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Abstract: This paper presents the implementation of power fluctuation compensation for 

an intensity-based optical fibre bending sensor aimed at monitoring human spine bending 

in a clinical environment. To compensate for the light intensity changes from the sensor 

light source, a reference signal was provided via the light reflection from an aluminum foil 

surface fixed at a certain distance from the source fibre end tips. From the results, it was 

found that the investigated sensor compensation technique was capable of achieving a 2° 

resolution for a bending angle working range between 0° and 20°. The study also suggested 

that the output voltage ratio has a 0.55% diversion due to input voltage variation between 

2.9 V and 3.4 V and a 0.25% output drift for a 2 h measurement. With the achieved sensor 

properties, human spine monitoring in a clinical environment can potentially be 

implemented using this approach with power fluctuation compensation. 

Keywords: plastic optical fibre sensor; spine monitoring; power fluctuation compensation; 

intensity modulation technique 

 

1. Introduction 

The spinal column is an important element in the human physiological system. A human spine 

consists of three main regions, namely the cervical, thoracic and lumbar region. The cervical spine 
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which connects the human skeleton with the rest of the human vertebral column is composed of seven 

cervical bones. Towards the lower part of the cervical spine are twelve thoracic bones which can rotate 

and undergo flexion movements. However, their connection with the rib cage prevents them from 

excessive flexion. The lowest part of the human spine is the lumbar area which consists of five bones 

and it is connected to the sacrum. The lumbar spine is more robust than the cervical and thoracic spines 

as its main function is to support the weight of the upper body area [1]. With its robustness and 

strength, it allows body movement in several directions, including flexion, extension, lateral rotation 

and lateral flexion (side bending). 

There are several problems associated with poor spinal conditions such as abnormal kyphosis (over 

curvature of the thoracic spine), lordosis (excessive inward curvature of the lumbar spine) or scoliosis 

(side to side curve of the thoracic spine) [2]. These problems lead to the requirement of spine 

monitoring tools for physiotherapists and physicians to establish a standard measurement approach 

among people with back spine problems. In certain patient conditions, it is even becoming necessary to 

have a continuous measurement data of spine movement for several hours in order to provide sufficient 

information for them to have a thorough understanding of the problems [3].  

In general, spine bending measurements can be implemented using several different devices. These 

devices can be categorized into three different types; hand-held type, non-contact type and  

skin-mounted type. The hand-held type devices are used manually by the examiner during the spine 

examinations. Usually there is no other device mounted on the skin-surface during the examination 

time. The process of measuring the spine posture is only possible while the subjects under testing are 

static. The recording of the spine angle at particular points is done either manually by the examiner or 

with the help of a portable transmitter. Some practical examples of this type of device are flexible 

rulers [4], tape measures [5], goniometers [6] and spinal mice [7]. 

Another different approach for spine monitoring are the so-called non-contact devices. The 

measurement process for this type of devices takes place at a distance from the body. The image of the 

human’s back is captured using a camera. To improve the quality of detection images, these sensors 

would require the placement of reflective markers or a harness on the back area. A few examples of 

this non-contact type have been presented such as CCD video systems [8], rasterstereography [9] and 

digital video fluoroscopy [10]. 

For both device types described above, it is impractical to provide a continuous assessment of 

human spine bending movement considering the limitations of the approaches such as human examiner 

constraints to operate the device over a longer measurement duration as well as the risk and side 

effects associated with the assessment technique due to radiation exposure on the human skin [11]. To 

overcome these shortcomings, the implementation of skin-mounted devices for spine monitoring is 

important especially for long term assessment of the human spine condition of patients or any potential 

subject for an early diagnosis of back problems. 

This paper investigates the development of a skin-mounted type device using a plastic optical fibre 

bending sensor based on the intensity modulation technique with power fluctuation compensation. The 

compensation was implemented by using the output voltage ratio between the sensor and reference 

fibre outputs. The effect of the light source intensity on the output ratio of the bending sensor was 

tested by monitoring the output ratio reading of the sensor due to several pre-determined input voltage 
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levels. In addition, the output drift effect was also taken into consideration before the sensor properties 

such as resolution, working range and output linearity were determined. 

