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Abstract: In this paper, a global-state-space visual servoing scheme is proposed for 

uncalibrated model-independent robotic manipulation. The scheme is based on robust 

Kalman filtering (KF), in conjunction with Elman neural network (ENN) learning 

techniques. The global map relationship between the vision space and the robotic 

workspace is learned using an ENN. This learned mapping is shown to be an approximate 

estimate of the Jacobian in global space. In the testing phase, the desired Jacobian is 

arrived at using a robust KF to improve the ENN learning result so as to achieve robotic 

precise convergence of the desired pose. Meanwhile, the ENN weights are updated  

(re-trained) using a new input-output data pair vector (obtained from the KF cycle)  

to ensure robot global stability manipulation. Thus, our method, without requiring  

either camera or model parameters, avoids the corrupted performances caused by  

camera calibration and modeling errors. To demonstrate the proposed scheme’s  

performance, various simulation and experimental results have been presented using a  

six-degree-of-freedom robotic manipulator with eye-in-hand configurations. 

Keywords: visual servoing; dynamic Jacobian estimation; Kalman filtering; Elman neural 

network; global-state-space 
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1. Introduction 

Visual sensors integrated with robotic manipulators can be increasingly beneficial for robotic 

perception and behavioral flexibility in unstructured environments [1]; such sensors have caught much 

attention, and have applications in all walks of life [2–5]. 

Vision-based robotic manipulation depends mainly on visual information feedback to control the 

positioning or motioning of a manipulator [6]. There are two general categories of manipulation: 

position-based visual servoing (PBVS) and image-based visual servoing (IBVS). There is also a hybrid 

of the two techniques [7]. These different categories arise from differential definitions of visual feature 

and feedback control information. 

The PBVS vision usage provides information to regulate the end-effector pose (relative to the 

object in the Cartesian space). Owing to its characteristic of global asymptotic stability, this method is 

suitable for most industrial robotic manipulators [8]. However, the servoing task is inevitably related to 

the tedious affine model which is associated with world coordinates, camera frame, and robot base 

coordinates. Consequently, PBVS is more sensitive, with respect to the camera and object modeling 

errors [9], and to the possibility of disappearing image features [10–12]. 

In IBVS, there is direct control of the feature points on the image plane for robotic manipulation, 

and the image Jacobian matrix is used to describe the differential relation between the image error and 

the end-effector pose [13]; such direct control has simplified PBVS computation. However, IBVS has 

its intrinsic drawbacks. Consequently, modified IBVS method have recently mainly focused on: (1) the 

dynamic visual servo control law, which was proposed to improve poor dynamic performances due to 

either low vision acquisition frequency or to the time latency processing system [14]; (2) image  

frame path planning as an effective solution for making camera calibration and robotic kinematics 

modeling errors more robust [15–17] (such optimization techniques are selected for minimizing both  

end-effector trajectories in Cartesian space and features trajectories on image planes [18]); and  

(3) redundant and cooperative 2D visual servo systems [5] and intelligent hybrid schemes [19], which 

solve typical problems, such as features extraction errors and task singularities, etc. 

With respect to modified methods, the presented image Jacobian matrix requires depth information 

and camera calibration parameters (as in traditional IBVS methodologies); such requirements 

inevitably lead to task singularities, thus making it difficult to ensure the stabilized convergence of a 

desired target [20]. The Jacobian identification is considered to be a dynamic parameter estimation 

problem. Solutions to this issue are broadly grouped into two categories. 

One category comprises of online estimation techniques (e.g., the famous Broyden-based method 

and its modified variants) [21,22]. However, these estimation techniques may actually depend on the 

system configurations and the tasks to be accomplished. Moreover, these techniques are ill-suited for 

dealing with system environmental noises. In [23], an M-estimator was applied to the Jacobian 

estimation task, which does not require the model and system parameters. The first literature 

discussing the Kalman-Bucy filter (KBF) on state space for online Jacobian estimation is proposed  

in [24]. Those methods have the same properties as recursive least squares-based estimation 

processing’s. However, the Jacobian estimation task may involve singularity instability in global 

space; failure to have end-effector positioning in cases of large displacement between the initial and 

desired poses is also a risk. 
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Another solution to this estimation problem involves machine learning techniques [25,26], which 

are based on biologically inspired approaches, such as neural networking. These approaches enables 

the machine to learn the kinematic relationship of manipulators during action-perception cycles [27,28]. 

