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Abstract: This paper presents a task allocation-oriented frameworknable efficient
in-network processing and cost-effective multi-hop resewsharing for dynamic multi-hop
multimedia wireless sensor networks with low node mohiléyg., pedestrian speeds.
The proposed system incorporates a fast task reallocatgorithm to quickly recover
from possible network service disruptions, such as nodén@rfailures. An evolutional
self-learning mechanism based on a genetic algorithm mootisly adapts the system
parameters in order to meet the desired application detpyinrements, while also achieving
a sufficiently long network lifetime. Since the algorithnmtume incurs considerable time
delay while updating task assignments, we introduce antagapindow size to limit the
delay periods and ensure an up-to-date solution based anmodility patterns and device
processing capabilities. To the best of our knowledge, ithithe first study that yields
multi-objective task allocation in a mobile multi-hop wigss environment under dynamic
conditions. Simulations are performed in various settiagsl the results show considerable
performance improvement in extending network lifetime paned to heuristic mechanisms.
Furthermore, the proposed framework provides noticeaddiation in the frequency of
missing application deadlines.
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1. Introduction

The growing need to support high performance applicationsnulti-hop multimedia wireless
sensor networks (MWSNSs)L] while coping with limited node capabilitie®] highlights the necessity
of resource sharing and node collaborati@4. For example, in a surveillance sensor network
consisting of wireless camera nodés/], real-time computation of large amounts of visual data and
performing complex image processing-based algorithmesource constrained sensor nodes imposes
news challenges for MWSN design. On the other hand, tratiagndll the raw image data via multi-hop
wireless communication to a remote gateway or to the clowdratrieving the computation results
is very costly in terms of energy consumption, as well asdampe delays on the order of seconds.
Hence, multimedia in-network processir] fould be one solution to this problem, which divides a
computationally demanding program into smaller tasks #meh), intelligently assigns them to a set of
nodes in order to efficiently use available network resairé®wever, additional costs may occur, due
to the multi-hop wireless communication that is requiredexahange information among individual
tasks. Hence, task allocation algorithms have to considerttade-off between processing and
communication costs.

Network dynamicity causes additional complexity in a taB&cation system. For example, in an
earthquake relief use case, multiple collaborative agegtspped with cameras are dispatched to the
emergency scenes to carry out time-critical missions, as@dearch and rescud,[and form a dynamic
MWSN. However, when a critical agent/node leaves the ndtwdre to communication interruption or
physical node failure, serious consequences, such asnketemvice disruption, can occur. In such cases,
control messages are exchanged among nodes in order teigwdfaulty ones and detect the affected
tasks that need to be immediately reallocated to suitabdesioFurthermore, stochastic movements of
a patrolling agent might affect its own communication or s@interference on its neighbours. This
implies that the effectiveness of a fixed task allocatiorusoh may degrade and eventually become
invalid if there is no update for the solution based on thedemetwork conditions. The simplest reaction
is to regard each change in the network topology as the hafivianew task allocation problem that has
to be solved from scratch by re-running the allocation athor. Nevertheless, due to the complexity of
MWSNSs, assessments of finding a qualified solution are ofbempeitationally time consuming, which
has a direct effect on the quality of the computed solutiarifoe-critical applications.

1.1. Motivation

In this paper, the problem of dynamic task allocation andedaling in MWSNSs is considered.
Algorithm complexity and the corresponding runtime to proel and update solutions are explicitly
taken into account. Existing sophisticated heuristic afgms [10,11] are not suitable for dynamic
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network conditions, due to their algorithm complexity. lontrast, simple and fast algorithms run the
risk of providing only low quality solutions. A genetic algihm (GA) is a possible alternative to these
heuristic approaches, as a GA is typically designed forirvaliable settings and is shown to be efficient
in solving task allocation and scheduling probleri2 13]. However, GAs are time consuming and,
hence, cannot be directly applied to networks with dynaltyiclhanging conditions or topologies. On
the other hand, the execution of a GA can be divided into s¢gequential staged4], each of which
requires less resource and executes more quickly. Seaméath, the conjecture is that it is possible
to provide an intermediate result of a GA, which is sub-optinas a fair solution that suits the latest
conditions in a dynamic network. Furthermore, the qualityhe provided solutions can be improved
over time by progressively enhancing the pool of solutieafied the GA population, using an efficient
and fast heuristic that makes corrections based on netwarges. Therefore, in this paper, the objective
is to develop a framework that is a combination of an evohal@A and a heuristic to strike the balance
between algorithm execution time and adaptability to nekvdynamics.

1.2. Main Contribution

In this paper, the Dynamic Task Allocation and SchedulingAB) framework is presented. DTAS
aims at minimizing the frequency of instances when an agptin misses an arbitrarily set deadline
(deadline miss ratip while also extending network lifetime by balancing nodergy consumption
levels. To the best of our knowledge, this is the first study grovides multi-objective task allocation
in complex and dynamic multi-hop network environments.

DTAS can be summarized as follows: First, a heuristic mimmhwp count algorithm is designed
to guide the initial solution creation, which can effechiveeduce problem complexity. Second, a
self-learning process (SLP) based on a GA is applied, whictticuously evolves a set of solutions,
so that multiple design objectives can be met. Intermedestelts of SLP can be provided as temporary
sub-optimal solutions to cope with changing network cdodg. The fitness function in SLP initially
favours meeting the deadline requirement and, then, gligdeans towards a balanced solution between
task execution time and network lifetime. An adaptive wiwwde proposed to keep the GA execution
time under control, such that the final solution is up-toedatth the most recent network conditions.
Finally, to deal with sudden node or link failure events amdipdate the solutions in SLP, a Fast Task
Recovery Algorithm (FTRA) is designed to quickly realloe&aulty task assignments.

1.3. Related Work

The task allocation problem in parallel and distributedeays has been extensively studied in both
wired and wireless networks. Existing solutions are basethalti-objective optimization approaches
considering: minimizing task completion tim&5,16], reducing energy consumptioa1,17,18], load
balancing to achieve an equalized node lifetid@20] and maximizing service reliabilityZ[1]. In wired
networks, since nodes are often connected with dedicatgdhigh quality links, communication costs
and delays are often considered to be negligible. Howeversituation in an MWSN is quite different,
and solutions like17,19] and [22] consider both processing costs and wireless communicabsts.
Integer Linear Programming is adapted in these approachsslve the problem of energy-efficient
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task mapping and scheduling with deadline constraints.eNkegless, these algorithms are based on a
single-hop topology, and the time to compute the optimizedt®n is not added to the overall cost,
which hinders their applicability in large-scale netwarks

Heuristic approaches are deterministic and non-backtrgckince task allocation decisions cannot
be changed, even if the decisions are found to be inapptepatia later stage of the algorithm
execution 11]. Therefore, solutions are likely to be prone to errors,eesly in dynamic MWSNSs.
To overcome this issue and provide optimal solutions, geragorithm (GA)-based multi-hop task
allocation schemes are proposedlB,20]. Nevertheless, such schemes can only work on static nktwor
conditions and have high time-complexity; hence, they caly provide off-line optimization. In
contrast, recent work in2[324] consider dynamic task allocation in wireless environrsgget only
single-hop communication is taken into account. Furtheenmost of these studie$1,13] assume a
relatively powerful machine that is capable of running atirojzation algorithm whilst meeting task
deadlines. However, such an assumption implies extra feedeost, hence significantly limiting the
applicability of these algorithms in embedded systems.

