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Abstract: An automatic configuration that can detect the position of R-waves, classify the 
normal sinus rhythm (NSR) and other four arrhythmic types from the continuous ECG 
signals obtained from the MIT-BIH arrhythmia database is proposed. In this configuration, 
a support vector machine (SVM) was used to detect and mark the ECG heartbeats with raw 
signals and differential signals of a lead ECG. An algorithm based on the extracted markers 
segments waveforms of Lead II and V1 of the ECG as the pattern classification features. A 
self-constructing neural fuzzy inference network (SoNFIN) was used to classify NSR and 
four arrhythmia types, including premature ventricular contraction (PVC), premature 
atrium contraction (PAC), left bundle branch block (LBBB), and right bundle branch block 
(RBBB). In a real scenario, the classification results show the accuracy achieved is 96.4%. 
This performance is suitable for a portable ECG monitor system for home care purposes. 
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1. Introduction 

Telemedicine has been widely studied recently. In past research, allowing congestive heart failure 
patients to monitor their condition at home offered great economic advantages. Electrocardiograms 
(ECGs) are an important tool that provide useful information about the functional status of the heart. 
An automated method that accurately diagnoses cardiac diseases through the analysis of ECG signals 
is critical in healthcare [1], especially for real-time processing. Past research has addressed the 
problems of heart rate detection and classification of cardiac rhythms. The heart rate signal detects the 
QRS wave of the ECG and calculates inter-beat intervals [2–9]. The classification of cardiac rhythms 
is based on the detection of the different types of arrhythmia from the ECG waveforms [10–13]. 

However, ECG signals have coupling noises, due to factors such as 50/60 Hz power line signals,  
the baseline drift caused by patient breathing, bad electrodes, improper electrode location, or 
electromyograms. These noises result in false QRS wave detections. Thus, some studies have 
compared the robust performance of different algorithms for QRS wave detection [2]. Widrow et al. 
applied the adaptive filter to reduce noises that resulted from 60 Hz power lines and baseline drift, and 
then detect the QRS wave [14]. Pan and Tompkins designed a digital filter to reduce the noise and used 
a dynamic threshold to detect the QRS wave [4]. Trahanias used the mathematical morphology of the 
QRS complex to detect heart rates [5]. Chang used the ensemble empirical model decomposition to 
reduce noises in arrhythmia ECGs [15]. Fan used approximate entropy (ApEn) and Lempel-Ziv 
complexity as a nonlinear quantification to measure the depth of anaesthesia [16]. In these studies, the 
normal sinus ECG signal added different noise types and energy was used to evaluate the performance 
of these algorithms. Several researchers have extracted the features of ECG waveforms to detect the 
QRS complexes based on the arrhythmia database. Li et al. proposed the wavelet transforms method 
for detecting the QRS complex from high P or T waves, noise, and baseline drift [6]. Yeh and Wang 
proposed the difference operation method to detect the QRS complex waves [8]. Mehta and Lingayat 
used the support vector machine (SVM) method to detect the QRS complexes from a 12-leads  
ECG [9]. They also used the K-mean algorithm for the detection of QRS complexes in ECG signals [17]. 

Arrhythmia can be defined as either an irregular single heartbeat or a group of heartbeats.  
Some classification techniques are based on the ECG beat-by-beat classification with each beat being 
classified into several different arrhythmic beat types. These include artificial neural networks [11], 
fuzzy neural networks [18], Hermite functions combined with self-organizing maps [19], and wavelet 
analysis combined with radial basis function neural networks [20]. In these methods, the ECG 
waveform of each beat was picked up manually and different features were extracted to classify the 
arrhythmic types. Tsipouras et al. used the RR-interval signal to classify certain types of arrhythmia 
based on a group of heartbeats [12]. All the above methods have high classification accuracies that 
were obtained based on the complete morphology of the ECG or the correct RR-interval that was 
detected manually. 