2. Review of Skin Mounted Devices for Spine Monitoring  

In general, skin-mounted devices for spine monitoring can be divided into four main groups 

according to their sensing mechanism approaches. Firstly, the spine bending movement is measured 

based on the elongation and contraction (strain and stress) between two points on the human back. For 

devices of this kind, the bending angle of the spine is determined indirectly via the strain measurement 

at particular points on the human skin surface. The main requirement of a strain sensor in this case is 

an efficient transfer of the applied load to the sensor elements. It is relatively more difficult to ensure 

an accurate bending measurement via strain analysis as the sensor is only attached on the surface of the 

human skin. To have an optimum stretch and compress effects on the strain sensor, it is the best to 

have the sensor embedded in the subject under study (human skin), which in this case no longer 

applicable for invasive spine bending monitoring. Another issue related to this strain-based sensor to 

measure spine bending is that strain can be so small that very high resolution sensors are required 

despite the apparently large deflection curvature of the spine [12]. The use of strain sensors for spine 

bending measurement has been presented utilizing strain gages on a thin stainless steel beam to 

measure lumbar flexion-extension with an accuracy of within 3° in both the sagittal and frontal planes [13]. 

Another alternative mechanism is applied by indirectly extracting the posture data from the 

acceleration of the spine during flexion and extension exercise movement. However, this method 

requires an additional sensor such as gravitometer to provide the data when the subject is in a static 

condition. In this spine bending measurement case, this type of sensor is more suitable to assess the 

velocity and acceleration of the spine during the body movement in flexion, extension and lateral 

directions or during body posture changes such as sitting, standing, walking and running. One good 

example of this type of sensor was presented using a piezoresistive accelerometer to record the 

acceleration data between trunk and thigh position during sit to stand movements [14]. 

The next type of skin-mounted device for spine monitoring application is based on the positional 

sensor approach. The sensor is normally made up of one base sensor and several other sensor pairs. 

The orientation measurement of other sensors with respect to the base sensor will provide a three 

dimensional coordinate frame of the human spine position. The sensor has to be reset prior to each 

measurement to store the default coordinate frame and to allow calculation of spine position for each 

movement. Several different positional sensors have been tested for spine monitoring application such 

as using an electromagnetic sensor—Isotrack
®

 [15] and a fibre optic sensor—Shapetape™ [16] with 

different degree of success. For example, the optical bending sensor using Shapetape™ is implemented 

based on Cartesian position and orientation vectors between each optical sensor pair and a base sensor 

to detect curvature and twist movements along the sensor length during static posture and dynamic 

movement of the patient [17]. 

Considering the limitation of the previous three types of devices to provide any means of 

compensation data for spine bending and movement in a single measurement during long period 

monitoring, a direct measurement of bending angle and spine movement using a curvature sensor is 

necessary. This can be realized using several approaches such as ultrasonic and optical fibre sensors. 
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In brief, an ultrasonic sensor for spine bending applications is composed of several pairs of 

transmitters and receivers. An ultrasonic movement analysis device called Zebris
®

 CMS 50 was used to 

record the angular displacement of the thorax and pelvis in humans during walking on a treadmill [18]. 

The sensor consists of an ultrasonic marker (transmitter) and three ultrasound microphones (receivers) 

attached at the back of the human body using adhesive tape. The level of the detected ultrasonic signal 

depends on the spine bending angle and direction between the marker and microphones. 

The other type of curvature sensor for spine bending monitoring was tested using an optical fibre 

sensor integrated into a garment to monitor the spine while the subject was in a seated posture [19]. 

This sensor is composed of a light source, a light detector and a plastic optical fibre with an abraded 

area at one side of the fibre [20]. The sensor length is around 50–55 cm and is stitched to the outer 

surface of an elastic garment. The light intensity of the fibre is sensitive to the direction and degree of 

curvature of the bending at particular abraded areas along the fibre. The reproducibility of this kind of 

sensor is difficult to achieve if the side area of the fibre is polished manually as the light attenuation 

characteristics due to bending depend on the length and depth of the abraded side along the fibre [21]. 

Another issue is that no compensation method has been addressed in this sensor implementation which 

could lead to inaccurate bending angle measurement due to the power fluctuation.  

3. Review of Related Compensation Approaches for Intensity Modulated Optical Fibre Sensors 

For the intensity modulation technique in optical fibre sensors, the detection mechanism is basically 

based on the detection of optical intensity. As the output reading from the sensor might be affected by 

various noise sources coming from the light source, photodetector, external light coupling and other 

environmental factors, it becomes necessary to have a referenced or differential-balanced system to 

reject such fluctuations in the sensor measurement. Besides that, to minimize the effects of disturbance 

on the light intensity, the reference signal should be placed as close as possible to the sensor output. 