The rest of the paper is organized as follows. In Secprihe models and assumptions are
presented, followed by the addressed research problentios&ccovers the technologies developed
for task allocation in MWSNSs. Then, the proposed DTAS framws presented in Sectioh and the
effectiveness of the design is illustrated in Sec®oirinally, Sectiort concludes the paper.

2. Preliminaries

2.1. System Models

A Directed Acyclic Graph (DAG)Ys = (T, E) is used to model an applicatiod,19]. Each vertex
in the DAG represents a tagk € T that is connected to other vertices by directed edges. Ba&ilt;,
has a workloady;, representing the processing requirement in terms of thebeuof CPU clock cycles
to execute the task. The weight on each edge stands for the amount of data transmitted frénto
T;. A direct edge ¢;; € E) shows the precedence relations among tasks;; should be completed
beforeT);. Therefore, a DAG has a topological task execution ordeichvwve term the task scheduling
sequence (TSS). Furthermore, an application can itehaexecute the DAG. Aoundis defined as the
time period of a DAG execution cycle.

The network topology consists of a total numberéfheterogeneous nodés = {vy,vs, -+ , vy}
that are randomly deployed in the network. For simplicitgnsmission power control is not enabled.
Hence, all nodes have a fixed communication range, and teesomnected via multi-hop links. Nodes
are battery powered, and each node has a finite energy sinaplis thot refilled. Heterogeneous initial
battery energy and processing speeds are considered. Eiouaes assumed that the gateway is much
more powerful and easier to be maintained (e.g., rechaayepared to the remotely distributed nodes. A
non-preemptive scheduling policy is adopted, so that on&/job can be processed at each node at a time.
It is assumed that nodes are synchronized and that the gsrefennel condition is stable. Furthermore,
in order to perform scheduled multi-hop communication, advadth reservation mechanism is used,
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such as a TDMA (time division multiple access) based MAC (lmedcess control) protoco2$,26].
Unless specified otherwise, each task is executable at eeesy.

The network dynamics considered in this study has the fatigywroperties:

1. As an example application, surveillance networks withvatde agents equipped with wireless
cameras are considered, in which each agent has a propabjlit., to move at a pointed or
random direction with a speed of,,.. in each round. At present, a pedestrian moving speed is
assumed for,,,.,. (betweernf0.91,1.22] m/s).

2. Each node has an exponential distribution of failure ability p,(t) = 1 — e, where\ is the
average node failure rate in the time interj¢at] [21].

Communication links in the network may change over time beeaof these random changes.
However, each node has regular gossip message exchangetsswitighbours and periodically reports
its ownneighbour listto a central network controller (the gateway). Based on tilected information,
the network link topologylL, is updated periodically. A dedicated control channel isdur these
message exchanges, whose energy consumption is inclutiesltiotal cost calculation.

2.2. Definitions

The terms used in the rest of the paper are as follows:

1. Network lifetime (NL)The time period until the first node fails due to energy depiet
2. Schedule length (SLY.he execution time of a DAG.

2.3. Problem Definition

The problem that this paper addresses is two-fold. Firsgmimized task allocation solution, is
to be found with the objective of maximizing the network fifiee, N L, under the required time-delay
constraints. To achieve this, the total schedule length,must meet the deadling..4;... Hence, the
objective function can be formulated as follows:

max{NL(s), s € total search space}
SUbjeCt to: SL(S) < tdeadline (1)

Secondly, the chosen solutiof), should be able to update itself, such that it can adapt warkt
dynamics. However, this is a challenging task because dbtlmving reasons:

1. Node mobility and node failure evenibhe optimized task allocation solution may become invalid
when such events occur. Re-assigning the affected tasksndpiserve as a temporary solution,
as re-optimization is required according to emerging nétwonditions. Nevertheless, due to the
problem complexity, a complete re-run of the algorithm istbo

2. Algorithm runtime and complexityThe proposed task allocation algorithm runs at the gateway
node, and its algorithm runtime is denoted Ry In static networks, a high-cost algorithm can
work perfectly well as an off-line solution. On the other Hamlgorithm runtime is critical in
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dynamic environments. Since optimization parameters baee quickly modified in order to
adapt to changing conditions, optimization proceduresrduire a large value ok to complete
are likely to produce outdated solutions in dynamic enviments.

The main design objectives can be summarised as shown ineligu

Figure 1. Design objectives.

1. An application, DAG
2. A heterogeneous MWSN with:

(&) node mobility and random node failure events
(b) different node capabilities (energy, processing speed

3. Energy model and cost functions
4. An arbitrary user deadlin€;cqqiine
5. Gateway processor speed

Do:

1. Perform task allocation and reallocation
2. Schedule the computation and communication events

Such that:
1. The objective function (1) is satisfied
2. Network dynamics are considered

In the following, first, how static task allocation and schky is performed in MWSNSs is explained.
Then, Sectiord presents how thdynamicallocation problem can be solved using our Dynamic Task
Allocation and Scheduling (DTAS) framework.

3. Task Allocation and Scheduling in MWSNs

In a DAG, G, a task pair [;,7;) connected by a directed edge;, could be allocated to nodes
that are several hops away from each other in the networkrefdre, multi-hop communication costs
must be included in the task allocation solution structérerthermore, task scheduling in an MWSN
needs to take into account particular issues, like panattetessing among independent nodes, possible
simultaneous communications and multi-cast transmissiofo tackle these issues, in our previous
work [13], we developed a task allocation model and a multi-hop sdalivegl mechanism forstatic
MWSNSs. Since the proposed DTAS presented in Sectisrbased on this model, we briefly describe it
in this section.

3.1. Multi-Hop Extension of Task Allocation

For a solution,s, to be evaluated in a multi-processor environment, firstieaooding process
transformss into individual tasks that can be independently processkdn, an initial mapping of these
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tasks to network nodes is performed, which is modeled byegetby o matrix, C, called thechromosomge
where/ is the total number of the tasks in the DAG.

