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Abstract: Reliable GPS positioning in city environment is a key issagtually, signals are
prone to multipath, with poor satellite geometry in mangsts. Using a 3D urban model to
forecast satellite visibility in urban contexts in ordeingorove GPS localization is the main
topic of the present article. A virtual image processing ttetects and eliminates possible
faulty measurements is the core of this method. This imagemgrated using the position
estimated a priori by the navigation process itself, undadrconstraints. This position is
then updated by measurements to line-of-sight satellitdg orhis closed-loop real-time
processing has shown very rst promising full-scale tesuits.
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1. Introduction

Reliable GPS positioning in city environment is a key issaiually, signals are prone to multipath,
and satellite geometry, despite its improvement with GN&8roperability, remains poor in many
streets. Non-Line-Of-Sight (NLOS) satellites cause ingairreceiver-satellite range measuring errors,
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because the direct signal is blocked and only the re ectgdadiis tracked. Contrary to multipath where
direct and re ected signals interfere, errors with NLOSe#lges grow unboundedly. The geometrical
properties of the local environment of the antenna can éxplaterministically the phenomena that
occur, which makes 3D city models of great interest in thekyr problem.

First, let us mention, even if there is no use of 3D modelsjritege processing approach like, e.g.,
that of the LocoPROL project (Low cost satellite based ttagation system for signalling and train
PROtection for Low density railway lines)]. This approach already uses an obstacle elevation model,
characterized from a sh-eye camera for both sides of a ejijwn order to determine whether a received
signal should be considered or not, in which case the carrepg satellite turns out to be masked from
the user.

Concerning 3D models, in 2007, Bradbuey al. [2] have investigated the possibility of using
building description in the vicinity of the antenna in ordemitigate multipath and occlusion. Suh and
Shibasaki 8] also make use of 3D data bases to predict GNSS quality ofcgerv

Well-founded results were shown with these rst contribas, but more recently, a full-scale
experiment of this concept applied to localization in a 3Ddelted urban center has been proposed
in CityVIP [4]: a 2008-2011 project that aims at designing a global managée system of a
eet of autonomous individual transportation vehicles. n€erning NLOS detection and city model,
a preliminary proof of concept has recently been publishedEEE Intelligent Transport System
Telecommunications (ITST) 2015][ In this article, the position from which the 3D model is safered
in order to compute the critical elevations at satelliterazihs was delivered by a high-grade kinematic
GPS and inertial navigation system. The success of the demation using, for satellites visibility, the
off-line “true” position of the vehicle con rmed the relemae of the concept. However, this could not
lead us to predict whether or not the idea would work when @es & standard GPS position in place of
an accurate reference point for the computation of thelgatetitical elevation. This is the aim of the
present article.

Similar approaches are proposed By’], with more simple map models, and 8] [with ray-tracing
algorithm. Last but not least, let us mention the approaett wWas proposed by9[10], under the
name "shadow matching”: the investigations undertakenatitasting which one from a set of possible
localizations around a standard initial solution is the tpogbable with respect to the coherence between
a 3D model based prediction of LOS/NLOS satellites and theahsatellites in view. First results in
London are very promising in terms of street lane separaticilnding sidewalk. Additionally, shadow
matching appears complementary to direct NLOS detectichods, as presented by1].

This article is divided into three main sections. We rst &ip the methodology and mention the
results obtained in the feasibility study based on a kinen@PS INS solution. In the second part, a
map-aided positioning lter is presented that takes adagatof the information given by the 3D model
in terms of road constraints. The third and last part analyke experimental results obtained by the
LOS/NLOS separation algorithm based on the previous caingtl solution. The ef ciency of the road
constraints in this process will be demonstrated. Finaly,will discuss the impact of the separation
algorithm and its interest with respect to the localizagpwablem, before and after a nal map-aiding,
and we will compare this algorithm to a more usual satellglection based on signal-to-noise ratio
(SNR). These comparisons are done from data registered ealaexperiment in the center of Paris
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(France). The duration of this experiment is about 10 mmated the total length of the circuit is about
2 km in an archetypal European urban center.