The basic approach to provide a compensation signal for light intensity fluctuation was presented 

using twin receiving fibre cables [22] as shown in Figure 1a. A white light lamp and a He-Ne laser 

source were separately used as the light sources. The output intensity ratio between these two receiving 

fibres was used to measure the displacement between the source fibre and twin receiving fibres. 

As a comparison, Figure 1b shows another compensation technique which has been applied in 2D 

configuration to compensate for the light source intensity for measuring the displacement and rotation 

of a reflective object using a sensor probe [23]. The sensor consisted of one source fibre and another 

four receiving fibres placed in a ‘T’ figure. Two of the receiving fibres were used to sense the rotation 

of the reflector surface and the other two were applied to sense the changing distance between the 

reflector and the fibre tip surface by means of the signal ratio between these two fibres. 

An alternative approach was presented by using a light source and two identical receiving fibres. 

The source fibre was placed in the opposite direction of the receiving fibres as in Figure 1c [24]. The 

light source was reflected by a mirror and entered the receiving fibres—fibres A and B—with different 

intensity due to the distance of the different fibre end tips to the mirror. The ratio of light intensity 

difference between the two fibres (A − B) and their summation (A + B) was used to compensate for 

the changes in light source intensity. 
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Another sensor compensation technique was described in pressure sensor application using one 

source fibre (middle) and two receiving fibres (front and behind) [25]. Each fibre end tip was placed at 

a different distance away from the reflecting target (diaphragm) as shown in Figure 1d. The ratio 

between the two outputs of these fibres was used to measure the position of the diaphragm and thus the 

pressure reading. 

As shown in Figure 1e, the last compensation technique to be discussed here was presented using 

dual-wavelength inputs to measure the displacement between the reflector and the sensor surface. A 

blue LED (465 nm) and red LED (625 nm) were used in this configuration [26] and alternately 

switched on and off to supply the light source from the same source fibre. A dichroic filter with a  

cut-off wavelength of 500 nm was fixed 0.5 mm away from the fibre tip to reflect the red light into the 

receiving fibre and to pass the blue light from the source fibre to the mirror. The blue light intensity 

was changed as the mirror was moved away from the fibre end tips, while the red led which was 

constantly reflected by the dichroic filter became the reference output for the signal compensation of 

this sensor. 

Figure 1. (a) Twin receiving fibres–transmission mode; (b) 2D-reflective sensing  

probe; (c) Twin receiving fibres–reflective mode; (d) Twin reflective fibres; (e) Dual 

wavelength inputs. 
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For all the compensation methods presented above, the implementations of the compensation signal 

were specifically for displacement [22–24,26], pressure [25] and tilt angle [23] measurements. The use 

of a mirror and dichroic filter to provide the reference signal for the compensation purpose seems to be 

more difficult to realize for the bending sensor configuration as the reflector or filter will also move 

due to the bending movement between the fibres which leads to an unreliable referencing signal. One 

possible option to realize a compensation technique is to use a 50:50 beam splitter element in between 

the input fibres and the sensor fibre. There are several beam splitter options available in the market 

such as the Pellicle beam splitter [27], Polka Dot beam splitter [28] and visible beam splitter [29]. 

However, due to the large diameter size of the splitter (minimum available size is 1 inch) it is not 

suitable for the intensity modulation application proposed in this investigation. The reason is that 

installing a large diameter of splitter into the fibre holder would require a bigger overall size of the 

sensor. This could lead to a stiff bending movement between the input fibres and the sensor fibre.  

Another possible approach is to implement an optical coupler such as a face coupler, Y-coupler and 

polished coupler [30] along the source fibre before inserted it into the sensor for the bending 

measurements. For example, a 1:2 Y-coupler could be used to provide a reference signal at one of the 

coupler outputs while the other output could be adopted for the sensor measurement signal. Besides the 

significant loss from coupling effect, this technique is also incapable of compensating for any signal 

disturbance due to unwanted fibre bending and movement between the coupler output and source fibre 

end tip of the sensor. Thus, it is important to have a referencing feedback which is retrieved as close as 

possible to the sensor element. A different and relatively more suitable compensation approach is 

presented in this investigation considering the size of the sensor and the location of the reference fibre 

input for the implementation of bending sensor using plastic optical fibre to cancel out the effect of 

power fluctuation. 