An example is illustrated in Figurga, which contains a mapping of a three-task DAG to a four-node
network. The elements in the first row are the tasks, whilectireesponding places in the second row
and third row stand for node ID and computation load, resypelgt By observing either the matrix C or
the network, it can be seen thAt is allocated ta,, and7;’s child tasks,T, andT3, are allocated tos
anduvy, respectively. Figur@a also demonstrates the communication relation amondst, tawdeled
by a three-byy matrix, E, called theedge where~ is equal to the total number of edges in the DAG.
The three elements in each columnEofepresent the sender task ), the receiver tasks{ or 73) and
the total amount of data{; or ey3) that need to be transmitted.

Figure 2. An example of the multi-hop extension process.
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In order to consider multihop communication costsandE must be modified. First, relay nodes
are determined by a routing algorithm (e.g., minimum-hojk®¥a [27]), and then,C and E are
extended by adding information on multi-hop relays. Thisgass is calleanulti-hop extensionand
the extended matrice§; andE, are named théyper-chromoson{elC) and hyper-edgéHE). This is
shown in Figure2b. Here, taskl; is called arouting task with no processing cost, and is allocated to
the relay nodey,, which connects, to v3 andv,. This extension corresponds to the second column of
HC. As a result, virtual links fronT’, to 7, from T}, to 75 and fromT to 7 are created, as shown in the
extended DAG in Figur@b. The second and third columnslE correspond to these new links.

Based o C' andH F, the time and energy costs of both multi-hop communicatr@h@mputation
at the assigned nodes can be calculated, and the netwarkn&feV L, and the schedule length§,z,
required by the objective function can be obtained.
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3.2. Computation of the Network Lifetim& ()

In order to calculate the expected lifetimé.(s), the computational costs;, and the edge costs;,
first need to be converted into the actual time and energg eb#te assigned nodes, based on processing
speeds and communication distanc®¥d.(s) is calculated by:
RYi
total
where R¥ denotes node’s residual energy level and;, , is the total energy consumption during one

round of DAG execution at node R’ can be obtained from periodic node reports whose signatisg
is explained in SectioA.5.

The total costE}, ;. includes the computation costs;, of all data processing tasks HC and the
communication costgy; and £, of data transfer tasks given HE, as follows:

Epa = Y BT+ Y E/(T)+ Y EXT) 3)
TeHC TeHE TeHE
The energy consumption of processifignv is £ (T) = t;.P?, whereP" is the power consumption
of nodev’s processort?. is the processing time (sec) of takat nodev, calculated by}, = 1% where
pr iIs the computational load (bits) @f and f,, stands for’s processor speed (bits/sec).
A popular short-range communication energy mo@€] [s used to calculate communication energy
consumption costs:

P (b@t + Efs - d2) " €5, if d< do
t =
(bet —+ Emp d4) *€ij, if d 2 do

[
Er = b@r * €

where the baseline energy consumption in operating therirdter and receiver radios are expressed
asbe; andbe,., respectively. The transmission energy consumption igtehby either the ‘free space’
channel modeld(;,d*) or the ‘multi-path fading’ channel modet,f,d*), depending on the distancé,
between the two nodes and a distance thresll8].

3.3. Computation of the Schedule Leng#ti§

Based onHC and H E, multi-hop scheduling should provide a suitable schedehgth, S L, that
enables simultaneously occurring communication and lghpabcessing events. However, interference
between different transmission events and the overlaps&féaecution at each node should be avoided.
Therefore, the same scheduling method proposed.3h if applied, where a two-hop interference
model R9] is used and a medium access delay is introduced, such thaetider of a communication
event does not cause interference on its one-hop rece@pdsyice versa Details of computation
scheduling and communication tasks can be found 3h [
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4. The DTAS Framework

Static task allocation in multi-hop wireless networks showv the previous section is already a
complex process and has been shown to be NP-hard (Non-deistionPolynomial-time hard)11],
while network dynamics further complicates the problenr.iRstance, node mobility and failure events
can easily render a task allocation solution invalid, inatlgase, a complete re-run of the task allocation
algorithm from scratch is not a feasible option, since thisomputationally inefficient. Therefore, a
purely GA or sophisticated heuristics, which have to beureafter each network update, are not suitable
for dynamic MWSNSs. On the other hand, an optimal initiali@atwith a simple recovery process also
struggles to solve this problem, as its performance redoeestime due to network topology changes.
As a remedy to this problem, DTAS is proposed in this papeiciis designed to combine the strength
of both heuristic (efficient) and GA (evolutionary) algbmts, to capture network dynamicity and to
quickly re-adjust task allocation solutions to newly enieggconditions. DTAS is illustrated in Figu@e

Figure 3. The dynamic task allocation framework.

Adaptive window

DTAS has the following three main components:

1. Self-learning process (SLP3LP is a periodically operated GA-based system compohahtiins
in the system background and performs parallel optimipadictask allocation solutions. Unlike
conventional GAs, solutions at each evolutional stage & 8an be modified based on changes in
network topology. Hence, SLP results can be continuousiiatga and evolved.

2. Fast Task Recovery Algorithm (FTRAFTRA is a low-complexity event-triggered system
component, which updates SLP solutions. FTRA can quicklyope task re-allocation when
node or link failures occur.

3. Task Re-allocation Decision Maker (TRDM)RDM interacts with other system components and
makes task re-allocation decisions based on differentgr&taonditions.

As seen in Figuré, the gateway node maintaindeasible solution spa¢avhich contains the best
set of solutionsS = (s, s9, -+ - , s,,) that are suitable for the latest network conditiofiss an empirical
data history that is used to train existing solutions in otdemprove future system performance and
it is periodically updated by SLP and has an adaptive windae af n, which virtually limits the time
period necessary to reneW n is modified based on network dynamics and the processindiiypaf
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the gateway device. Based on the current network condjtibR®M picks the best available solution
s* € S and passes it to thi&ction Managerwhich then performs task re-allocation in the network.

A node and a communication link that are assigned with tagks'lare named as aactive node
(v,) and anactive link(l,), respectively. In the event of an active node or link falor multiple such
failures, the execution of the current DAG round is stoppedi @n alternative best-fit solution can
immediately be invoked by TRDM. However, if no valid solutis found inS, then TRDM asks FTRA
to provide alternative solutions. Then, the new round of Did&k execution would restart, once the
affected tasks have been allocation and rescheduled.

4.1. Solution Space Initialization

When an application arrives, the solution spageis first initialized and, then, dynamically updated
by DTAS components. Multi-heuristic approaches are usedrder to provide a suitable system
start-up. The majority of the initial solution space, is generated by Binimum Hop Count (MHC)
algorithm (detailed in the next section), while the rest arevided by other simple heuristics, such
as Random (Tasks are randomly allocated to nodes.) and Ys(€asks are assigned to a single, but
relatively powerful, node in order to reduce communicatiosts). The complementary use of such a
multi-heuristic scheme provides some level of diversityhe initial solution space, which preveris
from getting stuck in a local optimum.