While in IBVS leaning techniques, the Jacobian is presented by a trained nonlinear network [25],  

this approach approximates convergence to the desired position; reaching levels of high servoing 

precision is difficult because network training is an incomplete convergence process and is sensitive to  

training samples. 

In this paper, the discussion will focus on non-parameter Jacobian matrix estimation problems. A 

new global-state-space IBVS scheme, which associates KF and ENN learning techniques, is proposed 

for uncalibrated model-independent robotic manipulation that has robust stability in global-state-space, 

where the image features are constrained on the camera field-of-view (FOV). The proposed scheme  

is different from traditional PBVS methods; IBVS methods possess the merits of not needing 

calibration of either camera parameters or the robotic kinematics model. Moreover, for IBVS methods, 

Jacobian dynamic estimation does not require depth information. The main contributions of the paper 

are as follows: 

(1) Jacobian online identification problems were solved by introducing state-space infrastructure, 

which has been incorporated into robust KF techniques. The traditional KF is a minimum-

variance state estimator for linear dynamic systems with Gaussian white noises sequence. In 

most practices, however, the observation noise is compound and the noises are statistically 

correlated noises (as to being simple white noise sequences). Therefore, we have derived a 

robust KF estimator with multiple orders of noise for the Jacobian online estimation task. 

(2) The KF is sensitive with respect to the initial robotic state and the initial noises’ statistical 

characteristics (i.e., a small perturbation of noise characteristics to dynamic modeling will lead 

to serious positioning error). For this problem, the ENN was adopted as a global estimator for 

Jacobian learning, and then the global map relationship between vision space and the robot 

workspace is represented by the ENN. Notice that this learning method is an approximation of 

the Jacobian matrix, with respect to the end-effector desired pose in scale motion space; the 

approximation error present in the offline learning is due to the limited size of the training data. 

(3) In the online testing phase, the precise positioning problem is solved by using a robust KF to 

improve ENN learning so as to achieve robotic convergence to the desired pose. After, the 

ENN’s weights are updated through re-training using a new input-output data pair vector, 

which is obtained from the KF cycle to ensure robotic global stability manipulation. Finally, we 

have designed a novel global-state-space IBVS framework associated with robust KF 

cooperated ENN learning. In our finding, the image Jacobian matrix is estimated without 

accounting for camera calibration and modeling error. Our servoing system performs robustly 

despite outside noises and system destabilization. 

The paper is organized as follows: a general description of visual servoing (VS) for uncalibrated 

model-independent robotic manipulation is presented in the next section. The Jacobian estimation with 

KF is presented in the Section 3; in that section, we have also derived a robust KF with statistically 

correlated noises. The ENN for global Jacobian learning and a novel global-state-space IBVS scheme 
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are presented in Section 4. The simulation and experimental results are discussed in Section 5. 

Section 6 presents our conclusions. 

2. Visual Servoing to Uncalibrated Model-Independent Robotic Manipulation 

In this section, we assume that we have a robotic manipulator, R, that lacks a kinematics model, and 

where the camera parameters are uncalibrated. As described in Figure 1, uncalibrated model-independent 

visual servoing (VS) aims to drive the robotic end-effector from the current image feature  

(S(k),        ) to the desired image feature (S
*
(k),         ) by using the control variable  

(U(k),        ). Generally, a simple local motion of the end-effector will result in the nonlinear 

complex change of many features on the image plane. The solution for describing the change of 

features and the robot motion, through the adoption of an image Jacobian matrix, was originally 

proposed in [13].  

Figure 1. The general structure of uncalibrated model-independent VS system. 

 

The task error 
χ
e(k) in the n-dimensional workspace      can be described as:  

n
TETE kkkkk  )()(:)()()( PPPPe
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 (1) 

where 
χ
PE(k) and 

χ
PT(k) represent the end-effector and target pose, respectively. 

The m-dimensional feature vector on image frame I is used for task manipulation; image error 
I
e(k) 

is given by:  

m
T

I
E

I
TT

I
EE

II hhkkkkk  :)()())(())(()( *
SSPPe

χχ   (2) 

Where 
I
ħE, 

I
ħT belong to the end-effector and target; these variables result from the projection of 

χ
PE(k), 

χ
PT(k) to the image plane, respectively. The Equation (2) is a decision function, when 

I
e(k) = 0, that 

meaning is actually equivalent to robot achieving the task manipulation, i.e., 
χ
e(k) = 0. 

