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Abstract: The maximum amplitude algorithm (MAA) is generally utilized in the estimation
of the pressure values, and it uses heuristically obtained ratios of systolic and diastolic
oscillometric amplitude to the mean arterial pressure (known as systolic and diastolic ratios)
in order to estimate the systolic and diastolic pressures. This paper proposes a Bayesian
model to estimate the systolic and diastolic ratios. These ratios are an improvement over
the single fixed systolic and diastolic ratios used in the algorithms that are available in the
literature. The proposed method shows lower mean difference (MD) with standard deviation
(SD) compared to the MAA for both SBP and DBP consistently in all the five measurements.
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1. Introduction

There is an increasing need to offer health care devices within the homes of senior patients. This
has led to an increasing demand on home blood pressure monitors. Oscillometric measurements
have recently gained popularity and are used in blood pressure (BP) monitors, which are now readily
available on the market [1–9]. Although vendors of oscillometric BP monitors rarely disclose their
algorithms, and the determination of oscillometric systolic blood pressure (SBP) and diastolic blood
pressure (DBP) values has been declared controversial [1], the maximum amplitude algorithm (MAA) is
one of the most popular algorithms for estimation of arterial blood pressure (ABP) using the oscillometric
measurement [2–4]. The MAA approximates the mean blood pressure as the cuff pressure (CP) at which
the maximum oscillation in amplitude occurs and then linearly relates the SBP and DBP to this mean
pressure using heuristically obtained ratios [2,3,5]. These ratios are utilized to determine the time points
at which the cuff pressure (CP) coincides with the systolic and diastolic pressures, respectively [5].
Even though estimation of the ABP is possible employing oscillometric blood pressure estimation, it
is subject to various errors since the systolic and diastolic blood pressures or the systolic and diastolic
ratios are determined only using quasi-empirical methods [2,4,10]. Moreover, there has been almost
no study that tries to estimate the theoretical relationship between the ratios [5]. Currently, the fixed
ratios of SBP and DBP are used to determine the SBP and DBP estimates based on the maximum
amplitude (MA) obtained through MAA. Although the SBP and DBP ratios (SBPR and DBPR) in the
conventional method are assumed to be fixed, this assumption is not valid [5,6,10–12]. For example,
Moraes et al. [11] suggested that the SBPR and DBPR vary in relation to the SBP, DBP, and mean
blood pressure. More recently, the error mechanisms of the fixed-ratio for estimating SBP and DBP
was found by Liu et al. [10]. Specifically, the fixed ratio may be viewed as a value dependent on the
measurements obtained for a specified group of subjects by minimizing the mean absolute error relative
to reference auscultatory measurements. If the ratios obtained from one group are utilized for another
group, one would not be able to acquire reliable blood pressure estimates. Thus, the MAA derived by
a single group-based ratio is not adequate to accurately determine the SBP and DBP because they are
subject to significant continuous variability over time [13]. For this reason, it is necessary to develop
a methodology that can accurately measure blood pressure based on the oscillometric measurement.
Therefore, to obtain a more generalized ratio, this paper proposes a methodology to determine the ratios
for systolic and diastolic blood pressures using a Bayesian model for individual subjects. This ratio is
an improvement over the single fixed SBPR and DBPR used in the algorithms which are available in
the literature.

The organization of this paper is as follows. In Section 2, the data used in the study is described, and
the Bayesian model principles and the conventional methodology used in this paper are explained. In
Section 3, the experimental results and discussion obtained from the proposed method are presented. In
Section 4, conclusions drawn based on the results are presented.

2. Methods

The proposed methodology assumes generalized Gaussian distribution [14] which includes not only
the Gaussian distribution but also the Laplacian distribution to find more efficient parametric modeling
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for the a posteriori distribution of the SBPR and DBPR, which are used to estimate the SBP and DBP for
each individual subject. The methodology also assumes that the ratios are random variables unlike the
existing approaches in the literature where they are considered to be deterministic. This paper chooses
the value of the likelihood function that maximizes the a posteriori probability. An equally likely a prior
is used that creates a likelihood function using the blood pressure values obtained through the MAA
algorithm for each prior. It then chooses the likelihood value that maximizes the a posteriori probability
obtained using Bayes’ model. As a result, the mean difference (MD) and the standard deviation (SD) [15]
of the SBP and DBP estimate obtained with the SBPR and DBPR using the Bayesian model were
compared with the MD and SD of the estimates obtained using the conventional MAA method.