2. Presentation of the NLOS Detection Method

The core of the method consists in checking whether a datéflat generates a signal received by
the GNSS receiver can be directly viewed (LOS) or not (NLO®XH®e receiver antenna. With this
aim in mind, one needs the predicted position of the recether predicted positions of the satellites,
and the map of the environment in the same reference frameD Aity model of the environment
is available in a Geographical Information System (GIS) edded software from BeNomad
company 2], SIVNav SDK™" (Software Development Kit), which is dedicated to augmemeslity,
3D map rendering and vision for robotics. It contains a geooa description of buildings, roads
(actually streets) and sidewalks. The 3D elements thanaieeivicinity of the receiver localization are
extracted from the database, and a virtual image is retuiedaction and image computation are basic
functions of the GIS. The availability of this software, dretCityVIP platform, has motivated the use
of a virtual image. Geographical data are provided by thea¢héational Geographical Institute (IGN),
in the national French plane projection (Lambert 93) pluam&ea level (MSL) altitude (further called:
the GIS reference frame). Their accuracy is: 5 cm horizbnéadd 25 cm vertically in Parisl3,14].

Figure 1. lllustration of the computation of the critical elevatiosing a virtual image.
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The method starts with the computation of a virtual image axfhesatellite, with a virtual camera
located at the antenna center, oriented with the azimutheo€onsidered satellite, with tilt angles (roll
and pitch) set to zero (Figug. An important parameter of the virtual camera is its fodstahce. From
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an initial value, this is iteratively reduced until the skwiisible on top of the frontal building. The sky
visibility may not be obtained in case this building wouldusy close to the user, which entails NLOS
for the corresponding satellite.

Basic image processing functions provided by BeNomad makpossible to compute the
front building elevation. These functions are twofol@&et depth(pixel) , Which returns the
depth of the closest point corresponding to the input pixethe 3D model of the environment,
Get _distance(pixel 1, pixel _2), which returns the Euclidian distance between the closest
points of the 3D model that corresponds to pitehnd pixel2. The geometrical computation of the
critical elevation . (1) by using the output of these functions applied onto therakand critical pixels
respectively is illustrated on Figufe

The comparison of the satellite elevationo this threshold makes the nal decision on whether the
satellite is considered NLOS or not.

Get_distance(Pg; Pry)

¢ = atan( Get_depth(P,) ) ()

A more straightforward method consists in computing theéuailr image with the camera tilted
according to the elevation of the satellite, and, like ragiing, check whether or not a pixel is detected
along the optical axis (if noGet _depth(pixel) returns 1 and the satelliteis in LOS). The standard
focal distance is always suitable. Note that the criticalvation is no more available that way, but
actually not essential.

In practice, azimuth and elevation of satellites are dedisidby standard NMEA (National Marine
Electronics Association) GSV (Satellites in view) messagdote that the correction of the azimuthal
deviation (up to a few degrees) between the true north anchdhin of the map (the one using the
Lambert 93 plane projection) must be done.

Figure 2. Cumulative distribution function of the horizontal positierror (HPE).
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The position of the user is in fact the most critical point ire tprocess. In a rst step of this
research3], we used our Reference Trajectory Measurement (MR®))gystem to produce the accurate
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position that feeds our NLOS algorithm. The results we aigdiand published were very promising
(Figure2), but there was no error on the estimation of the positiomefuser that might bring an error
in the NLOS detection itself, with the risk of a possible dyence.

Here, the position of the antenna will come from a CityVIP iporing sub-system that combines
data from dead-reckoning sensors and GNSS, under the 3D onapraints.

Figure 2 shows the impact of ground-truth-based NLOS detection awtusion (for 2 receivers
U-blox LEA-4T and LEA-6T and for both least square (LS) anttexled Kalman Iter (EKF) solutions):
solid lines (corresponding to NLOS lItered solutions) aieays closer to the y-axis than dashed lines
(non- Itered solutions), which proves the ef ciency of th&®S/NLOS separation algorithm.