The association of 
I
e(k)     with the differential changes of the end-effector pose 

χ
PE(k)     is 

achieved by assuming linearity through the image Jacobian matrix J(k); this is done through the 

equation [13]:  
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3. Jacobian Online Estimation by Introduction in State-Space 

3.1. The State Equation and Observation Equation 

Robot attached visual sensors can be considered an instrumental system whose state vector is 

formed by concatenations of the row and column elements of the image Jacobian matrix J(k) [24], i.e., 
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The robotic state-space model is a linear discrete-time dynamical system according to:  

)()()1( kkk WXX   (6) 

)()()()( kkkk VXHZ   (7) 

where           is the state vector,           is the model noise with zero mean, and 

variances is Q(k) ,           is the observation noise vector,           is the output vector, 

given by:  
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Thus, the observation matrix H(k) is  
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The Kalman-Bucy filter (KBF) [29] is a minimum-variance state estimator for linear dynamic 

systems with Gaussian white noise sequences; the KBF has been used for real-time state estimation [30], 

as well as for solving the Jacobina matrix online estimation problem [24]. In most practices, however, 

the observation noises (V(k)) may be compound, and statistically correlated with model noises (W(k)), 

rather than being simple white noise. In the next section, we provide a robust Kalman filtering with 

statistically correlated noises for image Jacobian estimation task. 

3.2. Robust KF for Jacobian Estimation 

For the universal environment, the observation noise vector (V(k)) that meets the Markov chain 

model, given by:  

)1-()1()1()( kkkk ηVψV  
 (10) 

where, ψ(k − 1) is the coefficient matrix, η(k) is the Gaussian white noise sequence with zero mean, and 

the variance is R(k). 

Based upon Equations (6), (7) and (10), we obtain the observation value of system state at k + 1 

time, as follows:  
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Equation (11) can be rewritten as:  
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Equation (12) can be considered as an equivalent observation equation to replace Equation (7); the 

statistic characteristics of W(k) and V
*

(k) are as follows:  
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Equation (13) shows that the observation noise (V
*

(k)) is a Gaussian white noise sequence with zero 

mean, the variance is R
*

(k). V
*

(k) is statistically correlated with the model noise W(k), and the  

cross-covariance matrix is S(k). In this case, the application of traditional KF methods was limited. To 

solve this problem, we introduced a filtering-revise-vector ρ(k), such that state Equation (6) can be 

written as:  
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In order to eliminate the relevance between W
*
(k) and V

*
(k), we let       
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Thus, the filtering-revised-vector is:  

1*

)()()(


 kkk RSρ  (16) 

Equations (12) and (14) can be considered as a equivalent observation equation and system state 

equation, respectively. According to the optimal estimation theory [29], the robust Kalman filtering 

model of statistically correlated noises can be derived as follows: 

(1) Estimation equations: the one-step state estimation equation and the variance matrix of 

estimation error are given by:  
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(2) Updating equations: the state filtering equation, filtering gain, and variance matrix for filtering 

error are as follows: 
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As shown in Figure 2, a robust KF has two basic processes, which are the estimation and the 

observation updates. The estimation process uses prior-state information and a state model to estimate 

the current state. The observation update uses the discrepancy between the estimated value and the 

observed value. 

Figure 2. The structure of a robust KF for Jacobian matrix estimation. We introduce a 

filtering-revise-vector ρ(k) to improve the robustness of the filter’s performance with 

respect to universal dynamic noises. 
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system identification and prediction control. In this paper, as shown in Figure 3, the framework of 

feedback ENN with its three layer structure is selected; the framework consists of the input vector S(k), 

output vector J(k), connection weights W
Li

 (where i = 1, 2, …, 5), the nodal activation functions, h(●), 

g(●), f(●), and the thresholds, αI, αj, αk, which correspond to the input layer, hidden layer, and output 

layer, respectively. The mathematical of the ENN is described as follows [32]: 
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Output layers:  
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where the activation function of input layer h(x) and hidden layer g(x) are taken as a sigmoidal function:  
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The output layer activation function f(x) is taken as a linear function, such that Equation (21) is 