In this study, we propose an automatic configuration integrating digital signal processing and an 
artificial intelligence method to detect the position of heartbeats and recognize these heartbeats as 
belonging to the normal sinus rhythm (NSR) or four arrhythmic types. The four arrhythmic types are 
premature ventricular contraction (PVC), premature atrium contraction (PAC), left bundle branch 
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block (LBBB), and right bundle branch block (RBBB). ECG signals are provided by the MIT-BIH 
Arrhythmia Database [21]. This automatic configuration had three steps, as follows: 

1. The Lead II signals were normalized and filtered to reduce the coupled noise (Section 2.2). 
2. The positions of QRS-complexes in Lead II were detected and marked via a well-trained SVM. 

Two waveforms of each heartbeat in Lead II and V1 were individually extracted according the 
markers in Lead II (Section 2.3). 

3. The extracted waveform was used as a feature to recognize the arrhythmic type of a heartbeat. 
In this configuration, a self-constructing neural fuzzy inference network (SoNFIN) was used to 
recognize the arrhythmic type of the heartbeat using the raw Lead II and V1 signals (Section 2.4). 

Moreover, the heartbeat detection accuracy has been increased by the SoNFIN classification results. 

2. Experimental Section 

Figure 1 shows the schematic of this study. Two-lead ECG signals, Lead II and V1, are the inputs 
which are processed by digital filters to reduce the coupled noise. The filtered Lead II signal was 
differentiated to enhance the QRS complex. Lead II and its differential signal are used to mark the 
heartbeats (QRS-complex) with the SVM. Some redundant markers caused by the coupled noise were 
deleted by a postprocessor. According the marker, two segment waveforms containing the same QRS 
complex were extracted from the Lead II and V1 signals, individually. The SoNFIN used these 
waveforms as inputs to recognize the heartbeat type. The SVM used these markers to identify  
RR-intervals. All proposed algorithms for detection and classification of ECG signals were 
implemented on the MATLAB platform. 

Figure 1. Stages of an automatic classifying system. 

 

2.1. Database 

The MIT-BIH Arrhythmia Database includes 48 ECG recordings, each of 30 min length, with a 
total of 109,000 R-R intervals. Each file has two-lead signals, Lead II and V1, V2, V4, or V5. The 
sampling rate was 360 Hz and it is digitized in 11 bits that ranged from 0 to 10 mV. In this study, since 
we only focus on the Lead II and V1 signals for pre-processing, 33 of the 48 files were selected to test 
the performance of SVM and SoNFIN. Each file gathered five-minute of data that only had NSR, 
PVC, PAC, LBBB, and RBBB signals. Table 1 shows the file number and the beat type, with a total of 
12,776 beats. 
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Table 1. The selected 33 files and the number of each arrhythmia type. 

 N V R L A total 

 

 N V R L A total 
105 401 15 0 0 0 416 208 242 245 0 0 0 487 

106 312 2 0 0 0 314 209 365 0 0 0 178 543 

108 275 5 0 0 2 282 212 140 0 319 0 0 459 

109 0 7 0 411 2 420 213 501 48 0 0 0 549 

111 0 0 0 343 0 343 214 0 33 0 346 1 380 

112 428 0 0 0 0 428 219 364 15 0 0 0 379 

113 288 0 0 0 1 289 220 352 0 0 0 1 353 

115 316 0 0 0 0 316 221 327 80 0 0 0 407 

116 384 11 0 0 0 395 222 366 0 0 0 0 366 

118 0 3 347 0 11 361 223 390 16 0 0 0 406 

119 245 80 0 0 0 325 228 312 18 0 0 0 330 

121 301 0 0 0 0 301 230 392 0 0 0 0 392 

122 421 0 0 0 0 421 231 13 1 287 0 0 301 

201 441 0 0 0 0 441 232 0 0 330 0 0 330 
202 261 4 0 0 0 265 233 372 138 0 0 4 514 

205 449 3 0 0 0 452 234 462 0 0 0 0 462 

207 0 0 0 349 0 349 Total 9,120 724 1,283 1,449 200 12,776 
N is NSR, V is PVC, L is LBBB, R is RBBB, and A is PAC. The first column denotes the file number. 

