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Abstract: A novel glassy carbon electrode (GCE) modified with carbon-spheres has been 

fabricated through a simple casting procedure. The modified GCE displays high selectivity 

and excellent electrochemical catalytic activities towards dopamine (DA), serotonin  

(5-HT), and ascorbic acid (AA). In the co-existence system, the peak separations between 

AA and DA, DA and 5-HT, and AA and 5-HT are large up to 230, 180, and 410 mV, 

respectively. Differential pulse voltammetry (DPV) has been employed to simultaneously 

detect DA, 5-HT, and AA, and the linear calibration curves for DA, 5-HT, and AA are 

obtained in the range of 20.0–150.0 μM, 40.0–750.0 μM and 300.0–2,000.0 μM with 

detection limits (S/N = 3) of 2.0 μM, 0.7 μM and 0.6 μM, respectively. The proposed 

electrode has been applied to detect DA, 5-HT, and AA in real samples using standard 

addition method with satisfactory results.  
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1. Introduction 

Neurotransmitters, such as dopamine (3,4-dihydroxyphenylethylamine, DA) and serotonin  

(5-hydroxytryptamine, 5-HT) are the chemical messengers which transmit messages from one neuron 

to the next. This transmission proceeds through the secretion of neurotransmitters from one neuron and 

then binding to the specific receptor located on the membrane of the target cell. This interaction 

between neurotransmitter and receptor is one of the major modes of communication between  

neurons [1,2]. Dopamine is one of the most typical catecholamines and belongs to the family of 

inhibitory neurotransmitters. A loss of DA-containing neurons may result in some serious diseases 

such as schizophrenia and Parkinson’s disease [3,4]. 5-HT is widely distributed in the brain, and 

together with other neurotransmitters, makes a significant contribution to brain functions such as sleep, 

thermoregulation, food intake, and sexual activity, as well as in psychopathological states such as 

depression, anxiety, alcoholism, and drug dependency [5,6]. Ascorbic acid (AA) has a significant role 

in normal neuronal physiology and acts as an important antioxidant, enzyme co-factor, and 

neuromodulator in the brain [7]. These three substances are all electro-active and coexist in biological 

systems such as brain tissue. There has been a considerable effort to develop voltammetric methods for 

the determination of AA, DA, and 5-HT in real biological matrixes. It is well known that the direct 

redox reactions of these three species at bare electrodes are irreversible and therefore require high 

overpotentials. Moreover, the direct redox reactions of these species at the bare electrodes take place at 

very similar potentials and they suffer from a pronounced fouling effect, which results in rather poor 

selectivity and reproducibility [8–12], so the ability to selectively detect DA, 5-HT and AA, has been a 

matter of great interest to bioelectrochemists, electroanalytical chemists and neuroscientists [8–12]. Up 

to now, there are a few reports in the literature about the simultaneous determination of DA, 5-HT and 

AA which used different electrochemical methods and electrodes for their simultaneous determination. 

For example, various chemically modified electrodes including electrodeposited nanostructured 

platinum on Nafion-coated GCEs [13], poly(o-phenylenediamine)- and poly(phenosafranine)-modified 

GCEs [14,15], choline- and acetylcholine-modified GCEs [16], DNA-immobilized carbon fibre 

microelectrodes [17,18], solid carbon paste electrode modified with a nonionic polymer film [19], and 

carbon paste electrodes modified with iron(II) phthalocyanine complexes [20] have been reported for the 

simultaneous determination of DA, 5-HT and AA. A proposed methodology for the discrimination 

between DA and 5-HT in the presence of AA with the combination of a large amplitude/ high frequency 

voltage excitation and signal processing techniques [21] is also reported in the literature.  

However, direct use of carbon materials (i.e., without other modifiers) for the simultaneous 

determination of these three species have rarely been reported [22–26]. To the best our knowledge, 

only carbon-nanotube-modified GCEs [22], carbon-nanotube-intercalated graphite electrodes [23], 

graphite electrodes reinforced by carbon [24] edge plane pyrolytic graphite electrode [25], and carbon 

nanofiber [26] have been employed as simple electroanalytical methodology for the simultaneous 

determination of dopamine, serotonin and ascorbic acid. 