3. Presentation of the Positioning Method with Road Constrants

The method consists in computing a 3D localization of a wéekhicle based on a 3D kinematic
model and improved by map-aiding on the road layer of the 3praap. This functionality was a task
of the CityVIP project 4].

A state space formulation of the problem is used in order &stigte estimation techniques such as
variants of Kalman Itering. As it is usual in Robotics, thercguration is taken as a state vector. The
kinematic model then gives the progression part of the sigw@tion.

3.1. De nition of the Vehicle Con guration (Figur8)

The world reference frame being the one where the travelasigal (i.e., the GIS reference plane
in Lambert 93 coordinates), let us dendte O; p; jo; ;Ko as this world reference frame ail :

M; 13; 3; Kz as the vehicle reference frame (Figu8e By de nition, the vehicle con guration
states the pose of the vehicle reference frame with respéuot tworld frame. In the 3D Euclidian world,
it may be de ned by:

o a=[xvy;z ;; T (2)
2 . heading;
with: S . slope; and(x;y; z) the 3D coordinates of the middle of the rear axl6][
cross slope

In other words, the con guration may be de ned as the transiation fromwW toM by 4 elementary
operations: one translatio®@M) and 3 successive rotations,( , ). Note that one considers here a
vehicle without suspension. The ( ) orientation angles are thus only induced by the geometry of
the road and the path followed by the vehicle.

3.2. Kinematic Model Processing

The rationale of the model is based upon the motion of the isltleat roll without slipping on a plane
surface. Here the plane is inclined and its inclination siased to evolve slower than the other variables
(in particular, slope and cross slope angles have slowétiars than the one of the yaw angle). Note
that such a model is coherent with the 3D map composed of ptatehes that is further used.
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Moreover, like in the usual 2D kinematic models, the longjitial speed\) and the yaw angular rate
(! ) in the evolution plane are assumed to be known from odonme¢tgsurements.
For a vehicle with two motorized wheels where:

E denotes the track, e.g., the distance between the centitrs lefft and right wheels,
'y (resp.!)) is the measured rotation speed of the right (resp. left)alvhe
R; (resp.R)) is the radius of the right (resp. left) wheel, assumed tormnn.

by measuring the rotation speed one gets the relaBipn (

2 3 2 3 2 3
1 R,:!,

92-8" "19 L -

E R,

From the non-holonomic constraints linked to the rollingheut slipping rotations of the wheels on
the plane surface, the vector speed/bis aligned with the axig; of the vehicle (Figur&) and its norm
is v given by Equation3). In the same way, the axis of the yaw rotation is the locahmadK; to the
road and its norm is given by EquationJ).

Figure 3. 3D vehicle con guration for a xed rear axle model, with theowid and mobile
reference frames a4 andM respectively.
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Expressing those relations in the world reference frainee the GIS reference plane in Lambert 93
coordinates) gives the global kinematic state Equat®riX7]. This model appears to have common
features with a simpli ed dynamical model§].

o O

COS
sin
an cos

2
hi
a4 = G(g) ﬁ . e(q)—E - @)

A discrete time version5) is deduced from Equationd) by the Euler formula for a real-time
implementation 2 3

Sk
Gr = G+Ga) 4 6 (5)
d «
In this expressiongs, = vk (txsz  ty) (resp.d ¢ = ' (tk+1  tk)) is the elementary travelled
distance (resp. elementary yaw rotatiorMn) between the successive time sampieandty. .