2.1. Conventional MAA Concepts

Based on the oscillometric BP envelope, the MAA is widely used to estimate the SBP and DBP, which
utilizes SBPR and DBPR to find the points which correspond to SBP and DBP. The amplitude of the
maximum point is multiplied by the fixed SBPR and DBPR obtained experimentally [2,3,5].

ŝai,j = mi,j × r̂s (1)

d̂ai,j = mi,j × r̂d (2)

where ŝai,j and d̂ai,j are the oscillometric amplitudes corresponding to the SBP and DBP, respectively, mi,j

is the maximum oscillometric amplitude (MA), r̂s and r̂d are the fixed SBPR and DBPR, and i = 1, ..., N

and j = 1, . . . ,M ;N andM denote the number of subjects and the number of measurements per subject.
Thus, the oscillometric amplitudes corresponding to the SBP and DBP are mapped back to the deflation
curve obtaining the SBP and DBP values in mmHG as shown in Figure 1.

Figure 1. The concept of maximum amplitude algorithm (MAA). (a) cuff pressure (CP);
(b) oscillometric wave (OMW); (c) Envelope of oscillometric wave (OMW).
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2.2. Blood Pressure Estimation Using Bayesian Model

For any ith subject and any jth measurement, the systolic and diastolic ratios are defined as follows:

r̂si,j =
ŝai,j
mi,j

(3)

r̂di,j =
d̂ai,j
mi,j

(4)

where r̂si,j and r̂di,j are the estimated systolic and diastolic ratios respectively, ŝai,j and d̂ai,j are the
oscillometric amplitude corresponding to the SBP and DBP, respectively, while mi,j is the maximum
oscillometric amplitude (MA) and i = 1, ..., N and j = 1, . . . ,M ; N and M denote the number of
subjects and the number of measurements per subject. It is also conjectured at this point that the systolic
and diastolic ratios at the current measurement have no dependence on any of the previous measurements
and is only dependent on the physiological status h of the person, as shown in Figure 2, which shows
the systolic and diastolic points obtained by the auscultatory nurse measurements for one subject. It is
also assumed that the physiological status of the person has not changed drastically from measurement,
to measurement and the a prior probability of the ratios P (r̂i,j|h) is uniformly distributed between the
known the a priori minimum and the maximum values. Furthermore, it has been observed by authors
that the a posteriori distribution of the ratios is Gaussian, concentrated about the mean r̂iµ. As the
number of measurements increases with respect to one subject, the probability density function (PDF)
of r̂si,j and r̂di,j becomes normal and more concentrated about r̂iµ (shown in Figure 3) as observed using
a nonparametric bootstrap (NPB) technique [16] and confirmed through a normality test as presented
in [17]. The NPB method is most useful technique where we do not know the sampling distribution.
As the distribution of the pseudo SBP ratios using the NBP approximates the distribution of the original
SBP five ratios, we use to check normality of the SBP ratio’s distribution [17]. Specifically, the
distribution of the pseudo SBP ratio in Figure 3a are obtained from each individual subject employing
the NPB algorithms because we have only five measurements for each subject. A similar procedure
is followed for the pseudo DBP ratio as shown in Figure 3b. The fundamental concept of the NPB
technique is to offer a large number of independent bootstrap ratios by resampling the original five
ratios r = (r1, r2, ..., rm) of m measurements at random from a unknown probability distribution F .
A bootstrap resamples r∗1(= x∗1, x

∗
2, ..., x

∗
m), ..., r∗B(= x∗1, x

∗
2, ..., x

∗
m) are acquired by sampling m time

drawn randomly with replacement from the original sample r with elements occurring zero, once or
multiple times, where m denotes an original ratio size (=5) and B denotes a number of resamples [4,16].
Based on Efron, et al. [16], we use B = 1,000 [4].