2.2. Filtering and Normalization 

A finite impulse response low-pass filter was used to reduce the interference of high frequency 
noise. The low-pass filter had order 10 and its cutoff frequency was 40 Hz. An adaptive filter was used 
to remove baseline wander when the reference input was constant [22]. The notch filter had a zero 
response at DC with a bandwidth that ranged from 0 to 0.5 Hz. Since the differential ECG signal had 
larger values in the QRS region than the non-QRS region, it was used as a feature to mark heartbeats. 
The raw ECG (Lead II and V1) signals and differential signals were normalized as follows: 

 (1)

where “min” is the minimal value and “max” is the maximal value. 

2.3. QR-Complexes Detection and Waveform Extraction 

This section gives a brief description on SVM for the two-class problem and introduces the training 
phase for the SVM. The goal of this process is to use SVM to mark QRS complexes using the 
normalized Lead II signals and its differential signals. After the test phase, post-processing was used to 
delete or merge the redundant markers caused by the coupled noise. 

2.3.1. Support Vector Machine (SVM) 

SVM is a new learning system paradigm that has been widely used for solving supervised 
classification problems due to its generalization ability [23]. In essence, SVM classifies the maximum 
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margin for the training data with a separating hyperplane that can be formulated as a quadratic 
optimization problem in feature space. The subsets of patterns closest to the decision boundary are 
called support vectors. Considering a linearly separable dataset { , Di}, where  is the input 
pattern for the i-th example and Di is the corresponding desired output (1, or −1), a hyperplane is found 
as the decision surface. It can be written as follows: 

 (2)

where W is the coefficients’ vector of the hyperplane function. The margin between the hyperplane and 
the nearest point is maximized and is considered a quadratic optimization problem: 

 (3)

 (4)

When W and b are rescaled, the point nearest to the hyperplane has a distance of  [24]. Using 

Lagrange multipliers α ≥ 0 and the Kuhan-Tuker theorem, the solution is given by: 

 (5)

Only a small fraction of the αi coefficients is nonzero. The corresponding pairs of  are known as 
support vectors and they define the decision boundary. All other input patterns multiplied with zero αi 
values are rendered irrelevant. The hyperplane decision function for the input pattern vector  can be 
written as follows: 

 (6)

By replacing the inner product ( ) with the kernel function K(x, xi), the input patterns are 
mapped to a higher dimensional space [24]. In this higher dimension, a separating hyperplane is 
constructed to maximize the margin. 

2.3.2. Training Phase of SVM 

We trained SVM [25] to detect the QRS complexes for the positions of heartbeats. In this study, the 
Gaussian radial basis function was used to construct the kernel function as follows: 

 (7)

where γ = 2.5 is viewed as radial size. In order to have the best result, we trained the SVM for different 
C values. The best result was found when C = 200 in the training phase. 

In the training process, the input features of SVM were the normalized Lead II and its differential 
signals. In each subject, we extracted only one cycle ECG waveform for each arrhythmic type and a 
NSR as the input. In the extracting range, the Lead II was used as the reference signal where the  
R-wave was assigned as the center point of a cycle waveform. According to Table 1, NSR had 27 files, 
PVC had 18 files, LBBB had four files, and RBBB had four files. Since the PAC waveforms were 
normal, none of them was selected for training. We individually extracted one cycle waveforms from 
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these files that were not included in the five-minute test data for training purposes. Notably the test 
data (total 12,776 beats) were much larger than the training data. In total only 53 heartbeats (NSR had 
27 beats; PVC had 18 beats; RBBB had four beats; and LBBB had four beats) were collected  
for training. 