4.2. The Minimum Hop Count Algorithm (MHC)

MHC is used for system initialization, as well as being inmpénted in the FTRA algorithm to
reallocate tasks when network failure events occur. Siriastaystem response is normally expected for
these two processes, MHC is designed to assign tasks baseg alistance only, rather than calculating
SL and NL. This is because hop distance directly affects comeoation costs, which normally dominate
the total consumption (in both time and energy3,19]. Therefore, a hop distance-based fuzzy search
can efficiently reduce algorithm execution time and provgdek sub-optimal solutions to the system.
Details of MHC are provided below.

In a task graph, G, the set of tasks that precede a tAsks denoted byTl,,., and the set of
nodes thatl},. is assigned to id/,.. A task that does not have any predecessor tasks is called a
source task The assignment of source tasks may depend on individudicappns. For instance, in
wireless sensor networks, sensing tasks are source tagksight be fixed at specific nodes. However,
successor tasks are often processed at other nodes in tharketn such cases, MHC is used to find
cost-effective allocations for the successor tasks. Thags-code of MHC is presented in Algorithin
which allocates a tasH,, to a nodeNode(T)

In order to reduce the chance of high-cost multi-hop comweation, the candidates for assigning
task7" are chosen among the nodes that have the minimum Total Hopt CBdC) to the nodes ..
This is performed at lines 9-13 of Algorithfy where hop count$/C,’ from v; to individual nodes
v; € V. are summed to calculaiieH C; for v;. Then, those nodes with THC; < min(THC') +n are
selected as candidates, and the final node is randomly parkeag these candidatesis used to limit
the number of candidate nodes.
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An example of the MHC algorithm is shown in Figude T, T, and T3 have been assigned tg,
vs andug, respectively. Hence, the goal is to allocdteto a suitable node. I} is assigned te,, the
hop count (HC) fronil; to 7}, is HC;! = 1. Similarly, the HC fromT; and7} to T, can be obtained
asHC}! = 4and HC}! = 4, respectively. By summing the three HCs, we h@#®C' (vs, vs, v —
v1) = 9. The table in Figurea shows that assignirig, to v, provides the minimuni’HC among alll
nodes. Whem = 1, the candidate set ig3, v4, vs, v6}-

Algorithm 1 The Minimum Hop Count (MHC) algorithm.
1: At nodev;:
2. for eachT” € GG based on a task scheduling sequence (T&S)
3: candidates— 0

4. if T,.. = 0 then

5: AssignT as a source task tg;

6: continue,

7:  else

8: DetermineV,,,.

9: for each node; € V do
10: THC; < 0;
11 for eachw; € V,,. do
12: THC; + THC; + HCy?;
13: end for

14: end for

15:  end if

16: for each node; € V do

17: if THC; < min(THC') + n then
18: candidates < {candidates, v;};
19: end if
20: end for

21: % randomly select a node frooandidates
22:  Node(T) = rand(candidates);
23: end for

Note that, ify is set to zero, only nodes with the minimufiH C' can be selected as candidate. As
a result, the solution space loses its robustness, and diles@lution may not be the best possible one.
Figuredb shows another example to demonstrate this. The DAG nowdeslsix tasks, whefg, 7, and
Ts have been assigneddg, vs anduvg, similar to the previous example in Figuta. Wheny = 0, T}, T5
andTy can be assigned to different combinations of nodes, as shothie matrices” of Figure4b, c.
In Figure4b, v, is directly chosen fofly with min(THC') = 0, and thenT5 is allocated tov, with
min(THC') = 4. Finally, 75 can be assigned to eithey, v or v4 with the samenin(THC) = 2, and
the aggregaté& H C reaches six. In contrast, Ti,, 75 andT; are assigned to,, as shown in Figurdc,
the aggregatd” HC becomes four, which is a better result. Therefore, in corap#id scenarios with
more tasks and various edge costs)(n = 0 may not lead to the best possible solution. Thus, the
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purpose of the MHC algorithm is to eliminate inefficient oglmcost solutions and produce candidates
that are more likely to become the best solution. A furthéineenent among these candidates to pick
the best solutior* is performed by SLP, which is described in the next section.

Figure 4. Minimum Hop Count candidate selection.
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4.3. The Self-Learning Process (SLP)

In a slowly changing environment, using past solutions asrchbmark point provides suitable
algorithm initialization when seeking new solutions. Bahsm this fact, SLP is applied to refine the
solution set provided by MHC. SLP is a daemon process thatragrusly evolves the solution space,
S, in order to generate new task allocations in every timeogefk, as depicted in FigurB. To reduce
the algorithm complexity and system response delay, ondyGoh generatiorj14] is performed in each
iteration. Details of the SLP GA used in each stage of the SbEgss are presented in Sectibf.

Figure 5. The self-learning process (SLP).
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4.4. The Fast Task Recovery Algorithm (FTRA)

When active node failurelf), link failure (L;) or multiple simultaneous failure events take place,
event-triggered reports (detailed in Sectib®) containing information about those failure events and
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corresponding network topology changes are sent back tgatesvay (Please note, not all node/link
failure events would effect the current allocatign which are not belonging to; andV;, e.g., a node
fails, but with no tasks assigned.). The FTRA algorithm &tlised to perform task re-allocations.

The FTRA algorithm is shown in AlgorithrB. When a nodey;, in C fails (line 3), its tasks have to
be re-allocated. If an{’ € T s.: is a source task (line 8), then FTRA randomly assigns this tias
one of the neighbour nodes. Otherwise, the MHC algorithne(IB) is used to choose the replacement
node. Then, multi-hop extension is performed (IXi¢in order to avoid any resulting broken links.

Algorithm 2 The Fast Task Recovery Algorithm (FTRA) algorithm.
Require: C, E, V;
Ensure: NewHC, HE

1: % Detect the set of defected tasks s

2: for each node; € C' do

3 if v; € vy then

4: Include allT assigned om; in T ec
5: % Fix node failure
6: for eachT” € Tyefe dO
7 Find all V,,,. for T’
8: if V,re = 0 then
9: % Re-allocate source tasks
10: n; < v;'s one-hop neighbours
11: % Randomly select a node from
12: Node(T) = rand(n;)
13: else
14: Node(T) = MHC (v;)
15: end if
16: UpdateC' with T"and Node(T")
17: end for
18: end if
19: end for

20: % Fix possible link failure: perform multi-hop extension %
21: C = HC,E = HE

4.5. The Task Reallocation Decision Maker (TRDM)

TRDM is the decision maker and the central component of DTA&ich realizes seamless
collaboration and interaction between FTRA and SLP, as se€igure6. It makes decisions according
to feedback from the network: (1) periodic reports (no togglchange) and (2) event-triggered reports
(active node failure events).
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1. Periodic reports:

Each node in DTAS periodically sendR&EPORTmessage to the gateway, providing its latest set of
neighbours and residual energy level. Based on this infoomathe gateway updates its knowledge of
the network topology and can re-calculdtd. by Equation 1), so that the latest energy distribution is
taken into account when new task allocation solutions aneigeed. The frequency of periodic reports is
equal to the algorithm runtiméy’, as too frequent reports cause additional signalling cedtde a long
report period may have a poor adaptation to the network digigmFurthermore, if the TRDM misses
a periodic report, it basically assumes that it would reedive next one and do nothing. However,
in the unlikely case that if the TRDM have not received anyiqukc report from a particular node
for a long time, including event-triggered reports ingdtby its neighbours, it reports the failure of
that node. Then, the TRDM may send additional report regu@gtich come with the cost of more
contro overhead.