written as:  
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Figure 3. The framework of a feedback Elman neural network with its three  

layer structure. 
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samples to the ENN are the image feature vector (S'(k) = [s1(k), s2(k), …, s600(k)]8 × 600), and the output 

samples of the network are the Jacobian matrix (J'(k) = [x1(k), x2(k),…, x600(k)]48 × 600). The learning 

laws with the gradient descent method [32], and the training result (approximately at epoch 107), reach 

the best validation performances, and the minimum sum squared error (MSE) is 1.3. It is seen that  

the test output of the network is not very close to the training output, which means that the actual  

end-effector positioning is approximately close to the desired target; this is due to the approximation 

error present in offline learning. 

4.2. Global-State-Space IBVS Scheme 

The schematic of the proposed global-state-space IBVS is shown in Figure 4. The goal is to extract 

image features by vision sensor to estimate, online, the desired Jacobian Ĵ(k), so as to drive the  

end-effector to reach the desired pose, as employed by a control law. The scheme consists of the 

following steps: 

(i) First, the Jacobian for the global mapping relationship between the vision space and the robot 

workspace is approximated using the ENN. As mentioned in last section, it is not necessary to have a 

very low approximation error during offline training. But in the testing phase, the supposed desired 

Jacobian Ĵ(k), with respect to the desired end-effector pose, is estimated by the robust KF (as shown in 

the dashed box in Figure 4). The ENN’s weights were undated and use the gradient descent algorithm 

to minimize output error e(k) for a given input image features vector S(k − 1).  

)()(
2

1
)( kekekE T  (24) 

where ))()(ˆ()( kkke JJ  . The update law of the connecting weight is given by:  

w

kJ
kekwkw






)(
)()()1(   (25) 

where η is the learning rate. 

(ii) The initial state of the robot is very important to robot stability manipulation. The authors in [33] 

use a fuzzy neural network to provide this initial join guess. In [34], the authors start from the current 

robot configuration and in [27], a KSOM-based sub-clustering network is used to provide an initial 

join guess to the inversion algorithm. For the initial Jacobian guess, the common method involves 

introducing the robotic probe moving at the neighborhood of its initial position n times            , 

and observing the corresponding features displacements             in the image frame. The initial 

Jacobian matrix could then be obtained reasonably through [24]:  

T
J ]......][......[)0(ˆ 11 jnjjnj ppff    (26) 

In contrast, in this paper, at the initial time k = 0, the initial image features S(0) captured by the 

vision sensor are used as an input for ENN. After, the ENN outputs an initial Jacobian guess J(0), 

which can be considered the initial state X(0) of the robot. Therefore, our scheme is more flexible 

since it avoids introducing complex probe motions. 

(iii) The robust KF estimator (mentioned in Section 3.2) is used to estimate the desired Jacobian 

Ĵ(k) through the following steps: 
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Step 1 robot state initialization as Step (ii). 

Step 2 At k−1 time, the approximated Jacobian J(k − 1) is calculated using Equation (23). 

Step 3              , robot state updating using state Equation (14).  

Step 4 Output vector Z(k) is obtained using observation Equation (12). 

Step 5 The best state estimate       is obtained using the robust KF Equations (17) and (18). 

Step 6            . 

Step 7 ENN weights update through Equation (25). 

Step 8 k − 1   k, go to Step 2. 

(iv) The control law should be employed to drive the robot from its present pose to its desired pose. 

The image error, as shown in Equation (2) at the time instant k, is rewritten as:  

)(ˆ)()( * kkk SSS 
 (27) 

where S
*
(k) is the desired image feature, and                              is the 

estimate value of the image features. Let 
χ
PE(k) = U(k); then, according to Equation (3), the control law 

is formed by:  

)()(ˆ-)()(ˆ-)()( kkkkkk E

  SJSJPU    (28) 

where λ is the control rate, and Ĵ
+
(k) is the inverse Jacobian matrix. 

Figure 4. The scheme of global-state-space IBVS, which is attached to a Robust  

KF Cooperate with ENN learning. Online weights update to ensure robotic global  

stability manipulation. 

 

5. Simulation and Experimental Results  
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(k) does not change over time, and therefore can be calculated before the 
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where           
 .  