4. Sensor Configuration for this Investigation 

The experimental setup of the sensor configuration for this investigation consists of a multimode 

plastic optical fibre LED (GHV-4001, Mitsubishi Rayon Co. Ltd., New York, NY, USA) with a core 

diameter of 1 mm, numerical aperture at 0.5 and step index profile, two bright green LEDs (IF-E93, 

Industrial Fiber Optics Inc., Arizona, AZ, USA) with a peak wavelength at 530 nm and spectral 

bandwidth of 50 nm and two photodiodes (SFH-250 V, Avago Technologies, San Jose, CA, USA & 

Singapore) with a photosensitivity spectral range between 400 nm and 1,100 nm. This sensor 

configuration was divided into two main fibre parts. The first part consists of three fibre optic cables, 

two of which were the input fibres connected to the green LEDs and the other one was the output fibre 

connected to the photodiode as a reference output. The other part was also another output fibre cable 

representing the sensor output for bending measurements. 

As illustrated in Figure 2a, in the first part containing the source fibres and the reference fibre, all 

three of these fibres were merged together at the fibre end tips using a modified V-pin crimp 

connector. To firmly hold all the fibres at the remaining area of the fibres, these fibres were securely 

insulated using a shrink tube at a certain length. Then, the V-crimp connector containing all the three 

fibres was placed into a plastic tube with a center through-hole diameter of 3.5 mm. At the end of the 

opposite hole of the tube (near the end tips) a reflector was attached. A small window of 0.5 mm × 1.5 mm 
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was cut out of the aluminum foil to allow certain portions of the light source to travel through the 

window into the sensor fibre of the sensor. The rest of the light source was reflected back into the 

reference output fibre via the reflective surface of the reflector. The other side of the reflector was a  

non-reflective surface so that the effect of back-reflection from the sensor fibre end tip surface into the 

reference fibre was minimized. A soft silicon rubber tube of 5 mm inner diameter was used to hold the 

first and second parts together during the bending movement.  

During the measurement, the sensor was placed on the top of a self-made wooden bending 

apparatus as shown in Figure 2c to ensure a consistent sensor position at each bending angle and to 

allow angular movement in one direction only (thus lateral direction was avoided). Two U-shape 

grippers were used to hold the fibre at the both ends of fibre holders (source and sensor) without 

affecting the response of the fibre due to the tape fixing task. This bending apparatus was then placed 

on a test rig with a 2.5° bending scale between 0° and 20° to measure the sensor output voltages at 

several pre-determined bending angles. A goniometer was attached at the side area of the bending 

apparatus for bending angle reference during the measurement. Three different measurements were 

made in this investigation; power fluction assessment, bending assessment and repeatability assessment. 

Figure 2. (a) Sensor configuration in this investigation; (b) Sensor cross section (side 

view); (c) Photo of the sensor placed on a wooden bend apparatus; (d) Bending test rig 

with side-attached goniometer.  
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For fluctuation assessment the output voltage and its ratio with respect to the reference voltage were 
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output voltage ratio with respect to the reference voltage was measured at different bending angles. 

The sensor on the test rig was bent at several incremental bending angles degree in 2.5° steps starting 

from a straight position (assumed to be zero bending) until the fibre was bent at a maximally required 

angle of 20°. Lastly for repeatability assessment, the fibre was bent several times from 0° to 10° and 

then back to 0° to study the repeatability of the sensor to give the same output voltage ratio after 

multiple bending movements of the sensor. The fibre was maintained at each angular position for one 

minute as the measurement was recorded. The input voltage was also fixed at 3.4 V at all times for 

both bending and repeatability assessments. 

The justifications of the parameters selection of the sensor configuration are presented in the 

following paragraphs. The right selection of reflector material is important to ensure a good light 

reflectivity from the source fibres into the reference fibre. A discussion on the fibre separation gap 

between the source and the sensor fibres is important to explain the needs for dual source fibres for the 

sensor input; e.g., a gap of up to 4 mm between the source and sensor fibres that was necessary for 

optimum light reflection into the reference fibre as well as for smooth fibre bending movement would 

lead to a poor signal reception at the sensor fibre. Lastly, it is also necessary to find a suitable gap so 

that a maximum light intensity is reflected back from the source fibres into the reference fibre. 