3.3. Localization Method

In the CityVIP project, a localization task has been introehliin order to continuously update an
estimation of the con guration of the vehicle in a 3D worldyether with an accuracy statement. This
estimation is iteratively computed by combining 3 data sesar(Figure4), each one with a different
time scale:

Figure 4. Data fusion state chart.
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1. GPS localization is obtained by a positioning algorithmhet tipdate rate of the receiver (4 Hz).
A complete localization may be scarce in environments witbrsatellite visibility,

2. odometric data are generated by the wheel speed sensors BB (Anti-Blocking System).
When some data become available, the con guration is upldateising Equations),

3. geographic data, 3D polylines modelling the road networ&,qaven upon request but require a
map-matching procedure prior to using them for localizatio

In this research, an Extended Kalman Filtering (EKF) is usettie odometric/GPS fusion process.
Geographic data are used to constrain the localizationavitbllipsoidal set-membership methdd].
At any timet, where some information becomes available, the algorithdatgs an estimatig together
with a symmetric positive matriRy, de ning thus an ellipsoidal con dence domaig(:

@ 4" Pt (@ q)<1 (6)

Note that the symmetric positive mati quanti es the magnitude of the ellipsoidal domain. The
square-roots of its eigenvalues are the measures of itsipairaxes.

Odometric and GPS Data Fusion

Each time odometric measurements are available (Fig)ui@new prediction is performed by using
the state propagation Equatids).(If GPS data are also available, an a posteriori updatealgzesl by
an EKF algorithm. The measurement noise covariance matoktained from GPS inaccuracy and the
state noise covariance matrix is deduced from the propagafi individual inaccuracies2fl]. These
noises are assumed to be Gaussian, unbiased, white witbralqprown covariance matrices.

This gives an updated estimatignand an updated matrR resulting from both odometric and GPS
measurements, when available.

Map-Aided Fusion

The use of the geographical data is based on the assumpaibtméwehicle moves on a road with a
known geometric speci cation stored in the GIS. It is a seweeof two steps:

Map-matching,.e., the selection of the road segment on which the vehicle ipasgd to be.
The segment should minimize a criterion calculated frontli&)3D distance between the current
estimation of the localization and the segment and (2) thelan error between the velocity vector
of the state and direction of the segment.

Exploitation of the geometric attributes of the road segimegiected as constraints of the
con guration (2). Constraints are de ned from the 3D polylines by takingiatccount the width
of the way and the uncertainty on the altitude. The ellipabsgt-membership method computes
the minimum volume ellipsoid resulting from the interseatiof the current ellipsoidal domain
and constraints. The nal map-aided solution is obtair#®].|
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4. Improving the NLOS Detection Method and Experimental Resllts

4.1. Experimental Set-Up and Test Data

For validation purpose, we use data that have been recordad experiment carried out for the
nal demonstration of the cityVIP project in September 20h1Paris. The data were collected on
13 September 2011, and two circuits, both with two laps, vpedormed at respectively 11:48 AM
and 12:08 PM (local time). The rst lap was used by the City\g&tners in charge of several image
processing localization tasks for their machine learnaftgrwards, the second and next laps could be
used for evaluation purpose.

The distance travelled per lap is around 1 kilometer. Thamgmvironment in the vicinity of th&2"
district city hall is very dense, with high Haussmann stydddings.

The experimental vehicle of IFSTTAR/MACS (Monitoring, Assment, Computational Sciences) is
shown in Figurés. It has been used for the nal demonstration of the CityVIBject in September 2011
and was equipped with:

a CAN (Controller Area Network) bus connection (for the oainy),

a low-cost automotive GPS receiver LEA-6T from U-blox (faxw data and NMEA GGAZ3],
Global Positioning System Fix Data, and GSV, Satellites@&wysequences at 4 Hz) and its patch
antenna,

the MRT (Reference Trajectory Measurement) dedicatedi speguipment, LANDINS of the
IXSEA society, from which the reference trajectory of theegent experiment is issued. Its
accuracy is about 10 centimeters,

a Marlin video camera (not used here).

Figure 5. The experimental vehicle of IFSTTAR/MACS.