Upon receiving all node reports, TRDM asks FTRA to examireeaisting solutionss € S.
Periodic reports do not include situations in whieh affects s*, since such cases are handled by
event-triggered reports. However, changes in networklémyoand residual node energy levels may
influence other existing solutions ifl. FTRA identifies any such affected solutions and makes task
re-allocation accordingly.

Once FTRA completes its modifications SnTRDM initiates SLP. At the end of SLB, may contain
a better solutions,,.,,, than the current ona?, in which case, TRDM selects the new solutikdn= s,,.,,
and passes it to the Action Manager for a task re-allocafitve gateway broadcasts AbLOCATION
message, which delivers the new task assignments to the modeand releases the nodes that currently
hold these task allocations.

Figure 6. Task Reallocation Decision Maker (TRDM) function flowchart
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2. Event-triggered reports:

An event-triggered report is generated when an active tinkdailure occurs {;/L; # () by one
of the neighbouring nodes. In this case, the current salutios directly affected, and hence, an urgent
task re-allocation is required. The event-triggered repbave a high priority and are continuously to
be sent, until they reach the TRDM. Upon receiving this f&laotification, the gateway broadcasts a
REPORTREQUESTmessage, asking for the latest residual energy levels aigtibwur lists. Then,
each node sendsREPORTmessage to the gateway.

The first step that TRDM takes is to seai€lior any solution that fits the current network conditions
(see stegD in Figure6). This may help the system quickly recover from the failuverg. Basically,
the best-fit solutions,.;q, iS chosen based on a ranking table that records each soéuperformance
profile. s* is usually the one listed at the top of the ranking table. leng;;; can be determined by
choosing the second best one in the ranking table, whichtisffected byl;. Then,s,q;q iS passed
to the Action Manager for immediate task re-allocation. dilstof the ranking table are provided in
Sectior4.9.

If there is no solutiors,,;;, that fits the new network conditions, TRDM consults FTRA, evhihen
provides a valid solution to the Action Manager ($8ein Figure6). The rest of the solution space is
also examined and updated by FTRA (Figéré)), although not provided as an output to the Action
Manager. This is a measure towards adapthgccording to the knowledge of the latest conditions
acquired via the event-triggered report.

4.6. DTAS Solution Selection and Evolution

In this section, the generation of each solutiowith multiple objectives is briefly described, and
then, the GA used in SLP is presented in detail.

4.7. A Hybrid Fitness Function

In GAs, a solution is ranked by a fitness value that repredsmissuitable the solution is to meet
design objectives. A solutionis more desirable if it hasghHitness value. In DTAS, the two parameters,
NL and SL, are used to compute a single “hybrid” fitness vabu@task allocation solutionsas follows:

fitness(s) = NL(s) —a SL(s)
~ max(NL(S)) maz(SL(S))
0 ) SL(S> g tdeadline (4)
a = .
% ) SL(S) > tdeadline

where a candidate solution’s network lifetim€L(s), and schedule lengtl$ L (s), are normalized by
the corresponding maximum values in the solution sp&ceThe rationale behind this normalization
is to capture the relative significance ©among all solutions irt. Here,« is a tuning parameter that
provides a weight between the two fitness parameters. Wedav@® when the schedule length meets
the deadline. A non-zero value oflowers the fitness value depending on how lasde s) is, which is

a measure that penalizes those solutions with a l&geNote that Equation4) favours the solutions
with a largerN L.
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Since afitness value in SLP GA has to be a non-negative vahpéy{ag the Roulette-Wheel selection
scheme 14]), fitness(s) > 0, hence:

NL(s) max(SL(S))

= maz(NL(S)) © SL(s) ®)

In order to guarantee thafitness(s) > 0, Vs € S, we setSL(s) = maz(SL(S)) and
NL(s) =min(NL(S)). This provides the lower bound farin Equation ), which isa = %
Using the hybrid fitness valug;itness(s), NL(s) andSL(s) are calculated, and the solutions are

sorted and indexed in the ranking table.

4.8. Adaptive Window Size

In DTAS, an adaptive window size is defined to adjust the size of the solution space, which
essentially controls the trade-off between complexity padormance. A larger value of increases
the algorithm runtime, K, but has a higher probability ofesiiig better solutions to meet the design
objectives. In contrast, a small valueroprovides a short algorithm response time with results otlow
quality, which may still be suitable for frequently changjimetworks.

4.9. The SLP GA

Conventional GAs normally terminate and produce resutex afinning for several iterations or the
optimal solution has been identified. In contrast, the SLPdBfputs and uses temporarily sub-optimal
solutions in each SLP run, and the top ranked solution in dn&ing table is selected a$. SLP GA
also stops under the satisfaction of two conditions: i) Nergtriggered report has been received. This
means SLP can always work on a stable solution space. ii) Merlsolution is found by the SLP GA
before a pre-defined timer expires, which is set toK rounds. Nonetheless, once FTRA is used, the
timer will set to its default value. Typical GA operationga@amployed in SLP GA as shown in Figufe
where each GA step is briefly described below.

Inheritance: In order to keep the good allocations of the current solusipaice S, the top m% of n
chromosomes in the ranking table are inherited to the nedrgdion, while the rest of thex (1 —m%)
chromosomes are produced via gdection crossovelandmutationprocess described below.

The ranking table is initially sorted in a decreasing ordethe combined fitness valug{tness).
After that, chromosomes that can meet the deadline reqamegre moved to the top of the table.
In this way, chromosomes that satisfy the application deadhhile having larger fitness values are
placed in the upper rows of the ranking table. In case nond&a@htin the current population can
meet the application deadline, the ranking table is reeslart an increasing order ¢fL, such that the
chromosomes with a shorter schedule length can be inherited

Selection: The selection process chooses the most suitable chromestumerossover, which
produces new offspring. In SLP GA, the well-known Roulattbeel schemell4] is used, where a
chromosome with a better fitness value has a higher probabilbeing selected.