Recently, we have synthesized a new kind of micro-structured porous carbon materials,  

double-shelled carbon spheres (CS), and we have shown their excellent electrochemical properties as 

electrode materials such as good conductivity, porous nature and high specific area [27–30]. Herein, 

the feasibility of using a CS-modified glassy carbon electrode(CS/GCE) in an attempt to develop a 
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sensitive voltammetric method for the simultaneous determination of DA, 5-HT and AA in pH 7.00 

phosphate buffer solution is reported.  

2. Experimental Section  

2.1. Chemicals and Instrumentation 

Ascorbic acid (AA), dopamine (DA), serotonin (5-HT) and other chemicals were all purchased 

from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). All these chemicals are of analytical 

grade and used as received. Unless otherwise indicated, phosphate buffer (pH 7.0, 0.1 M) was used as 

supporting electrolyte. Phosphate buffer was prepared with KH2PO4 and Na2HPO4, and the desired pH 

was modulated with NaOH or H3PO4 by pH meter. Freshly prepared AA, DA and 5-HT solutions were 

used for each experiment. All aqueous solutions were prepared with triply-distilled water. 

Morphological characterization of the obtained carbon spheres was performed on a transmission 

electron microscope (SEM) (Hitachi S-4800, Tokyo, Japan) operating at 3 kv. A very dilute dispersion 

of the carbon spheres in ethanol was dispersed onto carbon-coated copper grids and the ambient dried 

carbon spheres were vacuum sputtered for SEM observation. All electrochemical experiments were 

performed on CHI760D electrochemical working station (CHI, Shanghai, China) with a conventional 

three-electrode cell which consists of a bare GCE or CS/GCE as the working electrode, a Ag/AgCl as 

the reference electrode, and a platnium wire as the counter electrode.  

2.2. Preparation of CS Film Electrodes 

Prior to surface modification, the glassy carbon disk electrodes (GC, 3-mm diameter, Bioanalytical 

System, Inc., West Lafayette, IN, USA) were first polished with 0.3 and 0.05 μm alumina slurry on a 

polishing cloth, respectively, and then sonicated in the acetone and distilled water for 3 min, 

respectively. The as-synthesized CS was dispersed into N,N-dimethylformamide (DMF) to give a 

homogeneous suspension (10 mg·mL
−1

) under sonication. A 2.0 μL aliquot of the homogeneous 

suspension was cast onto the GCE surface and allowed to dry under a lamp to evaporate the solvent, 

thus a CS-modified GCE (denoted as CS/GCE) was obtained. 

3. Results and Discussion 

3.1. Characterization of Synthesized Carbon Spheres 

The synthesis of carbon spheres and the detailed characterization of the synthesized carbon spheres 

including SEM, TEM, IR spectra, elemental analysis, Raman spectra, and BET tests were reported in 

our previous publications [26–29]. In brief, the carbon spheres with porous shell are about 480 nm in 

diameter. BET specific surface area was 194 m
2
/g, and the total pore volume was 0.36 cm

3
/g. 

Elemental analysis shows that the carbon spheres contain 94.0 wt.% C, 1.0 wt.% H, 2.7 wt.% O and 

1.0 wt.% S, suggesting that oxygen-containing functional groups are present on the CS surface. The 

SEM image of the synthesized carbon sphere is shown in Figure 1.  
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Figure 1. SEM image of the synthesized carbon spheres. 

 

3.2. Electrochemical Responses of AA, DA and 5-HT on CS/GCE 

Figure 2 depicts cyclic voltammograms (CVs) of the electro-oxidation of 1 mM AA at the CS 

modified (A) and bare (B) GCEs in 0.1 mol·L
−1

 PBS (pH 7.0) with a scan rate of 100 mV·s
−1

, 

respectively. At a bare GCE, AA shows a broad and irreversible oxidation peak at 0.35 V, while the 

oxidation peak shifted to −0.03 V with well-defined peak shape at the CS/GCE. The 380 mV negative 

shift of the anodic peak indicates that the CS modified GCE also plays a strong catalytic effect on the 

AA electro-oxidation.  

Figure 2. Cyclic voltammograms obtained at CS/GCE (A), and bare GCE (B) in the 

presence(solid line, curve b) or absence(dotted line, curve a) of 1 mM of AA in the 

phosphate buffer solution (pH 7.0) with a scan rate of 100 mV s
−1

.  