Data were logged in real-time using the Aroccam multithisaftlvare architectur€f] and processed
off-line in “replay” mode. The minimum system requiremetdagerform these tests are: a multi-core
processor (quad core at 2.4 GHz used here), 2 GB of RAM andiawadeo card (1 GB Nvidia Quadro
FX 2880 M used here).
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4.2. NLOS Detection Based on Map-Aided Solutions

Typical errors of standard GPS solutions are so large (aktems of meters) that creating a virtual
image would be nonsense. As a consequence, the image mxtrscbased on the output of the map-
aided positioning process where road constraints havedqggaied. To do so, the “Map-Aided Fusion”
task of the state chart (Figuy has been duplicated, and the duplicated process is, astdue, fed
with the NMEA GGA solutions where the data of the satelliteswased irrespective of their LOS/NLOS
status and coupled with the odometry data.

Afterwards, two different subsequent processes are gessib

The LOS satellites are only fed to the GPS Positioning Akponi and fused with the odometry.

It yields non-map-aided or “free” solutions. In this cases wollect the updated position and
covariance of the "GPS Fusion” task.

The LOS satellites are only fed to the GPS Positioning Aloni, fused with the odometry, and

constrained again by the road map. It yields map-aided astcained solutions and we collect the
updated position and covariance of the “Map-Aided Fusiaskt This very last implementation

can run in closed-loop, since its solution can be returngdgomage extractor, which makes the
duplication of the “Map-Aided Fusion” task not necessary.

4.3. Comparison with the SNR-Based Selection

The purpose of this nal section is to evaluate whether or thet LOS/NLOS separation leads to
positions at least as accurate as a simple SNR-based selectuld do.

The comparison has been made on oneilap,by using 5 minutes of data. A priori, with our GPS
receiver at 4 Hz, 1,200 GPS epochs are available, with up safi2lites available per epoch, depending
on the sky visibility. A few epochs have no visible satellite

Four replications (in Aroccam replay mode) have succelsbeen executed:

1 - SNR-based satellite selection, no nal map-aiding,
2 - LOS-based satellite selection, no nal map-aiding,
3 - SNR-based satellite selection, and nal map-aiding,
4 - LOS-based satellite selection, and nal map-aiding.

Note that the last replication (item 4) has been operatetbsed-loop, whereas the second (item 2)
used GGA map-aided solutions.

The main tuning to do is the SNR threshold applicable to th& @Bsitioning Algorithm. We have
adjusted its value (40 dB-Hz) so that the average numbertefiisas actually used by both processes
(SNR and LOS) are similar. Figurésand7 show the satellite visibility corresponding to both testsng
GGA map-aided solutions (items 1 and 2) and in closed-ladep@ 3 and 4). The SNR test is always the
same, but the common epochs vary, which explains the sliffatehces in the number of satellites time
series for SNR items. The NLOS test is not repeated stricysime way, since the position from where
the image is extracted varies. Anyway, both strategies (&@f-aided or closed-loop) are coherent.
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The average number of satellites used during this 5 minastss around 4, with 40 dB-Hz threshold or
NLOS detection and exclusion.
Statistics have been computed on the whole dataseion every common epoch.

Figure 6. Satellite visibility using GGA map-aided solutions.
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Figure 7. Satellite visibility in closed-loop.
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Absolute errors, in 2D and 3D, with respect to the referergjedtory have been computed and sorted
in a cumulative distribution function in Figur@and9 without nal map-aiding and in Figure$0 and
11with nal map-aiding.
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Figure 8. Cumulative distribution function of the absolute error D fr “free” solutions
(without map-aiding).
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Figure 9. Cumulative distribution function of the absolute error iD ®r “free” solutions
(without map-aiding).
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The reference trajectory (provided by the LANDINS systesniihie fusion result of an INS (Inertial
Navigation System) based on a high-grade ber optic gyrpec@OG), a distance measurement
instrument and a PPK (Post Processed Kinematic) trajettmmy a high-performance GNSS receiver.