Crossover: The crossover operation is performed on each selected csame pair and produces
new chromosomes by recombination of some portions of botienpa genetic materials (task
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allocations). In order to keep the topological executiodeorof the DAG, the tasks in the first row
of the chromosome matrix C remain unchanged, while the nthppdes in the second row are swapped
after the crossover point. An example of single point crees@s shown in Figur® where the mapped
nodes in the second row are switched over after the crosgmiet. In this way, the purpose of the
crossover has been achieved, and the execution sequerask®ir the DAG is still preserved.

Figure 7. The SLP genetic algorithm (GA).
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Furthermore, crossover only applies to the original chreomae rather thaHC, due to the exclusive
routing task mapping. Therefore, né#C andHE need to be regenerated for the offspring in order to
calculate their fitness values. Please note that the cressoay or may not produce better offspring
than their parents. However, if both parents have good ‘gjetieere is a higher probability of producing
better survival chromosomes.

Mutation: In order to maintain genetic diversity and reduce the prdibalof the solution that GA
produces a local maximum, the mutation process avoids gawem similar chromosomes. Two types
of mutation are employed: one is on a ‘task allocation’ bés&ch chromosome has a probability of
¢ to change a randomly selected tasking mapping to anothex)ntite other is on a ‘chromosome’
basis (each chromosome has a probability dfeing completely replaced by a randomly created new
chromosome), wherg is the mutation rate.
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4.10. Complexity Analysis

Given a DAG with N tasks and a network with M nodes, the comipjeaf the fitness function
(calculation of NL andSL) is O(N - ¢), whereO(e) is the complexity of the routing algorithm (e.g., if
Dijkstra [27], O(g) = O(M?)). Therefore, DTAS has an algorithm complexity®@f N - ¢ - n) for SLP,
where the adaptive window sizedenotes the number of the solutions that are evaluated &br 8aP
stage. The algorithm complexities of selected competameshown in Tablé&, wheree is the number of
edges in DAG; represents the chromosome number in GA populationjaadhe generation number.

Table 1. Algorithm complexity comparison.

Algorithm Complexity

SLP O(N -€-n)
Greedy [L6] O(N)
MTMS[11] O(N -e-e- M)

ITAS[13] O(N -e-z-y)

Please note that the algorithm complexity determines haenoéach algorithm can update its
solution; hence, it directly affects the system’s adapitstttio network dynamics. Since < e - M
andn < z, SLP in DTAS shows less complexity compared to MTMS and IT&gedy has the least
algorithm complexity compared to the others, as seen ineTabyet it delivers low quality results
that hinder performance, as presented in SechiorNumerical results of each algorithm’s runtime,
performance and their adaptability to network dynamicssamvn in Sectiorb.3.

5. Results

The DTAS framework is evaluated through simulations. Tolihst of our knowledge, this is the
first study to address such a complex DAG-based task alotatioblem in a multi-hop and mobile
environment. Hence, two classic heuristic algorithms aooleentional GA-based algorithm are picked
as benchmark competitors:

Greedy [16]: The Greedy algorithm assigns most of the tasks to a powedde, e.g., the gateway.
Hence, raw data need to be first transmitted to the gatewayhemdprocessed there. Greedy can be
quickly re-run to perform a task re-allocation once netwdrk&nges occur.

MTMS [11]: MTMS is a well-known cross-layer task allocation algbnit for multi-hop wireless
networks. It performs multi-objective optimization, whia@aims at minimizing the total energy
consumption while meeting the user deadline.

ITAS [13]: ITAS is a conventional GA-based multi-objective optimion algorithm that also
performs complex task allocation in multi-hop wirelesswvaks.
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5.1. Simulation Setup
5.1.1. Application DAG Generation

The parameters to generate a random DAG are obtained from${IDj. For a single object tracking
case256 x 256 images have an average computation load of approximat@K8X (kilo-clock-cycle)
for the tasks, and we assume 800 bits of communication datanted to be transmitted between the
tasks. Then, each communication and computation workléabdeoDAG tasks are generated with a
standard deviation of 25 of the above average values.

5.1.2. Network

The network consists of two node types: super nodes20%) and normal nodes. A normal node
has a processor speed of 188H > (e.g., an Intel Strong Arm 1100 processor witi) M1 PS [19]).
The power consumption for such a processafis= 200 mI¥/, and each node has a battery energy of
2,000 J (2 x AAA NiCad batteries). On the other hand, super nodes hawé &/ H = processing speed
with 235 MIPS, Pc = 400 mW, and a battery energy df 000 J. The communication bandwidth is
250 Kbps, and the communication range for all nodegismn on the ISM Bands (industrial, scientific
and medica bands). Based on those parameter settings, éhegavime cost to process a task and
transmit information (single-hop) between them are aro22é ms and 3.2 ms, respectively. Thus, in
simulations, the application deadline varies betwBen30, - - - 80] ms(by default 40ns) considering
parallel processing and multi-hop communications, whie believe are reasonable values for such
applications based on the number of tasks and the numberdaflsnwe used. In addition, two types
of gateway (GW) devices with different processing captabsdiare considered: GW-A (e.g., a PC or
laptop) with a2 GH =z processor and GW-B (e.g., a smart phone) with @H =z processor. Unless
specified otherwise, GW-A is used as the default gatewayityperformance evaluations. The gateway
is fixed at the centre of 800 x 100 m? network area, while the other nodes have an equal movement
probabilityp,,.... with a moving speed af,,..... In all simulations, the GA parameters are pre-optimized
based on13], andn = 1 is chosen for the MHC algorithm. The average overhead padekgth of the
periodic and event-driven reports is assumed tadoebits.

In the following, results of independent simulations aresgnted, by altering a single simulation
parameter each time, so that any changes in performance wewased solely on this parameter. All
results are averages of more thi® simulation runs.

5.2. Effect of Node Mobility on Network Dynamics

In this section, first the effect @f,,.... andv,,,... on network dynamicity (represented by the number of
link-change event) are shown. Here, a link-change eveittisrea link breakage event when nodes move
out of each other’s communication range, or the formatioa aeéw link as a result of node mobility.
Results in Figure 9a demonstrate that the total number lofdirange events occur more frequently with
a larger probability,,.... of node mobility (more nodes move) and/or a higher node spged. The
performances of the algorithms in meeting the task executeadline degrade when node mobility gets
higher, which can be observed in Figure 9b. ITAS and MTMS latgher performance degradation,
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due to their algorithm complexity. Greedy’s performancguge stable, as it assigns most of the tasks on
a single node; thus, it is less affected by topology chanQeshe other hand, it has the highest deadline
miss ratio, due to the ‘hotspot’ problem. Although DTAS sisothie best performance compared to
MTMS, ITAS and Greedy, itis inevitable that the deadlinesmegio of DTAS also increases significantly
when more link-change events take place. Nevertheless SDshfows the best performance under the
tested mobile environment. Further simulation resultsaapgability to network dynamics can be found
in Section5.3

In the rest of this sectiony,,... is randomly chosen between [1, 2] m/s in the following tests
as a typical pedestrian speed. Differemt,,. values are used to represent different levels of
network dynamicity.