 

In the electrooxidation process of AA, ascorbate is oxidized to dehydroascorbate accompanied by 

with transfer of 2-electrons and 2-protons, and the electrochemical reaction can be expressed as follows:  
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As shown in Figure 3, the anodic peak currents were proportional to the square roots of scan rates in 

the range of 10–400 mVs
−1

, indicating that the electrochemical reactions of AA at CS/GCE is a 

diffusion-controlled process. 

Figure 3. (A) CVs obtained at CS/GCE of 1 mM of AA in the phosphate buffer solution 

(pH 7.0) at different scan rates (from inner to outer): 10, 20, 50, 100, 200, 300,  

400 mV·s
−1

; (B) The plot of currents against the square roots of scan rates. 

 

Figure 4. CVs obtained at CS/GCE (A), and bare GCE (B) in the presence (solid line) or 

absence (dotted line) of 1 mM of DA in the phosphate buffer solution (pH 7.0) with a scan 

rate of 100 m·Vs
−1

.  

 

Figure 4 shows the cyclic voltammmograms of 1 mM DA at CS modified (A) and bare (B) GCEs in 

the phosphate buffer solution (pH 7.0) with a scan rate of 100 mV·s
−1

, respectively. As can be seen, 

DA shows a sluggish and much smaller CV peak response with a ΔEp of 0.35 V at bare GCE (B). But 

at the CS modified GCE, the peak potential shifted negatively and showed a pair of quasi-reversible 

redox peaks with a ΔEp of only 90 mV. The decreased peak separation strongly indicates excellent 

catalytic activity of CS to the electro-oxidation of DA. The electrochemical process can be expressed 

by the following equation: 
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Figure 5 shows the CVs of 5-HT at CS modified (A) and bare (B) GCE, respectively. The 

voltammetric peak of 5-HT in the neutral pH 7.0 PBS appeared at about 0.46 V at the bare GC 

electrode (B) and the peak was rather broad, indicating a slow electron transfer kinetic. However, a 

sharp oxidation peak at 0.38 V and a small re-reduction peak at 0.3 V were obtained at CS/GC 

electrode (A). The 80 mV negative shift indicates a catalytic effect of the CS modified layer on the  

electro-oxidation of 5-HT. It must be pointed out that the appearance of the re-reduction peak of 5-HT 

oxidation indicates that reaction reversibility increases and the rate of following reactions at the  

CS/GCE reduces. The electrochemical process can be expressed as the following equation: 
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Figure 5. CVs obtained at CS/GCE (A), and bare GCE (B) electrode in the presence(solid 

line) or absence(dotted line) of 1.5 mM of 5-HT in the phosphate buffer solution (pH 7.0) 

with a scan rate of 100 m·Vs
−1

.  

 

For the oxidation of DA and 5-HT, the anodic peak currents of DA and 5-HT are also both 

proportional to the scan rates and displayed a diffusion-controlled electrode reaction (data not shown). 

Comparing with the bare electrode, the porous interfacial layer of the CS-modified electrode with a 

high specific surface area increases the conductive area, biomolecules can penetrate through the 

conductive porous channels onto the electrode more easily [23], leading to higher sensitivity and 

selectivity. On the other hand, edge plane of CS with its large number of edge plane sites facilitates 

and accelerates the electron-transfer rate between species and electrode [25] and therefore results in 
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sensitive, well-defined and resolved signals for DA, 5-HT and AA, providing an electroanalytical 

method for the determination of DA, 5-HT and AA. 

3.3. Simultaneous Determination of DA, 5-HT and AA at CS/GCE 

Since DA, 5-HT and AA have similar oxidation potentials at most solid electrodes, separate 

determination of these species is a great problem due to their overlapping signals. In order to establish 

a sensitive and selective method for the quantification of DA, 5-HT and AA, the electrochemical 

oxidation of the mixture containing these three species at the CS modified GCE was studied. As shown 

in Figure 6B, the CV of the mixture solution containing DA, 5-HT and AA shows broad and 

overlapped anodic peaks at bare GCE, so the peak potentials for DA, 5-HT and AA are 

indistinguishable at a bare GCE and therefore, it is impossible to deduce any information from the 

broad and overlapped voltammetric peak. However, at the CS/GCE, the overlapped voltammetric peak 

is resolved into three well-defined anodic peaks at about −0.03, 0.20 and 0.38 V (A), corresponding to 

the oxidation of AA, DA and 5-HT, respectively, which are also observed in DPV mode (C). The 

separations of peaks were 230 mV, 180 mV and 410 mV between DA and AA, DA and 5-HT, and AA 

and 5-HT, respectively, which were large enough to determine DA, 5-HT and AA individually and 

simultaneously. 