4.1. Reflector Material Type 

Several types of reflector surface materials can be applied as the reflector element to provide the 

light reflection for reference fibre signal besides the use of mirror. Optical reflectivity properties for 

different type of materials have been studied using a red LED light source with 660 nm wavelength. 

The reflectivity response of gold coated mirror, copper, brass, aluminum, steel and iron obtained from 

previous investigation [31] is summarized in Figure 3.  

Figure 3. Response of fibre optic reflectivity of different reflector materials [31]. 

 

It is important to note that the reflectivity of the gold coating surface is dependent on the 

wavelength of the applied light source. For a visible light source with a wavelength of 600 nm and 

above, the reflectivity can reach values of up to 90% [32]. On the other hand, for the type of light 
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source in this investigation (green LED: 530 nm), the reflectivity is significantly lower, thus the use of 

a gold coated mirror is avoided in this application. Steel and iron are more common in the market but 

their poor reflectivity properties became the main problem. Copper, brass and aluminum are available 

at relatively low price and it have acceptable reflectivity characteristics, thus they were considered as 

the reflectors for this sensor configuration. 

4.2. Fibre Separation Gap between Source Fibres and Sensor Fibre Effect 

The transmitted light source power ratio of the sensor fibre due to fibre gap separation between the 

source fibre and the sensor fibre is quoted based on the connector loss calculation between two fibres. 

Two different equations were used to estimate the percentage of power loss of the light source as the 

gap between the source fibre and sensor fibre was increased. Assuming power received at the sensor 

fibre, Pr and power transmitted from the source fibre, Pt, the first equation is presented as follows [33]: 

  
  

   
      

      
 (1) 

where z is the fibre gap between the source and sensor fibres, NA is the numerical aperture of the fibre, 

d is the fibre core diameter and no is the refractive index of the medium in between them. 

Another approximation is also based on separation loss of two fibre end tips on a joint presented by 

Tsuchiya as follows [34]: 

  
  

 
    

      
    

 

  
             (2)  

where the parameter K is dependent on the ratio between the fibre core and the medium refractive 

index,      , z is the fibre separation gap, a is the core radius and  is the refractive index difference 

between core and cladding (for PMMA fibre,  = 1.492 − 1.402 = 0.09). The estimations of the power 

ratio at different fibre separation gaps between the source and sensor fibres utilizing Equations (1) and 

(2) are summarized in Table 1.  

Table 1. Transmitted power ratio estimation due to fibre separation gap. 

Fibre Separation, z (mm) 

Power Ratio,       (%) 

   
      

      
  

    

      
    

 

  
             

0.25 91.50 84.90 

0.5 83.00 77.44 

0.75 74.50 70.00 

1.0 66.00 62.57 

1.25 57.48 55.07 

1.5 48.98 47.61 

1.75 40.48 40.15 

2.0 31.97 32.70 

2.5 14.97 17.79 

3.0 <1.00 2.87 
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With the use of Equation (2), the estimated power transmission for a gap of 3 mm between the 

source fibre and the sensor fibre is less than 3%. The comparison between the theoretical and the 

experimental values with respect to this longitudinal separation gap has been discussed in our previous 

study [35]. From the estimation in Table 1, the use of a single source fibre for the sensor configuration 

presented in this paper will result in a significantly lower light intensity being accepted at the sensor 

fibre. To ensure a higher light level reception at the sensor fibre, two source fibres were applied in the 

optical fibre sensor. This was significant because besides the loss due to the fibre gap, the sensor fibre 

will also experience additional light loss from the bending measurement later. 

4.3. Distance between the Source Fibres End Tips and Reflector 

The optimum distance between the fibre end tips and the reflector applied in this investigation is 

aimed to achieve a maximum optical power received at the reference fibre. The power ratio of the 

receiving fibre with respect to the transmitted power for different separation gaps between the fibre 

end tip and the reflector can theoretically be presented in an equation [36]: 

     

  
 

 

 
  

   
   (3)  

where          . In this equation, za is the cone vertex distance from the fibre end tips. It was 

shown in [36] that the collected power at receiving fibre achieved its maximum value at      (e.g., 

     = 0.9142). For a PMMA fibre type applied in this investigation, the maximum received power 

was reached at a fibre and reflector separation gap of 1.6 mm (e.g.,           ) as shown by a 

reflective sensor configuration for vibration application [37] using plastic optical fibre of the same type 

as applied here. As the percent ratio of the hole area (0.75 mm
2
) by the overall reflector area  

(9.6 mm
2
) was 7.7%, which is very small, and the hole was in a fixed position on the reflector surface 

at all time, Equation (3) is presumed to be valid to provide the optimum gap estimation for this sensor. 