2.3.3. Test and Post-Processing Phases of SVM 

In the test phase, each file was extracted to provide five-minute data as the test instance that had 
been preprocessed (Section 2.2). There were 33 subjects and total of 12,776 heartbeats for testing. 
Normally the data length of the QRS complex contains at least 60 ms. Thus, if a marker duration  
(RR-interval) was less than 10 points (sampling rate: 360 Hz), this marker will be considered as a 
redundant marker caused by the couple noise and will be deleted. Moreover, if the distance between 
two neighbor markers was less than 5 points then these two markers will be merged as one marker. 

2.4. Arrhythmia Classification 

In this section, we used the SoNFIN as the classifier to recognize each ECG heartbeat type. Beats 
from the ECG have been marked by SVM may include mistaken beats. This was because SoNFIN 
belongs to the Takagi-Sugeno-Kang (TSK) model. We eliminated some mistaken markers that did not 
belong to the heartbeats according to the output value of SoNFIN. 

2.4.1. Self-Constructing Neural Fuzzy Inference Network (SoNFIN) 

The SoNFIN is a general connectionist model of a fuzzy inference system with a structure shown in 
Figure 2 [26]. This five-layer network realizes a fuzzy model of the following form:  

 

 

where li is the input variable, zj is the output variable, Aij is a fuzzy set, and  is the 

traditional TSK model. The five layers are described below. 
Layer 1: No computation is performed in this layer. Each node in this layer corresponds to one 

input variable. Only transmitted input values are forwarded to the next layer directly:  

 (8)

Layer 2: For fuzzy set Aij, a Gaussian membership function is used to describe the degree  that 

the input variable lj belongs to the i-th fuzzy set. Its mathematical function is defined as follows:  

 (9)

where mij and σij are the center and width of the membership function, respectively. This function is 
implemented by each node. 
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Figure 2. Structure of the SoNFIN. 

 

Layer 3: A node in this layer represents one fuzzy logic rule and performs precondition matching 
of a rule. Here we use the following product operation for each Layer-3 node: 

 (10)

Layer 4: Nodes in this layer are called consequent nodes. Each node is linked to Layer-3 output, 
and the linear association of the weight in this layer is as follows: 

 (11)

Layer 5: Each node in this layer corresponds to one output variable. The node integrates all the 
actions recommended by Layer 5 and acts as a defuzzifier with: 
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The number of network outputs is equal to the number of classes to be recognized (four in this 
study). The desired outputs, d, were (1, −1, −1, −1), (−1, 1, −1, −1), (−1, −1, 1, −1), and (−1, −1, −1, 1). 

Two types of training (structure and parameter training) were used concurrently to construct the 
SoNFIN. Initially there were no rules in the SoNFIN, with all rules constructed by online structure 
training. For the training structure, a predefined threshold, H, was used as a criterion for the generation 
of fuzzy rules. When the maximum  was below to H for every rule, a new rule was generated. 

Therefore, more rules were generated for a larger value of H. The initial width of each generated 
Gaussian fuzzy set was decided by a predefined constant σ. 

To train the parameters the objective was to minimize the error function: 

 (13)

The consequent part parameters were tuned by the recursive least-squares algorithm. The fuzzy-set 
parameters were tuned by a gradient-descent algorithm. The details of the training algorithm may be 
found elsewhere [26]. 

2.4.2. Training and Test Phases of SoNFIN 

The input features of SoNFIN were normalized Lead II and V1 waveforms. Since the length of 
QRS complex is about 150 ms, the digitized segment is around 100 points. The R-wave is assigned as 
the middle point, and V1 is extracted in the same section. Therefore, the dimension of input vector is 
200 (for Lead II and V1). In the training phase, for each heartbeat type (NSR, PVC, LBBB, and 
RBBB) 26 patterns were extracted from 33 files that did not belong to the five-minute test data. In 
tuning the parameters of SoNFIN, we have done our best to get the optimal parameters with H = 0.1, 
and σ = 0.6. Training was performed in 1,000 iterations. The training rates of the consequent and 
fuzzy-set parts were 0.01 and 0.05, respectively. 