Let crs and crd be the vectors of the possible candidates for the SBPR and DBPR.

crs = [α1, α2, · · · , αK ] (5)

crd = [β1, β2, · · · , βK ] (6)

where crs and crd denote the vectors of the possible candidates for the SBPR and DBPR,K is determined
a priori, where K is the number of candidate ratios. In this work, K = 31, (α1 = 0.65 to αK = 0.95

and β1 = 0.30 to βK = 0.60) for the SBP and DBP [11], respectively, in increments of 0.01.

pps = [γ1, γ2, · · · , γK ] (7)
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ppd = [δ1, δ2, · · · , δK ] (8)

where pps and ppd denote the a priori probability (PP) vectors; the elements of the vector are
1/K = 0.032. Due to the lack of any a priori information, equal a priori probability is assigned to
all the candidate ratios. Please note that crs(i,j) = crs, crd(i,j) = crd, pps(i,j) = pps and ppd(i,j) = ppd
for all i and j. For more details on the basic concept of Bayes rule is given in appendix.

Figure 2. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) ratio-points are
obtained by the auscultatory nurse measured with respect to one subject (five measurements);
the SBP ratios (0.91, 0.81, 0.97, 0.74, 0.75); the DBP ratios (0.41,0.48, 0.36, 0.40, 0.33).
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Figure 3. The distribution of pseudo ratios for the SBP and DBP using the nonparametric
bootstrap (NPB).
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The a posterior probability (POP) for every l, l = 1, · · · , K is

p(cr(l)s(i,j)|ŷs(i,j)) =
pp(l)s(i,j)f(ŷs(i,j)|cr(l)s(i,j))∑K
l=1 pp(l)s(i,j)f(ŷs(i,j)|cr(l)s(i,j))

(9)

p(cr(l)d(i,j)|ŷd(i,j)) =
pp(l)d(i,j)f(ŷd(i,j)|cr(l)d(i,j))∑K
l=1 pp(l)d(i,j)f(ŷd(i,j)|cr(l)d(i,j))

(10)

where pp(l)s(i,j) and pp(l)d(i,j), denote the a priori probability for the lth candidate ratio, and
f(ŷs(i,j)|cr(l)s(i,j)) and f(ŷd(i,j)|cr(l)d(i,j)) denote the likelihood for the SBP and DBP at the chosen
ratio, respectively. The conditional measurement distribution of ŷs(i,j)|cr(l)s(i,j) and ŷd(i,j)|cr(l)d(i,j) are
normal with a known mean and variance. Their densities are given by

f(ŷs(i,j)|cr(l)s(i,j)) =
1√
2πσ

exp−
1

2σ2
(ŷs(i,j)−cr(l)s(i,j))

2

(11)

f(ŷd(i,j)|cr(l)d(i,j)) =
1√
2πσ

exp−
1

2σ2
(ŷd(i,j)−cr(l)d(i,j))

2

(12)

where σ is the standard deviation (STD). An experiment was conducted with σ ranging from 0.02 to 0.20
for the chosen range of systolic and diastolic ratios, 0.65 to 0.95, and 0.30 to 0.60, respectively [11].
It was observed that the likelihood function was almost unaffected by changes in σ as mentioned in [18].

The likelihoods f(ŷs(i,j)|cr(l)s(i,j)) of each ratio are the values of the measurement distribution at
a measurement value, where ŷs(i,j) are the ratios of the pressure values obtained from the reference
auscultatory measurement and the maximum amplitude (MA), as given by Equation (15). The goal
is to find the SBPR, cr(l)s(i,j) that maximizes the likelihood ratio, for the available SBP reference
measurements for each subject. The same idea is used for obtaining the DBPR. Since two reference
auscultatory measurements are available, the average SBP and DBP measurement is used as the reference
to obtain the SBPR and DBPR. We also apply the Laplacian (L) model [14] to obtain the likelihoods of
each ratio such that

fL(ŷs(i,j)|cr(l)s(i,j)) =
1√
2σ

exp−
√
2
σ
|ŷs(i,j)−cr(l)s(i,j)| (13)

fL(ŷd(i,j)|cr(l)d(i,j)) =
1√
2σ

exp−
√
2
σ
|ŷd(i,j)−cr(l)d(i,j)| (14)

The reference SBPR and DBPR are obtained for the jth measurement of the ith subject as follows:

ŷs(i,j) =
âs(i,j)
m(i,j)

(15)

ŷd(i,j) =
âd(i,j)
m(i,j)