Considering the errors of the "free” solutions (Figu&snd9), it appears that the LOS lter is
equivalent to the SNR Iter for the horizontal dimension. dwavhile, when the vertical dimension is
also considered, SNR Iter seems to be better. This resultbmaexplained by the fact that our circuit
get at the borders of the 3D model currently available. @etshese borders, indeed, neither trees nor
buildings are modelled and the NLOS test is performed olesfaee, which potentially causes satellites
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not in direct view to be considered as LOS. This is the caskembrthwest area and the south area of
our map, which is more penalizing when the vertical dimemsscconsidered.

For map-aided solutions (Figurd® and 11), conclusions are different in particular because map-
aiding enables to constraint the vertical dimension: erner2D and 3D are very similar, which shows
that the vertical dimension is well estimated. In this cassults are globally better than the "free”
solutions and the result of the fusion is even slightly beti¢h the LOS lter.

An overview of the trajectories is visible in Figur&2 and13respectively.

Figure 10. Cumulative distribution function of the absolute error iD 2or map-aided
solutions.
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Figure 12. 2D overview of "free” solutions (without map-aiding) for thostrategies.
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Figure 13. 2D overview of map-aided solutions for both strategies.
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Since Figured2 and13 are overloaded, simpli ed representations of the begigmihthe estimated
trajectories are shown in Figurdgl and 15. These results show the various estimations of the path
together with the elements of the map.

On Figurel4, the displayed estimations of the path seem to be non-aiineidsecause they are
often outside of the map. These estimations correspondtyalhcto the localization of the center
of the admissible ellipsoidal domai)(that always intersects at least one rectangular elemettieof
map. The estimated solutions are thus admissible althoaghaturate. The accuracy of the estimation
is illustrated by the projection of the admissible elligkdidomain onto thé€x;y) plane for the last
estimated point.

On Figurel5, the nal map-aiding enhances the accuracy: the admisslilesoidal domain (its
projection onto th€x;y) plane) for the last estimated point is, in both case, small&e constraints
bound to the width of the road appear clearly. Both LOS and ®ld&d Itering give comparable
results. These results also show the prior importance ahidge-aiding.

Figure 14. 2D overview of "free” solutions (without map-aiding) for tho strategies.
Simpli ed representation.
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Figure 15. 2D overview of map-aided solutions for both strategies. [Sied
representation.
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5. Conclusions and Future Works
5.1. Conclusions

This paper has shown that using NLOS detection and exclysion to incorporating data from a
GNSS receiver was ef cient for the localization in denseamrtareas. Such a test needs (1) 3D maps of
the urban environment, which are more and more easily dtailend (2) an a priori estimation of the
position and orientation of the vehicle.

The results have shown the prior importance of the 3D mapse@futban environment. First, it
constrains the position and orientation estimations ireceice with the streets network, thus enhancing
the accuracy of the localization. Moreover, it makes it gdseso check the direct visibility of a given
satellite from the estimated pose of the vehicle. The reshibwn in the paper lead to conclude that the
NLOS test gives an equivalent accuracy to the SNR test wheeestimated pose is not constrained by the
map-aiding procedure after being updated by GNSS data(sliggorse when the vertical dimension is
considered). In contrast, when the map-aiding procedwaepbed after having used the GNSS data with
the NLOS (or SNR) test, the NLOS test gives slightly bette@uaacy than the SNR test. It thus con rms
the feasibility study previously exposed i8] where the accuracy of the localization was signi cantly
better.
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NLOS detection and exclusion based on virtual image praogsand a 3D map seems to be
promising. This alternative to a simple SNR test on the B@eltracked by a standard automotive
receiver has yielded better positioning.

5.2. Future Work

Given that this dataset corresponds to a relatively sh@ementation (5 min, 1 km in Paris), other
tests will be realized to con rm our rst conclusions.

The GPS Positioning Algorithm was also very simple: no faldtection or exclusion of satellites
(FDE strategy) based on the predicted position (and corselyupredicted pseudo-ranges) was done
in addition to the SNR or LOS tests. A future version of ourcaitphm will improve this Positioning
Algorithm, including FDE through a? test. Doppler measurements, which are not employed in the
current study, will also be used.
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