In the test phase, an automated algorithm was designed to classify each heartbeat type of 33 files 
extracted from five-minute data. The procedure of this algorithm is described as below. First, we used 
the positive edge of markers of Lead II that had been determined in Section 2.3.3 to be the reference 
point. Second, starting from this reference point, we forwardly found a minimum point within 100 points 
in Lead II. According to this minimum point, a maximum point was looked up within 50 points, 
backwardly. Third, the maximum point (R-wave) was used as the middle point to extract 100 points. 
V1 was extracted in the same section. 

In the test results, the real output of the SoNFIN was denoted by (o1, o2, o3, o4). The output node 
with the maximum value was then found. If oi is the maximum value, then the unknown beat was 
recognized as belonging to class i. However, some mistaken markers in the ECG signal were fed into 
SoNFIN to identify class. The output value of the mistaken marker was higher than the truthful 
heartbeat. Thus, we designed a threshold for the output to delete mistaken markers. 
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3. Results and Discussion 

In heartbeat marking results, Figure 3 shows the markers of ECG heartbeats for four types (NSR, 
PVC, LBBB, and RBBB). In Figure 3(a), since the NSR has a standard QRS complex, the range of the 
marker includes a full QRS complex. In Figure 3(b), the PVC beat has an inverse QRS complex. The 
marker only happens in the position of the positive peak. For LBBB case, the Q-wave was lost and 
there were two neighboring positive peaks in one beat as shown in Figure 3(c). Therefore, post-processing 
did the merging function for this situation. Table 2 shows the number of correct markers (TP), missing 
markers (FN), and mistaken markers (FP) in all files. There were a total of 22 missing markers and  
572 mistaken markers from all files. The FN ratio was 0.17%, the FP ratio was 4.48%. 

Figure 3. SVM marks the heartbeats of ECG, (a) NSR beats for file No. 106, (b) PVC 
beats for file No. 116, (c) LBBB beats for file No. 111, and (d) RBBB beats for file No. 231. 
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Table 2. Results of marker detection using SVM. 

No. TP FN FP 

 

No. TP FN FP 
105 416 0 24 208 480 7 11 
106 312 2 26 209 541 2 52 
108 282 0 37 212 455 4 9 
109 419 1 10 213 548 1 4 
111 343 0 186 214 376 4 8 
112 428 0 81 219 378 1 9 
113 289 0 0 220 353 0 0 
115 316 0 0 221 407 0 0 
116 395 0 4 222 366 0 5 
118 361 0 11 223 406 0 0 
119 325 0 12 228 330 0 1 
121 301 0 20 230 392 0 0 
122 421 0 0 231 301 0 41 
201 441 0 0 232 330 0 3 
202 265 0 1 233 514 0 4 
205 452 0 0 234 462 0 0 
207 349 0 13 Total 12,754 22 572 

TP: true positive, FN: false negative, FP: false positive. We define TN = 0. 

Classification results of the SoNFIN have two conditions. The first condition doesn’t care about the 
the FN and FP of the heartbeat detection. Figure 4 shows the marked and classified results for the 
subject of file number 212. It has continuous LBBB beats and NSR beats. In Figure 5, the subject in 
file number 221 has discrete PVC beats in the continuous NSR beats. Figure 6 shows continuous PVC 
beats in the RBBB beats for the subject in file number 231. The classified test results are shown in 
Table 3, where each cell contains the raw number of exemples classified for the corresponding 
combination of desired and actual outputs. In this table, 9,189 beats were correctly classified to NSR, 
684 beats were correctly classified to PVC, 1,287 beats were correctly classified to RBBB, and 1,419 
beats were correctly classified to LBBB. The classification performances of SoNFIN were examined 
based on sensitivity, specificity, and total classification accuracy. The sensitivity was the number of TP 
divided by the number of actual positive cases. Specificity was the number of TN divided by the 
number of actual negative cases. 