Supposing the linear velocity of the end-effector is V(k) = [vx, vy, vz]
T
, the angular velocity is  

W(k) = [wx, wy, wz]
T
, and the robotic control variable is U(k) = [V(k), W(k)]

T
6 × 1. According to 

Equation (4), the 8 × 6 Jacobian matrix is given by:  
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According to Equation (5), the size 48 × 1 of the system state vector given by:  

T
X 148868584838281161514131211 ]...[)(  jjjjjjjjjjjjk  (31) 

where jik refers to the ith row and kth column of J(k). 

5.2. Simulation Evaluation 

An eye-in-hand simulation environment was set up to test the performance of the proposed method. 

Camera movement covers linear, rotational movement, as well as the combination of the translational 

and rotational movements in the workspace. In simulation, we consider only two difficult tasks, which 

consist of four cases (combined movement and rotation movement). The evaluation goals of Cases 1 

and 2 are test the feature trajectories and the camera trajectory performances of PBVS, IBVS, and our 

method. Cases 3 and 4 test the performance’s global stability and robustness for both KBF and  

our method. 

Case 1 involves a combination of the translational and rotational movements of the camera. The 

results are illustrated in Figure 5a. The feature trajectories on the image plane, obtained through our 

method, are constrained on the camera field-of-view (FOV), but the PBVS method for this task the 

feature trajectories easy leaves the FOV (Figure 6a). Additionally, Figure 5b shows that the camera 

trajectory in the Cartesian space obtained by our method moves on a seemingly straight line from the 

initial pose toward the desired pose. This result is similar to that obtained by the PBVS method, as 

illustrated in Figure 6b. The IBVS method for the same task, the feature trajectories are constrained by 

the controller to move on straight lines from the initial toward desired feature points (Figure 7a), but 

the camera motion in the Cartesian space (Figure 7b) becomes slight odd, i.e., the camera undergoes an 

abrupt movement, that is not perfect compared with our method. 

Case 2 involves a pure camera rotational movement around the optical axis. The feature points 

obtained by our method (Figure 8a) move in almost straight lines on the image plane; this movement is 

very similar to those obtained by the IBVS method. This is because our method is similar to IBVS in 

that we increase redundant manipulation on the Y-axis to minimize the image feature trajectories 
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(Figure 8b). Additionally, as illustrated in Figure 8c, the PBVS method converge to the desired pose as 

the image feature points are constrained by the controller to move on circular trajectories. In such 

circumstances, the feature points almost leave the FOV. 

Therefore, compared with the IBVS and PBVS methods, our approach utilizes the advantages of the 

PBVS method to improve the camera motion trajectory, and takes advantages of the IBVS method to 

constrain the feature trajectories to avoid situations where features points leave the FOV. 

Figure 5. Results obtained by our method for Case 1. The sampling interval is 0.1, and the 

control rate λ is 0.15. Our method does not require camera parameters. The feature 

trajectories are constrained on the FOV, and the camera trajectory moves in almost a 

straight line, from the initial pose toward the desired pose. (a) The feature trajectories; (b) 

The camera trajectory. 

  

(a) (b) 

Figure 6. Results obtained by the PBVS method for Case 1. The intrinsic camera 

parameters are chosen as u0 = v0 = 256 and fku = fkv = 1,000. The camera trajectory moves 

in a seemingly straight line from the initial pose toward desired pose, but the feature 

trajectories leave the FOV. (a) The feature trajectories; (b) The camera trajectory. 
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Figure 7. Results obtained by the IBVS method for Case 1. The camera parameters are the 

same as in the PBVS method. The feature trajectories are constrained on the FOV, but the 

camera trajectory becomes slightly odd, i.e., the camera moves abruptly. (a) The feature 

trajectories; (b) The camera trajectory. 

  

(a) (b) 

Figure 8. Comparison of our method with the PBVS method for Case 2. The feature 

trajectories are constrained on the FOV by our method, while the results of PBVS almost 

leave the FOV. (a) Feature trajectories by our method; (b) The camera pose by our method; 

(c) Feature trajectories by PBVS; (d) The camera pose by PBVS. 
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Furthermore, because for PBVS, planar homography is used for pose estimation of the object with 

respect to the end-effector, and because IBVS is associated with Jacobian computation, both methods 

are sensitive to camera calibration error. In works [35], the influenceof the calibration parameters on 

the system is investigated. One solution to this problem uses intelligent hybrid control laws (as 

proposed in [19]) by introducing neural network reinforcement learning. In our method, the Jacobian is 

an online estimation, which has nothing to do with camera calibration and system modeling errors. 