Figure 9. Impact of p,,..e and v,,.. (@) Network link-change events;b] Deadline
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5.3. Algorithm Adaptability to Network Dynamics

The goal of this set of simulations is: (1) To compare the &atagm of the DTAS to network
dynamics compared to Greedy, MTMS and ITAS; (2) To test eégbrithm’s performance in meeting
the design objectives.

Table? illustrates the runtime of each algorithm. Obviously, theder an algorithm takes to run and
produce its solution, the lower the frequency that the atigor can update its task allocation solution
(s*). In order to observe this trade-off, another time unit tsaduced to count the algorithm runtime,
called theTask Reallocation Frequency (TRFEhown in the last column of TabR TRF represents
how often, in terms of application rounds, an algorithm canfgrm task re-allocation based on its
algorithm runtime, where aapplication roundis the basic time unit in simulations representing the
completion time of the DAG.
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Table 2. Algorithm runtime comparison. GW, gateway; DTAS, DynamaskK Allocation
and Scheduling; TRF, Task Reallocation Frequency.

GW Hardware  Algorithm Runtime K (s) TRF (Rounds)

DTAS (n = 40) 1.083 28
GW-A (2 GHz) Greedy 0.022 1
MTMS 26.835 670

ITAS 32.786 820

In Table 2, it can be observed that Greedy is a fast algorithm, whichbig ¢ perform task
re-allocation in every round. Thus, Greedy is re-run at éanle when an urgent task re-allocation
is required. In contrast, MTMS and conventional GA-base&lSTequire a longer time to execute, due
to their complex search mechanisms.

In order to evaluate the algorithm’s adaptability to netevdynamics, two test parameters are defined:
Expected System Performan{&SP) andActual System Performand@&SP). ESP is calculated by
averaging the snapshots of TRF cycles, while ASP is averfrgadsamples collected at each round. To
explain it in a simpler way, the ESP value can be treated ajantam’s performance in static network
conditions, while the ASP value shows how the algorithm @btfiperforms under network dynamics.
Therefore, if an algorithm is fast enough to perform tasklteeation in each round, thehSP = ESP;
otherwise, the value of ASP may degrade over time. A largebgipeen the two values indicates poor
adaptation to network dynamics.

Figure 10. Comparison of algorithm adaptability to network dynami@3.Schedule length,
Expected System Performance (ESR) Actual System Performance (ASPIy) (Deadline
miss ratio, ASP; ) Network lifetime, ESR/s ASP.

x10°
60

=2}

.0t

e, 01

!pmove:OG ESP

o
o

o

»

Network lifetime (round)

Average schedule ESP and ASP values (ms)
Deadline miss ratio (%)

1 ¥ !
DTAS Greedy MTMS Greedy

' ' '
DTAS Greedy MTMS ITAS

(@) (b) (©

It can be observed in Figure 10a that the ESPs of the schexhgéhls of MTMS, ITAS and DTAS are
below the user deadline. However, the ASP of both MTMS andSTes far beyond the deadline. In
addition, whem,,... increases and more nodes are mobile, MTMS and ITAS have erlgap between
their corresponding ASP and ESP, due to their poor adafitatailnetwork dynamics. Furthermore, as
Greedy can simply be re-run when network dynamics occuA8re of Greedy is very close to its ESP.
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However, Greedy still cannot meet the deadline constrainte it aggregates tasks to a single node,
which becomes a processing bottleneck. In Figure 10Db, f&sgnt performance improvement can be
noticed for DTAS, which has a much lower ratio of missing tpelecation deadline for all three node
mobility cases compared with the other algorithms.

Figure 10c illustrates the comparison of results for nekWibetime. As opposed to Greedy, the other
algorithms distribute the total workload among more nodé®refore, a longer network lifetime can be
noticed for MTMS, ITAS and DTAS. Furthermore, DTAS has a tigkly smaller gap between the ASP
and ESP of lifetime, and it can provide the longest lifetima&ies under the tested mobile environment.

5.4. Contribution of SLP

The system updater SLP is the unique feature of DTAS compaitdthe other algorithms (e.g.,
heuristic approaches), and it can work independently froneroDTAS components. Hence, in this
section, the contribution of SLP to the overall performaiscevaluated.

Since the main objective of the fitness function in SLP is teetribe deadline constraint, system
performances of the deadline miss ratio with or without th&usion of SLP are shown in Tab& A
significant improvement in reducing the ratio of deadlinesses can be observed when the system is
equipped with SLP, with larger gains obtained for lower nligbcases.

Table 3. Performance of SLP: deadline miss ratio.

Algorithm  priove = 0.1 DPrnove = 0.3 Prnove = 0.5

With SLP 0.17 0.23 0.32
Without SLP 0.40 0.42 0.44

5.5. Effect of Changing the Deadline Constraint

In this section, the DTAS’s performance for different apption deadlines is studied. DTAS
is compared with only the best case scenarios of Greedy, MENS ITAS under different node
mobility cases.

Results in Figurd.1 demonstrate that DTAS is more adaptive to the deadline nsand provides
the lowest deadline miss ratio and the largest networkidifet In fact, ITAS, MTMS and DTAS
all promote resource sharing among nodes, which helps aetwbrk hotspots, yet DTAS shows a better
performance, since MTMS and ITAS have poor adaptation tevart dynamics. In contrast, a notably
short network lifetime of Greedy can be noticed in Figure, Ilftich stems from the fact that Greedy has
an imbalanced task assignment that easily overloads sodesnereating traffic or processing hot-spots.
Greedy’s performance is quite stable, as it does not congideapplication deadline while making task
allocation decisions.
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Figure 11. Effect of altering the deadline constraing) (Deadline miss ratio;k) Average
schedule length (SL)cf Average Network lifetime (NL).
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5.6. Effect of Changing the Number of Nodes