From the brief discussion provided in Sections 4.1 through 4.3, aluminum foil has been selected as 

the reflective material considering its reflectivity response and the availability of that material with an 

adhesive side. The fibre separation gap between the source fibres and the sensor fibre was kept as 

small as possible. However, as a certain gap was necessary for the optimum light reflection into the 

reference fibre as well as for a smooth bending movement between the source fibre and sensor fibre 

holders the fibres was separated a distance between 3 to 4 mm. Finally, the distance between the 

source fibres and the reflector was set at 1.6 mm simply by using the result from Equation (3). 

5. Results and Discussion 

The experimental results for the bending sensor configuration in this investigation were achieved 

from a photodetector amplifier and filtering circuit using Labview platform via a multifunction  

USB-6008 DAQ module (National Instruments, Texas, TX, USA). The results include the power 

fluctuation test, bending assessment, repeatability assessment and output voltage drift test. From these 

results, important sensor properties such as sensor sensitivity at different bending angles, sensor 

working range, acceptable input voltage variation and output linearity were established. 
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Figure 4a,b shows the actual output voltage and output voltage ratio for power fluctuation 

investigation. Initially, the input voltage was maintained at 3.4 V for 1 min before a decrease of  

0.1 V was applied and continued at each additional minute. The input voltage was reduced until 2.9 V. 

In order to have sufficient light transmission from the source fibres into the reference and sensor fibres, 

the input voltage was not reduced further. From Figure 4b, it is demonstrated that the output voltage 

ratio was able to regulate at 0.55% voltage ratio from the initial reading for an input voltage range 

between 2.9 V and 3.4 V. 

Figure 4. Power fluctuation test—(a) actual output voltage; (b) output voltage ratio. 

  

(a) 

 

(b) 

The bending test result of the sensor is presented in Figure 5a. The sensor was placed in a straight 

position at the beginning of the test for 1 min period. Later the bending angle was extended for an 

additional 2.5° for the next 1 min and so on until 20° of bending was achieved. The actual output 

voltages of the sensor and reference fibres were recorded to monitor the attenuation of the light 

intensity at each further 2.5° bending angle. 

It is shown in Figure 5a that the output voltage ratio drops more significantly for each additional 

2.5° bending angle between 10° and 15° (sensitivity, Smax = 0.0826/1°) than a bending angle of less 
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than 10°. The output ratio was minimally reduced at a bending of less than 5° (Smin = 0.0136/1°) which 

was caused by a wider far field property of the sensor fibre using dual source input [33]. Besides that, 

as shown in Figure 5b the reference voltage output was also least affected from the fibre bending 

manipulation, suggesting a reliable compensation signal provided by this sensor configuration. 

Figure 5. Bending assessment—(a) output voltage ratio; (b) reference voltage. 

 

(a) 

 

(b) 

The repeatability test was conducted to study the ability of the rubber tube to hold the fibre holders 

together during the bending and to maintain the same level of sensor output voltage for each particular 

bending angle. As shown in Figure 6, the voltage was dropped from 4.57 V to 3.20 V as the sensor was 

bent from 0° to 10° and the same level of output voltage (thus similarly for output ratio) was 

reproduced after at least five bending repeatations. 

The voltage drift test is presented in Figure 7. The sensor output voltage ratio was monitored for a  

2 h period to investigate the output voltage ratio drift effect. The drift was found to be at 0.25% from 

the initial value after being slightly dropped from 1.164 to 1.161 during the 2 h test. This small drift is 

significant for the optical fibre bending sensor based on intensity modulation as presented in this 

investigation because a larger drift could potentially lead to miscalculation of the bending angle, 

especially for a long period of spine bending monitoring.  
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Figure 6. Repeatability test—actual output voltage.  

 

Figure 7. Voltage drift test—output voltage ratio. 