(16)

where ŷs(i,j) and ŷd(i,j) denote the reference SBPR and DBPR obtained using the auscultatory nurse
measurements, and âs(i,j) and âd(i,j) are the amplitudes of the SBP and the DBP which are identified
on the oscillometric waveform (OMW)’s envelope through the deflation curve giving auscultatory nurse
measurements for the SBP and DBP, respectively. The maximum amplitude m(i,j) corresponds to the
maximum amplitude in the OMW’s envelope.
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The following procedure is used for obtaining the SBP and DBP estimates using the conventional
approach. The OMW is recovered using the CP and the pulse derivative waveform (PDW) [8] is obtained.
The local maxima of the OMW are used in order to build an envelope. The envelope of the OMW is
then smoothed using cubic spline interpolation [19] that is commonly used to reduce interference such as
movement artifacts from the oscillometric BP envelope [4]. Based on the MA and the CP, SBP and DBP
are determined using the conventional experimentally obtained systolic and diastolic ratios [5] which are
0.70 and 0.45, respectively [4].

The SBP and DBP estimates are also obtained using Bayesian inference [18] and then the results of
the conventional MAA and the proposed method are compared.

Figure 4. The estimation of SBP and DBP is used to estimate the SBP and DBP ratio based
on the Bayesian mode.

Reference SBP and DBP ratios are gained using reference
auscultatory measurements, cuff pressure, and maximum amplitude

for each subject

A priori likelihoods are obtained

Computation of a posteriori probability

Estimation of SBP and DBP ratios using maximum a
posteriori probability

A  priori probability
is defined

SBP and DBP

The following step by step procedure is used to estimate the SBP and DBP ratios using the Bayesian
approach as shown Figure 4.
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(1) As the first step, the ranges of the systolic and diastolic ratios used in the proposed method are
initially found experimentally [2,3] and the PP is defined as shown in Equations (7) and (8).

(2) The SBP and DBP estimates are obtained using both the MA value and the fixed a priori ratios of
SBP and DBP.

(3) The reference SBPR and DBPR are obtained using the reference auscultatory measurement, which
itself is obtained using the cuff pressure, reference auscultatory measurement, and maximum
amplitude for each subject.

(4) The a priori likelihoods are obtained as shown in Equation (11) to Equation (12).
(5) The calculation of POP is performed to determine the final ratio of SBP and DBP in Equations (9)

and (10).
(6) The SBPR and DBPR that produced the maximum a posteriori probability in Equation (17) are

taken as the best ratio for the measurement. As the estimation of the SBPR and DBPR is based
on the a priori probability and the likelihood function, the final ratios r̂si,j are presented as the
maximum a posteriori probability.

r̂si,j = arg max
cr(l)s(i,j)

p(cr(l)s(i,j)|ŷs(i,j)) (17)

Similarly, the ratio for the DBP, r̂di,j can also be obtained. Using these ratios, the SBP and DBP
estimates are obtained. In the method above, each measurement will produce one SBPR and DBPR.

3. Experimental Results and Discussion

3.1. Subjects and Data Collection

The local research ethics committee approved the research, and all subjects provided informed
consent prior to the BP measurement according to the protocol of the institutional research ethics board.
The oscillometric measurements for this study were provided by Biosign Technologies Inc. (Toronto,
Ontario, Canada). The experimental data set was acquired from 85 healthy subjects aged from 12 to
80, out of which thirty seven were females and forty eight were males. No recruited subject had any
history of cardiovascular disease. Five sets of oscillometric BP measurements were obtained from each
volunteer (5 × 85 = 425 total measurements: duration range to record a single measurement: 31–95 s,
duration median: 55 s) using a wrist worn UFITr blood pressure device [4,20,21] (Biosign Technologies
Inc., Toronto, Ontario, Canada) in accordance with the recommendations of the ANSI/AAMI SP 10
standard [15]. Specifically, the two nurse readings are averaged to provide one SBP and one DBP
reading as the reference which is an auscultatory method (mmHG) considered the standard protocol for
noninvasive BP measurement [15]. The data set provided contains relatively stable nurse readings, in
that the maximum difference between the two nurses is no more than 2 mmHG. This again satisfies
the recommendations of the ANSI/AAMI SP 10 standard, which requires the mean difference to be
no more than 5 mmHG. Nurse reading of SBP ranged from 78 to 147 mmHG and DBP ranged from
42 to 99 mmHG across all subjects. Specifically, our procedure of our BP measurements consists of an
oscillometric blood pressure recoding, followed by readings of SBP and DBP with help of two trained
nurse after a one minute pause. This is then followed by another one minute pause. The procedure is
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repeated again four more time to make the recoding of five measurements. For data collection, each
subject sat well and upright posture in a chair where the UFIT monitor’s cuff is strapped to the left wrist
of the subject, which is raised to heart level. Another cuff, which is the component of the auscultatory,
is placed on the upper left arm also at heart level.

