in each segmented homogenous region are 

coincident with the Gamma distribution curves with α and β derived by the proposed algorithm. 

Figure 8. Final partition (a1), (b1), (c1) and segmentation (a2), (b2), (c2) of testing 

images. Darker regions in (a2), (b2), (c2) indicate oil spills. Overlaying the outlines of 

extracted darker regions on test images (a3), (b3), (c3). 

   

(a1) (b1) (c1) 

   

(a2) (b2) (c2) 

   

(a3) (b3) (c3) 

Table 5. Estimated shape and scale parameters. 

Image α1 α2 β1 β2 

a 5.00 3.22 28.27 23.11 

b 4.06 2.44 28.64 34.02 

c 4.72 2.67 31.02 32.44 
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Figure 9. The histogram for two segmented homogeneous regions and gamma distribution 

curves with estimated parameters. 
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4. Conclusions 

This paper presents a new segmentation-based approach to the feature extraction of oil spills from 

SAR intensity images, including their area and distribution parameters. The proposed segmentation 

algorithm is statistical region-based, which combines the Voronoi tessellation, Bayesian inference and 

reversible Jump Markov chain Monte Carlo (RJMCMC) methods. The Voronoi tessellation has  

been widely used to characterize models of many natural phenomena or processes in crystallography, 

metallography, physics, astrophysics, biology, ecology, geology, geography, etc.  

In this paper the technique is introduced to design a region-based segmentation algorithm for oil 

spill feature extraction. By region, it means that Voronoi tessellation is used to partition the image 

domain into sub-regions (polygons) corresponding to components of oil spill regions or their 

surroundings (waters). Therefore, the segmentation of SAR intensity image for the purposes of oil spill 

feature extraction is completed by labeling those polygons as oil spills or water and thus modeled as a 

label field. By statistical, it means that each region (oil spill or water) is statistically homogenous, 

which is characterized by a Gamma distribution. Under the Bayesian inference paradigm, the label 

field for segmentation and distributing parameter can be expressed as a posterior conditional on a 

given SAR intensity image. The RJMCMC method is employed to simulate the conditional posterior 

distribution. The results of testing the proposed approach on both real and synthesizing SAR intensity 
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images demonstrate that it can extract the area and distribution parameters for oil spills with high 

accuracy and is promising. 
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