In this section, the scalability of DTAS to networks with fdifent numbers of nodes is studied.In
Figure 12a, it can be observed that the average scheduli lenQTAS first decreases when the number
of nodes rises and, then, increases as more nodes join twerkefThis is because there is less chance
to perform parallel processing when there are only a few sadéhe network. In addition, tasks are
queued in node memory, which reduces processing efficiefiloys, as more nodes are involved, the
performance of DTAS in meeting task deadlines improves. él@x when the network further expands,
the search space increases exponentially, and findingabtugolution is more difficult, resulting in a
higher deadline miss ratio. Nevertheless, thanks to SLPtlam@daptive window, DTAS still has the
shortest average execution time and the lowest deadlireratis, as seen in Figure 12a.
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Figure 12. The effect of the number of node®) (Average SL; ) Average NL; €) Energy
consumption on overheadj)(Scheduling delays.
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On the other hand, the scalability of MTMS and ITAS is poorgda their time complexity, as
illustrated in Figure 12d. Furthermore, since Greedy gathesks on a few nodes, the increase in the
number of nodes does not have much effect on the performd&eedy, as shown in Figure 12b. When
the number of nodes increases, the numbers of periodic @amd-dviven reports described in Sectibb
increase dramatically. Therefore, the energy consumtiocontrol overhead of DTAS also increases,
as seen in Figure 12c. Although DTAS has a higher energy copson stemming from its control
overhead, it provides better and more balanced task albmcablutions to the network. Therefore,
DTAS still has a marginal lifetime improvement (Figure 1#bth p,,,.,. = 0.1) compared to ITAS and
MTMS. Furthermore, since the schedule length has a higletityrin the objective function of DTAS,
especially when a tight application deadline is imposedA®mainly focuses on meeting the deadline
rather than improving network lifetime. Nevertheless, [3TAas a much better lifetime improvement
compared with ITAS and MTMS, as shown in Figure
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5.7. Effect of CCR

The communication load to computation load ratio (CCR) igraportant parameter for DAG, as
it indicates the ratio of the average energy consumptiornefdommunication events to that of the
computation activities. A larger value of CCR indicatest tt@mmunication events dominate the total
cost. When CCR increases, it incurs additional commuraoatielays. Both MTMS and ITAS show
a poor capability to avoid such communication delays, dutaeéda algorithm complexity. The impact
of this complexity on the SLs of MTMS and ITAS can be observeéfigure 13a. On the other hand,
Greedy shows much less performance degradation and evearfuitns DTAS when a larger value of
CCR is employed, as demonstrated in Figure 13a. This is baséte fact that Greedy gathers most of
the tasks on the same node, which reduces the communicatsbn ldevertheless, due to the hot-spot
problem, Greedy always shows the shortest network lifet@seseen in Figure 13b. In addition, the
larger the CCR value, the more difficult it is to meet the deedIHence, when CCR increases, DTAS
spends most of its effort on reducing the schedule lengtterahan extending network lifetime. Thus,
DTAS shows similar network lifetime degradation as MTMS &hAS (Figure 13b), yet still provides
the most balanced solution.

Figure 13. The effect of communication load to computation load raB€R). @) Average
SL; (b) Average NL.
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5.8. Effect of the Node Failure Probability

The average node failure probabiliXys varied in this section, and the results are shown in Figdre
When X increases, nodes are more likely to fail. Hence, all algporg show poorer performance,
yet DTAS performs better than Greedy, MTMS and ITAS, becdheegroposed FTRA algorithm can
update the solution space once a node failure event hapsemse Greedy uses fewer nodes for task
allocation compared to the other algorithms, it is lessci#fé when the node failure probability rises.
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Nevertheless, Greedy cannot meet an arbitrary deadlinpravities the shortest network lifetime, due
to the hot-spot problem.

Figure 14. The effect of the average node failure probability.((a) Deadline miss ratio;
(b) Average NL.
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5.9. Selection of the Adaptive Window Size

The impact of the window size on DTAS’s performance in mirdimg the deadline miss ratio and
extending the network lifetime when tested on differenegatys is illustrated in Figuré5. A more
powerful gateway obviously can process a larger soluti@csgor the same time period. Therefore,
the performance of DTAS is better in GW-A than in GW-B. In dati, it can be clearly observed that
the performance of DTAS first increases with more chromosgoiring the GA evolution process and,
then, decreases when the window size becomes larger thatamaolue. This is due to the fact that
the larger window size is, the longer it takes for DTAS to update its task allocagotution, as shown
in Figure 15e. Hence, the solution adaptation to networkadyins degrades whenfurther increases.
Therefore, a smaller window size is preferred for networks Wwigher node mobility. The best values
of window sizen (the lowest point in the deadline miss ratio curve) for GWrAl&W-B ared0 and30,
respectively, as observed in Figure 15a, b. A similar effectlifferentv,,,.. values can be observed in
Figurel6.
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Figure 15. The effect ofn andp,.ope (Vimove = 1 m/s). (a) Deadline miss ratio (GW-A);K)
Deadline miss ratio (GW-B);cj Network lifetime (GW-A); @) Network lifetime (GW-B);

(e) Algorithm runtime.
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Figure 16. The effect ofn andv,,ppe (Prmove = 0.3). (@) Deadline miss ratio (GW-B);h)
Network lifetime (GW-B).
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5.10. Effect of High Node Mobility

In this section, real-time performance curves with two idgishing node mobility settings are
provided for Greedy, MTMS and DTAS. Since the performancdTéfS is quite similar to MTMS
in the high mobility case. Thus, it is not displayed for clpegsentation purposes.

Figure 17. Comparison of algorithm SL for different node mobilitiesreal-time. @) low
mobility, prove = 0.3, Vinove = 1 m/s; (b) high mobility, pyove = 1, Vinove = 5 m/s.
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In the low mobility case, as demonstrated in Figure 17a, the®curve is higher than the application
deadline only momentarily a few times, whereas Greedy an®l8Tonsistently exceed the deadline.
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However, in the high mobility case, the DTAS curve frequgtiosses the deadline curve, as seen in
Figure 17b. This is due to the fact that SLP does not have miffitime to evolve the solution space
between two consecutive network change events. Therederzeasing the window sizeor using a
more powerful gateway can improve SLP’s adaptability to iitgb In Figure 17b, such improvement
can be observed when we have= 10 for DTAS. Nonetheless, low mobility is our main targeting
scenario, as mentioned before, where DTAS can show all isrddges.

6. Conclusion

In this paper, the DTAS framework is proposed for multi-hopltiimedia wireless sensor networks
with low mobility nodes, which can minimize the deadline siiatio while also preserving and balancing
node energy levels to extend network lifetime. This tas&aation problem is very challenging when
network dynamic and multi-hop wireless communication atpare addressed simultaneously. A fast,
but simple, heuristic algorithm, like Greedy, may only pd®/sub-optimal solutions. On the other
hand, a sophisticated heuristic search algorithm, like NBT bt a conventional GA-based solution, such
as ITAS, performs relatively well under static network ciioths, but has poor adaption to network
dynamics, due to algorithm time-complexity. An integratiof such a stage GA-based evolutional
algorithm with an efficient fast heuristic running in betwet® adjust and correct the GA population
is shown to be suitable for solving such complex and dynaask &llocation problems under a slowly
changing environment. Furthermore, DTAS is able to makget@ffs between algorithm runtime and
performance. Adaptive solutions can be produced accorditgw fast network changes occur, while
also considering the processing capability of a contral&arice that needs to deal with such changes.
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