In this paper, only five measurements of each subject were assumed to be available and were used
to implement was used as the true estimate. In Tables 1 and 2, we presents the averaged (over 85
subjects) systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimates for a sequence of
five measurements determined by the proposed algorithm as well as the corresponding averaged systolic
and diastolic ratios obtained through the proposed method for the five measurements. The standard
deviation of the estimates is provided in brackets. Tables 3 and 4 contain the average results obtained
using the proposed individualized ratios for 85 subjects using the five measurements. The proposed
methods are referred to as the maximum amplitude algorithm using Bayesian with Gaussian (MAABG)
and the maximum amplitude algorithm using Bayeaisn with Laplacian (MAABL).

Table 1. Ratio averages of systolic blood pressure (SBP) measurements by the maximum
amplitude algorithm using Bayesian with Gaussian (MAABG) and the maximum amplitude
algorithm using Bayesian with Laplacian (MAABL); n = 85 is number of subject; std is
standard deviation.

Method Ratio (std) Ratio (std) Ratio (std) Ratio (std) Ratio (std)
(n = 85) First Second Third Fourth Fifth

MAABG 0.79 (0.11) 0.79 (0.12) 0.79 (0.12) 0.80 (0.11) 0.80 (0.11)
MAABL 0.79 (0.11) 0.79 (0.12) 0.79 (0.12) 0.80 (0.11) 0.80 (0.11)

Table 2. Ratio averages of diastolic blood pressure (DBP) measurements by the maximum
amplitude algorithm using Bayesian with Gaussian (MAABG) and the maximum amplitude
algorithm using Bayesian with Laplacian (MAABL); n = 85 is number of subject; std is
standard deviation.

Method Ratio (std) Ratio (std) Ratio (std) Ratio (std) Ratio (std)
(n = 85) First Second Third Fourth Fifth

MAABG 0.44 (0.11) 0.43 (0.11) 0.42 (0.11) 0.41 (0.11) 0.39 (0.11)
MAABL 0.44 (0.11) 0.43 (0.11) 0.42 (0.11) 0.41 (0.11) 0.39 (0.11)
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Table 3. Summary of the averaged systolic blood pressure (SBP) estimates by the nurse, the
maximum amplitude algorithm (MAA), MAA using Bayesian with Gaussian (MAABG),
and the maximum amplitude algorithm (MAA), MAA using Bayesian with Laplacian
(MAABL); std is standard deviation; first to fifth is the sequence of measurements.

BP (mmHG) SBP (std) SBP (std) SBP (std) SBP (std) SBP (std)
(N = 85) First Second Third Fourth Fifth

Nurse 108.9 (13.2) 108.9 (13.5) 109.8 (13.8) 110.3 (13.5) 112.2 (14.6)
MAA 115.4 (14.0) 115.5 (14.4) 116.3 (14.5) 118.1 (14.3) 120.0 (15.4)
MAABG 114.8 (13.2) 114.6 (13.3) 115.6 (13.1) 116.7 (13.5) 118.5 (14.6)
MAABL 114.8 (13.2) 114.6 (13.3) 115.6 (13.1) 116.7 (13.5) 118.5 (14.6)

Table 4. Summary of the averaged diastolic blood pressure (DBP) estimates by the nurse,
the maximum amplitude algorithm (MAA), MAA using Bayesian with Gaussian (MAABG),
and the maximum amplitude algorithm (MAA), MAA using Bayesian with Laplacian
(MAABL); std is the standard deviation; first to fifth is the sequence of the measurements.