 

To show the ability of the sensor to provide a bending measurement for the intended application, 

the measurement was made by determining the output ratio at several pre-determined angles before a 

linear relationship between the output ratio and the bending angle was made. This relationship was 

applied only for this preliminary investigation as an actual relationship between the output ratio and 

the bending angle will be applied using fibre tilt angle loss estimation as discussed in [35]. In this 

measurement, the sensor was bent starting from a straight position (0°) to 5°, 10° and later to 15° 

before it was continued for decreasing angles of the same bending angle position as shown in Figure 8. 

As this scale was too large for the spine application, the measurement was carried on for a smaller 

bending scale of 2° until 16° of bending. The bending reading between 0° and 6° was slightly less 

consistent than the larger bending which was explicable due to the poor sensitivity of the sensor at a 

smaller bending range. 
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Figure 8. Bending measurement—bending angle (
o
). 

 

From the assessment results in Figures 4–8, some important properties of the sensor under 

investigation are summarized in Table 2. The effect of the other disturbances such as temperature 

variation and external light coupling were minimized in the current investigation results by conducting 

the measurement in an ambient room temperature (between 18 °C to 23 °C) and minimum surrounding 

light during the measurement period. The room temperature variation will affect the light intensity at 

some point but this effect is presumed to be minimized with the compensation technique described 

here. The reason is both reference and sensor outputs were supplied by the same light sources before 

these values were normalized for the bending measurement. Besides that, it was also presumed that the 

body temperature does not directly influence the light intensity because in this case only the fibre cable 

has a direct contact with the human body while the light source was placed in a distant location.  

Table 2. Optical fibre bending sensor properties of this investigation. 

Sensor Properties Measured Value 

Power fluctuation (input voltage 

of 2.9 V–3.4 V)  
0.55% 

Sensitivity (between 0° and 5°) 

Sensitivity (between 10°and 15°) 

Smin = 0.0136/1° 

Smax = 0.0826/1° 

Resolution <2° 

Working range (flexion only) 0°–20° 

Output drift 0.25%/2 h 

As a general guideline for the minimum requirement of the sensor resolution and its full scale 

deflection specifically for the application of the spine bending and movement monitoring, it is 

significant to briefly review the typical range of motion of the human spine based on previous studies 

on human spine motion conducted by recognized physiotherapists. The summary of the range of 

motion of the segmental of the human spine is presented in Table 3. 
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Table 3. Ranges of segmental motion for different motion types [38]. 

Level of Lumbar 

Spine 

Mean Range (
o
) 

Lateral Flexion Flexion Extension 

L1-2 5 8 5 

L2-3 5 10 3 

L3-4 5 12 1 

L4-5 3 13 2 

L5-S1 2 9 5 

As shown in Table 3, the bending angles for the human spine, particularly the lumbar spine, for 

lateral flexion, flexion and extension movements range between 1° and 13°. The use of a single point 

optical fibre bending sensor presented in this study has a working range of up to 20° and it is capable 

of measuring the bending angle at a minimum resolution of 2° at each measurement point. However, 

for an overall assessment of the spine bending angle at each level of the lumbar spine (or up to cervical 

spine levels), a distributed optical fibre sensor can be implemented using the same compensation 

approach presented here. 

From the spine bending application perspective using the proposed sensor, it was noticed that the 

sensor dimension was about 7 mm in diameter and 40 mm in length (end to end of fibre holders). At 

this point, the bending angle in flexion direction between 0° and 20° can be measured continuously at 

one particular point. The main objective of this article is to highlight the potential of the proposed 

sensor configuration to compensate for the input power fluctutation at a minimum output drift and a 

good repeatability. Further improvements are in progress to minimize the sensor dimensions, 

especially its length, to permit additional sensor point installation for multiple location bending 

assessment along the human spine.  

6. Conclusions 

The implementation of an optical fibre bending sensor using an intensity modulation approach with 

power fluctuation compensation has been presented. The compensation was obtained from the output 

voltage ratio between the sensor output and the reference signal. The reference signal was collected at 

the end tip of the reference fibre due to light reflection via an aluminum foil surface fixed at a few gaps 

away from the source fibres end tips. Using the compensation technique described above, a resolution 

of less than 2° can be achieved, with an output drift of 0.25% during 2 h measurement, 0.55% of 

power fluctuation changes for an input voltage variation between 2.9 V and 3.4 V as well as sensor 

working range between 0° and 20°. This sensor configuration meets the required range of motion of 

the human spine as defined by Bogduk [38] for continuous monitoring of the spine bending at one 

measurement point. 
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