Therefore, our method avoids the corrupted performances caused by calibration and modeling errors. 

Case 3 deals with dynamic performances in a noisy environment. This case examines the stability 

of our method, in comparison with the KBF method [21], in a harsh noisy environment. At each 

sampling instant, uniformly distributed random noises are added to the control system. A Gaussian 

noise sequence with zero mean, where the variances are 1 × 10
−3

, were added to the state and 

observation models (the additive noises shown in Figure 4), respectively. The results, shown in  

Figure 9, are compared with KBF’s. In the former, the camera movement and feature trajectories are 

smoother and more preferable. 

Figure 9. Comparison of our method with KBF for Case 3. The additive noises are set at 

zero mean, and variances are set at 1 × 10
−3

. (a) Features trajectories by KBF; (b) Camera 

trajectory by KBF, camera with slight retreat; (c) Feature trajectories by our method; 

(d) Camera trajectory by our method, camera without retreat. 
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When the variance is 9 × 10
−3

, the camera pose in the Cartesian space and the feature trajectories on 

the image plane for this situation are given in Figure 10. It is obvious that the results of the KBF 

method are seriously deteriorated by the additive noises; the task goals of reaching the desired position 

and zeroing the errors are accomplished, but the camera engages in unnecessary retreat, and the image 

features in the image plane almost leave the FOV. Not only does our method enable convergence on 

the desired pose, it also robustly performs in the presence of noise. On the other hand, when the noise 

variances are around 1 × 10
−2

, The KBF method failure to have end-effector positioning, i.e., the 

camera randomly moves in Cartesian space and the image features in image plan are unknown. In 

contrast, our method always converges to the desired pose without camera retreat. It is clear that our 

method has global stability irrespective of the presence of noise. 

Figure 10. Comparison of our method with KBF for Case 3. The additive noises are set at 

zero mean, and the variances are set at 9 × 10
−3

. (a) Feature trajectories by KBF; 

(b) Camera trajectory by KBF, camera with serious retreat; (c) Feature trajectories by our 

method; (d) Camera trajectories by our method, camera without retreat. 

  

(a) (b) 

  

(c)  (d)  

Case 4 deals with dynamic performances due to system destabilization. During the actual robot 

manipulation, the statistical characteristics of model noise and observation noise are variational, which 

leads to system destabilization. For simplicity, but without loss of generality, we consider the statistical 
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*
(k) (shown in Figure 2) are classical situation, and then a challenging 
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experiment have been implemented to simulate the robot manipulation, in this paper, a value of  

Q(k) = 2
*
(E)48 × 48 and R(k) = 0.04

*
(E)8 × 8 are chosen for the covariance of noises, where E is the  

unit matrix. 

The dynamic performance of the KBF method is shown in Figure 11. Here, the image features leave 

the FOV (Figure 11a), and the velocity of the camera does not zero (Figure 11d). As a result, the 

camera pose fails to converge toward the desired pose at the steady state. For the same case, the 

performance of our method is presented in Figure 12. It can be seen that the local minima problem of 

the KBF method has been avoided, and the convergence of both the camera pose and the image 

features toward their desired targets has been achieved. 

On the other hand, different values of Q(k) and R(k) are considered for different simulations. The 

results tell us that when the covariance of noises changes slightly, the results of the KBF method will 

alter largely, and even lose their tracking ability (due to serious camera retreat). When the robust KF 

was selected to cooperate with ENN learning, our method always worked well, even though the Q(k) 

and R(k) were changing in a larger region. This means that the proposed global-state-space IBVS is the 

robust despite system destabilization. 

Figure 11. Results obtained by the KBF method for Case 4. (a) Feature trajectories; 

(b) Camera trajectory; (c) Feature errors; (d) Camera velocities. 
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Figure 12. Results obtained by our method for Case 4. (a) Feature trajectories; (b) Camera 

trajectory; (c) Feature errors; (d) Camera velocities. 

  

(a) (b) 

  

(c) (d) 

5.3. Experimental Results and Discussion 

The experimental results have been carried out using eye-in-hand configurations (Figure 13a).  