BP (mmHG) DBP (std) DBP (std) DBP (std) DBP (std) DBP (std)
(N = 85) First Second Third Fourth Fifth

Nurse 67.6 (9.8) 67.1 (9.6) 67.2 (10.0) 67.6 (9.8) 67.5 (10.2)
MAA 69.7 (10.5) 69.8 (10.4) 69.9 (10.3) 72.0 (10.5) 73.2 (10.8)
MAABG 70.7 (10.3) 70.4 (9.9) 70.7 (9.9) 72.0 (9.9) 71.9 (9.9)
MAABL 70.7 (10.3) 70.4 (9.9) 70.7 (9.9) 72.0 (9.9) 71.9 (9.9)

In order to verify the performance of BP estimation, the MD and the SD between the estimated
BP and the auscultatory nurse measurements were calculated according to AAMI standard protocol
recommended [15]. A blood pressure monitor could pass AAMI protocol, if its measurements error
has a mean value of less than 5 mmHG with a SD of no more than 8 mmHG [15] Therefore, lower
values of MD correspond to better overall performance. The MD of the proposed MAABG algorithm in
SBP and DBP was compared to that of the MAA algorithm as in Table 5, confirming that the proposed
MAABG has much effect on the error of the estimate. Tables 5 shows the MD as the average difference
between the blood pressures measured through auscultation by the nurse, and the MAA and MAAB
methods described in this paper. For example, the MD was found to be 6.80 and 5.39 (mmHG) for
the SBP and DBP when comparing MAA and the reference ausculation method based on the result of
the first measurement. The proposed method, MAABG showed lower MD compared to the MAA for
both SBP and DBP consistently in all the five measurements, as shown in Table 5. In addition, the SD
was used to describe a measure of error variability between the auscultatory nurse measurements and
the estimates obtained using the proposed method. The SD between the proposed MAABG method and
the auscultatory nurse measurements was found to be 2.99 mmHG for the SBP and 3.58 mmHG for the
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DBP, respectively, which were superior to those obtained from the auscultatory nurse measurements and
the MAA method.

Table 5. Summary of the MD and SD obtained using the MAA and the proposed methods
(MAABG and MAABL) relative to the reference auscultatory method.

MAA MAABG MAABL
(mmHG) SBP DBP SBP DBP SBP DBP

Test MD (SD) MD (SD) MD (SD) MD (SD) MD (SD) MD (SD)

1st mea. 6.80 (6.70) 5.39 (5.10) 6.01 (2.99) 4.92 (3.58) 6.01 (2.99) 4.92 (3.58)
2nd mea. 7.80 (6.22) 5.60 (4.40) 5.87 (3.27) 4.56 (2.93) 5.87 (3.27) 4.56 (2.93)
3rd mea. 6.70 (5.80) 5.70 (4.20) 6.45 (3.73) 4.88 (3.39) 6.45 (3.73) 4.88 (3.39)
4th mea. 6.30 (5.77) 6.00 (4.09) 6.14 (2.84) 5.01 (3.32) 6.14 (2.84) 5.01 (3.32)
5th mea. 7.56 (7.07) 7.08 (4.98) 6.76 (3.79) 5.63 (3.87) 6.76 (3.79) 5.63 (3.87)

avg. 7.03 (6.31) 5.95 (4.55) 6.25 (3.32) 5.00 (3.42) 6.25 (3.32) 5.00 (3.42)

Figure 5. Bland-Altman plots comparing of the performance between the proposed
(MAABG) algorithm and auscultatory results, (a) Bland-Altman plot for the SBP and (b)
Bland-Altman plot for the DBP.
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The work described in this paper is a systematic methodology with a theoretical basis using a Bayesian
model for estimating the SBP and DBP. As seen from in the last row of Table 5, the proposed approaches,
evaluated using both the MAABG and MAABL resulted in much lower MD’s average for both SBP
(MD = 6.25 and 6.25 mmHG) and the DBP (MD = 5.00 and 5.00 mmHG) compared to the conventional
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MAA. The difference in estimation error between the proposed methods and the conventional MAA
for SBP and DBP is an MD of 0.78 and 0.95 mmHG. Figure 5 shows Bland-Altman plots comparing
of the performance between the proposed MAABG algorithm and auscultatory nurse measurements
(425 measurements) [22]. The performance between the conventional MAA and auscultatory nurse
measurements (425 measurements) is compared by Bland-Altman plots as shown in Figure 6. The limits
of agreement (see bold horizontal lines in Figures 5 and 6) that we use are (MD ± 2× SD) for all
plots. For all plots in Figures 5 and 6, most of BP measurements’ points within the limits of agreement.
Moreover, the bias (see horizontal center lines) for all plots is negligible amount (≤ ±1.5 mmHG).
This implies that the BP estimates made by the MAA and MAABG are in close agreement with those
made by the auscultatory nurse measurement without being overly biased in any particular direction. We
also note that the vertical spreads of the proposed MAABG algorithm for the SBP and DBP are smaller
than those of the conventional MAA method as shown in Figures 5 and 6. That is, the proposed MAABG
algorithm provides an improvement in oscillometric BP estimation.