Figure 6. Cyclic voltammetry recordings of 2 mM AA, 0.5 mM DA and 0.5 mM HT at 

CS/GCE (A) and bare GCE (B) in 0.1 M phosphate buffer solution (pH 7.0) in the presence 

(solid line) and absence (dotted line) of AA, DA and HT with a scan rate of 100 mV·s
−1

; 

(C) Differential pulse voltammograms of the same mixture at CS/GCE. 

 

The electro-oxidation processes of DA, AA and 5-HT in the mixture have also been investigated 

when the concentration of one species changed, whereas those of other two species are kept constant. 

DPV was employed to detect AA, DA and 5-HT because of its higher current sensitivity and better 

resolution than CV technique. Figure 7A gives the DPV recordings at various DA concentrations at the 

PVA modified GCE in the presence of AA and 5-HT. From Figure 7A, it can be seen that the peak 

current of DA increased with an increase in DA concentration when the concentrations of AA and  

5-HT were kept constant. Similarly and obviously, as shown in Figure 7B,C, keeping the 

concentrations of other two compounds constant, the oxidation peak current of 5-HT and AA was 
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positively proportional to its concentration, while those of other two compounds did not change. From 

our experimental results depicted above, it can be obtained that the electrochemical response peaks for 

DA, AA and 5-HT oxidation at the PVA modified GCE were clearly separated from each other when 

they co-exist in pH 7.0 PBS. It is therefore possible to simultaneously determine DA, AA and 5-HT in 

samples at a CS modified GCE. Under the optimum conditions, using the DPV mode, the catalytic 

current peak was linearly related to DA, AA and 5-HT concentration. The analytical parameters for the 

simultaneous determination of DA, 5-HT and AA are listed in Table 1.  

Figure 7. (A) DPVs of various concentrations of DA in 1 mM AA and 40 μM 5-HT 

solution (from a to g: 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.15 mM); (B) DPVs of various 

concentrations of HT in 1 mM AA and 12 μM DA solution (from a to h: 0, 0.04, 0.35, 0.5, 

0.58, 0.6, 0.7, 0.75 mM); (C) DPVs of various concentrations of AA in 12 μM DA and  

40 μM 5-HT solution (from a to h: 0, 0.3, 0.5, 0.7, 1.0, 1.3,1.5, 2.0 mM); (D)–(F) are the 

linear plots of currents against concentrations of DA, 5-HT, and AA, respectively. 

 

 

Table 1. Analytical parameters for the determination of DA, 5-HT, and AA. 

Analyte 
Linear Range 

(mM) 

Linear Regression Equation 

(ΔI: μA; C: mM) 

Correlation  

Coefficient (r) 

Detection  

Limit (μM) 

DA 

5-HT 

AA 

0.02–0.15 

0.04–0.75 

0.3–2.0  

ΔI = −0.32 + 26.18 C  

ΔI = 0.09 + 21.44 C  

ΔI = −0.01 + 9.94 C  

0.985 

0.999 

0.999 

0.2 

0.7  

0.6 

3.4. Interferences, Stability and Repeatability 

To evaluate the selectivity, we investigated the current response of CS/GCE to the ternary mixture 

containing 40 μM DA, 40 μM 5-HT, and 1 mM AA in the presence of different interfering substances. 