Total classification accuracy was the number of correct decisions divided by the total number of 
cases. Table 3 showed the sensitivity, specificity, and averaged accuracy. Under these conditions, the 
average accuracy was 98.8%. In a real scenario, the FN and FP of the heartbeat detection must happen. 
Therefore, the second condition was to classify all marked waves including 572 false heartbeats. The 
output value of the false heartbeat would be higher than that of a truthful heartbeat. Thus, we designed 
a threshold, 2.5, to determine the false heartbeats belonging to the noise, as shown in Table 4. The 
false heartbeats were reduced to 301. The classification accuracy is only 96.4%. Moreover, the 
specificity of false heartbeat is 100% in heartbeat classification, and the FP also decreased to 2.4% in 
heartbeat detection. 
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Figure 4. SVM marks the heartbeats of ECG, and then SoNFIN classifies the RBBB and 
NSR beats for file No. 212, in which “R” and “N” denotes RBBB and NSR, respectively. 

 

Figure 5. SVM marks the heartbeats of ECG and then SoNFIN classifies the NSR and 
PVC beats for file No. 221, in which “N” and “V” denotes NSR and PVC, respectively. 

 

Figure 6. SVM marks the heartbeats of ECG, and then SoNFIN classifies continuous two 
PVC beats happening in the RBBB beats for file No. 231. 
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Table 3. Statistical values of the SoNFIN classification results of the test phase in first condition. 

N 
Estimate 

Sensitivity Specificity Accuracy 
N Non_N 

Real 
N 9,189 107 

98.8％ 99.2％ 98.9％ 
Non_N 25 3,433 

V 
Estimate 

95.1％ 99.4％ 99.1％ 
V Non_V 

Real 
V 684 35 

Non_V 72 11,998 

R 
Estimate 

99.7％ 99.8％ 99.8％ 
R Non_R 

Real 
R 1,287 3 

Non_R 20 11,444 

L 
Estimate 

97.9％ 99.4％ 99.3％ 
L non_L 

Real 
L 1,419 30 

Non_L 58 11,247 
Averaged accuracy  98.8% 

Table 4. Statistical values of the SoNFIN classification results of the test phase in second condition. 

N 
Estimate 

Sensitivity Specificity Accuracy 
N Non_N 

Real 
N 9,189 107 

98.8％ 96.9％ 98.2％ 
Non_N 121 3,909 

V 
Estimate 

95.1％ 98.1％ 97.9％ 
V Non_V 

Real 
V 684 35 

Non_V 239 12,368 

R 
Estimate 

99.7％ 99.7％ 99.7％ 
R Non_R 

Real 
R 1,287 3 

Non_R 31 12,005 

L 
Estimate 

97.9％ 99.2％ 99.1％ 
L non_L 

Real 
L 1,419 30 

Non_L 85 11,792 

noise 
Estimate 

47.7％ 100％ 97.7％ 
noise Non_noise

Real 
n 271 301 

Non_noise 0 12,754 
Averaged accuracy  96.4% 
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4. Conclusions 

The digital processing method for determining heartbeats in real time was to enhance the QRS 
complex of a one-lead ECG signal with a differential method and set a threshold to find the position of  
the R-wave [2,4,27,28]. In enhancing QRS complex waves, non-differential methods like Hilber 
transform [29], wavelet transform [6], moving averaging incorporating with wavelet [30], principle 
component analysis [31], and Karhunen-Loève transform [32] were used. Recently, Mehta et al. used 
the SVM method [9] and K-mean algorithm [17] for 12 lead ECG signals to detect heartbeats. SVM 
found a hyperplane for separating the maximum margin of the classified set. Mehta and Lingayat used 
1,488 heartbeats to evaluate the performance of their algorithm [9]. Since the SVM method easily 
marked the larger P or T waves as the heartbeats, Mehta’s method had 24 mistaken markers and four 
missing markers. Moreover, they used 12 lead ECG signals to detect the heartbeats, which was easier 
than using a one-lead ECG signal. The measurement of 12 lead ECG signals was not suitable for a 
real-time or portable system. 