Figure 6. Bland-Altman plots comparing of the performance between thr conventional MAA
and auscultatory results, (a) Bland-Altman plot for the SBP and (b) Bland-Altman plot for
the DBP.
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In addition, the SD was utilized as a tool of error variable between the auscultatory nurse
measurements and the estimates obtained using the proposed MAABG. The SD obtained with the
proposed methods, which are the MAABG and MAABL, was found to be 3.32 and 3.32 mmHG for
the SBP, respectively, and 3.34 and 3.34 mmHG for the DBP, respectively. This performance is superior
to that obtained when the conventional MAA was compared with the auscultatory nurse measurements.
The difference in SD between the proposed MAABG and the conventional MAA, for SBP and DBP
is 2.99 and 1.13 mmHG. Such improvements could be very significant given that the AAMI protocol
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recommends for the automated BP monitors [15]. These results confirm that the proposed approaches
which are based on the Bayeaian model acquires a high degree of accuracy in BP measurements. Note
that, the proposed MAABG and MAABL shows the same results. This implies that the proposed
approaches represent the robust characteristics despite using different likelihood function.

4. Conclusions

In conclusion, the MDs and SDs of the SBP and DBP obtained through the proposed MAABG and
MAABL are smaller relative to the reference nurse values when compared to the conventional MAA
method. This study has established that the proposed method has outperformed the conventional MAA
method in estimating the SBP and DBP. Furthermore, a systematic methodology with a theoretical basis
for calculating individualized SBPR and DBPR is demonstrated that can be used with conventional
MAA algorithm.
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Appendix

Here, we add the basic concept of Bayes rule [18] in more detail for the individualized SBPR and
DBPR which are already assumed in Section 2.2 as random variables P (r̂i,j|h). Employing the definition
of conditional probability with the product and sum rules produces Bayes rule such that

p(ζ|η) =
p(η

⋂
ζ)

p(η)
=

p(η
⋂
ζ)

p(η
⋂
ζ) + p(η

⋂
ζ̄)

=
p(ζ)× p(η|ζ)

{p(ζ)× p(η|ζ)}+ {p(ζ̄)× p(η|ζ̄)}
(18)

where ζ and η represent independent events. Note that, the ζ is a considered unobservable and the η is
an observable event. The ζ is called a priori probability . The likelihood function of the unobservable
event ζ is then given by p(η|ζ). Thus, p(η|ζ) is the posteriori probability of event η. Bayes’s rule is
actually just a rewriting of the conditional probability equation, where the joint probability in numerator
is known as the multiplication rule, and the marginal probability in denominator is known as using the
law of total probability followed by the multiplication rule.

Based on Equation (18), we can see the parts in Equation (7). The prior distribution is given by the
pps vector in Equation (5) which are assigned to equal candidate ratios due to the lack of any a priori
information. We then observe the likelihood function f(ŷs(i,j)|cr(l)s(i,j)). This conditional probability
function of ŷs(i,j) given cr(l)s(i,j)), actually, the value that occurs and where cr(l)s(i,j)) is allowed to vary
over its whole range for α1, ..., αK . Thus, the posteriori probability distribution is given by the a POP
p(cr(l)d(i,j)| ŷs(i,j)) evaluated at cr(l) for every l, l = 1, · · · , K. This equation gives us a technique for
revising our belief probabilities with respect to the possible values of cr(l) given that we obtained ŷs(i,j))
from the reference auscultatory measurement. Consequentially, we obtain the final ratios r̂si,j as given in
Equation (15).
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