The effects of main relevant metal ions such as K
+
, Na

+
, Mg

2+
, Zn

2+
, Fe

2+
, Fe

3+
, Cl

−
, NO3

−
, SO4

2−
 on 
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the current of the modified electrode for the mixture were studied and the results showed that the  

1,000-fold excesses of Na
+
, K

+
, Mg

2+
, Zn

2+
, Cl

−
, NO3

−
, PO4

3−
, SO4

2−
, AC

−
, 700-fold excesses of Fe

2+
, 

400-fold excesses of Fe
3+

, 10-fold excess of DOPAC, 5-fold excess of uric acid and 200-fold excess of 

oxalate, and 500-fold excess of glucose, L-cysteine, glutathione, folic acid, levodopa induced less than 

±5% interference with the detection of DA, 5-HT, and AA. These results suggest that  

the CS/GC electrode possessed a good selective electrochemical response toward DA, 5-HT, and AA,  

and also indicated that CS/GC electrode could be used for the determination of DA, 5-HT, and AA in 

real samples. 

The storage stability of CS/GCE was investigated by monitoring its current response to the ternary 

mixture containing 40 μM DA, 40 μM 5-HT, and 1 mM AA. The response of the electrode lost 

approximately 6.3%, 5.2%, and 4.8% of its original response for DA, 5-HT, and AA, respectively, 

after the storage of two weeks. The operational stability of the proposed electrode was also carried out 

by continuous assays by DPV of the ternary mixture containing 40 μM DA, 40 μM 5-HT, and 1 mM 

AA using one same CS/GCE in 2 h. A current decrease of ca. 5.3%, 6.2%, and 5.4% for DA, 5-HT, 

and AA was observed, respectively. The repeatability of the CS/GCE was also evaluated by 

measurements the same ternary mixture as above and the relative standard deviation (R.S.D.) for seven 

repeated measurements was found to be ca. 7.1%, 6.2%, and 6.4% for DA, 5-HT, and AA, 

respectively, suggesting that that CS/GCE is not subject to surface fouling by the oxidation products 

and is reproducible. Obviously, the proposed electrode shows a high stability and good reproducibility 

and anti-interference ability. Since the electrode fabrication is very easy and low cost, the present CS 

modified electrode seems to be of great utility for making electrochemical sensor for the detection of 

these three neurotransmitters. 

Table 2. Results of the determination of DA, 5-HT, and AA in real samples. 

Sample 
Labeled 

(mg·mL
−1

) 
Added 

(mg·mL
−1

) 
Found  

(mg·mL
−1

) 
R.S.D 

(%) 
Recovery 

(%) 

vitamin C injection 200 0 194.2 1.9 - 

  20 221.1 2.3 105.5 

dopamine hydrochloride injection 10 0 10.1 3.1 - 

  5 15.2 4.2 104.0 

 labeled added found R.S.D recovery 

 (μM) (μM) (μM) (%) (%) 

synthesized sample AA: 500 0 DA: 98.1 3.8 - 

 DA: 100 DA: 20 119.3 4.7 96.5 

 5-HT: 100     

 AA: 500 0 5-HT: 100.5 4.1 - 

 DA: 100 5-HT: 20 120.3 3.9 101.5 

 5-HT: 100     

 AA: 500 0 AA: 497.9 3.4 - 

 DA: 100 AA:20 519.7 4.9 98.5 

 5-HT: 100     

3.5. Sample Analysis 

The CS/GCE was applied to the amperometric assay of DA in dopamine hydrochloride injection 

(labeled as 10 mg·mL
−1

), AA in vitamin C injection (labeled as 200 mg·mL
−1

), and DA, 5-HT, AA in 
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synthesized samples, respectively, by standard addition method. The injection solutions were diluted 

with PBS by 1,000 times and a ternary mixture containing 500 μM AA, 100 μM DA, and 100 μM  

5-HT was used as synthesized samples. The results of the above assaying are listed in Table 2. The 

recoveries for the determinations vary from 96.5% to 105.5%, suggesting the proposed CS/GCE can be 

used to reliably determine DA, 5-HT and AA in real samples. 

4. Conclusions 

A novel carbon spheres-modified glassy carbon electrode was fabricated. The modified electrode 

shows good electrocatalytic activity for the electro-oxidation of DA, 5-HT and AA. Moreover, a better 

separation of oxidation peaks of DA, 5-HT and AA can be achieved, indicating that the carbon 

spheres-modified GCE facilitates the simultaneous determination of DA, 5-HT and AA with good 

stability, sensitivity and selectivity. The proposed method can be applied to the determination of DA, 

5-HT and AA in real samples with satisfactory results. 
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