The significance of our study can be summarized as follows: we only used one-lead ECG, Lead II 
and its differential signal, as the input to mark QRS complexes. The proposed scheme was suitable for 
a portable system. A total of 12,776 heartbeats were used to test the performance of our scheme. The 
hyperplane of SVM in the two dimensions worked as a threshold to detect the QRS complex. 
Therefore, the deletion and merging processes were used to reduce the mistaken markers that occurred 
from noises or cardiac diseases. The results showed that the sensitivity of our method is 99.8%, the FN 
ratio is 0.17%, and the FP ratio is 4.48%. When all marked waves were classified by SoNFIN, the 
larger P waves, T waves, or noises could be filtered. Thus, the number of mistaken markers decreased 
to 301. The FP decreased to 2.4%, and the accuracy was increased to 97.5%. Table 5 displays the 
comparison of the various QRS detection algorithms with the same input method. Although some 
previous studies had shown better performance, as shown in Table 5 [4,5,7–9,17,28,32], however, as we 
emphasized, our method used the raw signal and the differential signal of only one-lead ECG as input. 
This major difference was that we have successfully developed a portable ECG monitoring system for 
patient use at home. 

Table 5. Comparison with other QRS detection algorithms. 

Reference Method Accuracy (%) 
Proposed algorithm SVM  97.5% 

J. Pan, and W. J. Tompkins [4] Dynamic threshold 99.3% 
P. E. Trahanias [5] Mathematical morphology 99.48% 

F. Gritzali [7] Length and energy transformation 99.6% 
Y. -C. Yeh, and W. -J. Wanga [8] Difference operation method 99.81 

M. Adnane et al. [28] Morphological features 99.64% 
M. Paoletti and C. Marchesi [32] Karhunen-Loève transform 99.15% 

S. S. Mehta and N. S. Lingayat [9] SVM 98.12% 
S. S. Mehta et al. [17] K-mean 98.66% 



Sensors 2013, 13 826 
 

 

Figure 7 demonstrates how the SoNFIN increased the accuracy of the SVM heartbeat recognition. 
Figure 7(a) shows the filtered and normalized Lead II and V1 signals from 47 s to 51 s for the subject 
of file 213. 

Since the filtered ECG signals have some noises, there are five mistaken markers in the upper 
Figure 7(b). These mistaken markers were deleted (four mistaken markers) via the SoNFIN as shown 
in the lower Figure 7(b). The residual mistaken marker was classified as the RBBB beat. 

Figure 7. SoNFIN filters the mistaken markers for file No. 231, (a) the raw Lead II and V1 
signals; (b) the raw markers by SVM and the filtered Markers by SoNFIN. 

 

Since the heart is an elastic and relative solid organ, clinical diagnosis needs 12 lead ECG signals  
to identify different cardiac diseases. Therefore, the less lead-signal numbers there are, the less 
classification types it receives. Therefore, the recognition and classification are more difficult. 

In conclusion, we have proposed an automatic scheme integrating the SVM and SoNFIN, and used 
only one-lead ECG (Lead II) to detect the heartbeats. Two-lead ECG (Lead II and V1) were used to 
identify the type of arrhythmia. In a real scenario, the average accuracy for the arrhythmia 
identification was 96.4%. This accuracy is clinically acceptable for a portable monitor system for only 
two-lead ECG input. The proposed configuration was applicable for homecare or long-term automatic 
ambulatory cardiac diagnosis. 
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