The task is the online dynamic estimation of a Jacobian J(k) so as to drive the end-effector from the 

initial pose (Figure 13b) to the desired pose (Figure 13c). Our VS system consists of a DENSO  

RC7M-VSG6BA robotic controller, a computer with an Intel Corei5 2.67-GHz CPU, 4GBs of RAM 

for image processing (The robotic controller and image processing computer can communicate through 

RS232C serial interface), and a DENSO VS-6556GM six-DoF robotic manipulator with a Basler 

scA1300-32fm/fc camera mounted at its end-effector. The object is an A4 paper with four  

black-colored small circular disks on it. The object images are captured by the camera at a rate of  

30 Hz. The resolution is 640 × 480, and the center points of the small circular disks are used as  

feature points. 
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Figure 13. (a) Experimental environment with eye-in-hand configurations. (b) Initial 

features. (c) Desired features. 

 

Experiments for the following cases were performed: Case 1 deals with pure rotational movement 

of the camera, with initial features S(k) = (481.1 158.9, 244.2 135.2, 220.4 372.1, 457.3 395.8) and 

desired features S
*
(k) = (319.9 19.3, 154.0 190.1, 324.8 356.0, 490.7 185.2). Case 2 deals with 

translational movement of the camera, with the initial features S(k) = (217.5 38.1, 89.3 38.1, 89.3 

166.3, 217.5 166.3) and desired features S
*
(k) = (595.3 202.4, 416.7 202.4, 416.7 381.0, 595.3 381.0). 

Case 3 deals with a combination of translational and rotational movement of the camera, with the 

initial features S(k) = (225.2 299.0, 103.9 286.8, 91.7 408.1, 213.0 420.3) and desired features  

S
*
(k) = (534.8 81.0, 342.9 162.1, 424.0 354.0, 615.9 272.9). The value of λ = 0.35 was adopted for the 

control rate. 

Figure 14. Experimental results obtained by our method for Case 1 rotational movement. (a) 

Feature point trajectories; (b) Camera trajectory; (c) Feature errors; (d) Camera velocities. 
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Figure 14. Cont. 

  

(c) (d) 

The experimental results are shown in Figures 14–16. For Case 1 and Case 3, the camera involves 

rotational movement with low rotational angle values (due to the limitation of the joints angle and the 

workspace). The results of the image error are minimized, with the initial features converging toward 

the desired features. The feature trajectories are almost straight lines on the image plane, and the 

steady-state errors in the image space are in order of 4 pixels for Case 1 and Case 3, while the errors 

are less than 6 pixels for Case 2. In addition, the camera trajectory in the Cartesian space obtained by 

our method show that all the tasks of the three cases are completed with global stability without 

camera retreat. Moreover, the image features remain within the FOV. 

Figure 15. Experimental results obtained by our method for Case 2 translational 

movement. (a) Feature point trajectories; (b) Camera trajectory; (c) Feature errors; 

(d) Camera velocities. 
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Figure 16. Experimental results obtained by our method for Case 3 translational and 

rotational movement. (a) Feature point trajectories; (b) Camera trajectory; (c) Feature 

errors; (d) Camera velocities.  
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In the experiment, our approach direct control of the feature points on the image plane for robotic 

task manipulation, in other words, the proposed method of observing the changing of features on 

image plane direct control to the robot converging toward the desired pose with six-degree-of-freedom. 

As described in Section 2, if the feature errors converge toward zero that meaning is the robot 

successful achieve the task manipulation. Therefore, the experimental results can validate the  

proposed method. 

6. Conclusions 

In this work, a new global-state-space IBVS scheme for uncalibrated model-independent robot 

manipulation in an eye-in-hand configuration is discussed. Here, a robust KF cooperates with ENN 

learning techniques so as to ensure robust stability in global-state-space with respect to image features 

within the camera field-of-view (FOV). Also, the image Jacobian matrix is estimated without requiring 

camera parameters and depth information. Therefore, our method avoids the corrupted performances 

caused by calibration and modeling errors. Through various simulation and experimental results 

through IBVS, PBVS, KBF and our method, we have shown that our approach takes the advantages of 

PBVS to improve the camera moving trajectory, and takes the advantages of IBVS to avoid the loss of 
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image features. Finally, in comparison with the KBF method, our method is robust despite outside and 

system noises. 
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