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Abstract: The design, development and performance evaluation of a fluorescence-based

pH sensor for on-line measurements is presented. ThepKa of the sensing element has

been calculated to be 7.9, thus the sensor is suitable for measurement of near neutral

solutions. The sensor consists of a low-cost disposable polymer sensing probe, in contact

with the solution under test, interrogated by an optoelectronic transduction system. The pH

sensitive dye is based on fluoresceinO-methacrylate, which has been covalently linked to a

hydrogel matrix, realized through the use of HEMA (2-hydroxyethyl methacrylate), HDDA

(1,6-hexanediol diacrylate) and PEGDA (polyethylene glycol diacrylate). The optical

interrogation setup, together with the electronics, has been developed to acquire and process

the fluorescence signal. The sensor works over a pH range between 6.5 and 9.0. In

the range between 7.0 and 8.0, the sensor shows a linear behavior with a maximum

linearity error of 5%. Thanks to the good performance of the sensing element and

transduction system, the short term drift of the reading (measured over 40 min) is lower than

0.15%. The measuring system also exhibits good performancein terms of response time

and reproducibility.
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1. Introduction

pH (Latin: pondus hidrogenii) is a commonly measured parameter of great interest in many

application fields, such as environmental monitoring [1,2], bioprocessing [3] and biomedical

diagnostics [4]. The measurement of pH is routinely performed using the glass electrode. Nevertheless,

the electrochemical approach suffers from many drawbacks,such as electromagnetic interference,

difficulty in miniaturisation, and limitations when measuring aqueous suspensions of organic matter

or low-ionic-strength solutions. With respect to electrochemical sensors, optical pH sensors allow for a

higher sensitivity and selectivity, due to the luminescence phenomena. Moreover, they are insensitive to

electromagnetic interference, they do not need any reference electrode and they are suitable for remote

and disposable sensing, which is typical of in-situ applications [5,6].

Nowadays, the fluorescence phenomena is widely exploited torealize optical sensors, due to the

higher sensitivity and versatility with respect to other detection schemes. In particular, fluorescein is

widely used due to its high molar absorptivity at the wavelength of the argon laser (λ = 488 nm), high

fluorescence quantum yield and pH-dependent emission spectra [7].

Several optical fluorescence-based pH sensors consist of a solid matrix permeable to protons,

containing a pH sensitive dye, which can be reached by the analyte. Chemical bonding between the

dye and the matrix is necessary to avoid undesirable leaching effects. pH measurements are performed

revealing reversible variations in the intensity or lifetime of the fluorescent indicator; polymers are

widely used as immobilization matrices for pH-sensitive fluorescent dyes, thanks to the possibility of

molecular tailoring to control and tune proton absorption [8–12].

Nevertheless, although lots of pH sensors are commerciallyavailable at present, only few of them are

suitable for the fabrication of disposable sensing elements [13]. In fact, the key aspect of a disposable

sensor is a cheap and simple transduction mechanism, which converts the information of interest into a

readable signal, so that it is possible to use the same optical and electronic instrumentation for different

measurements changing only the cheap and disposable sensing element. Disposability is becoming a

fundamental characteristic in life science sensors, whereexams performed on different patients require

always new and sterilized sensing elements in contact with biological tissues.

In this paper, we present a disposable fluorescence-based optical pH sensor for on-line measurements

in near neutral solutions. In particular, in Section2, the polymer sensing element, the optics and

electronics are fully described. Section3 deals with the characterization of the sensor and finally the

results are discussed and conclusions are drawn in Section4.

2. Materials and Methods

In the next sections, after a brief theoretical discussion,the developed measurement system is

presented. It basically consists of three parts: (i) polymer sensing element in contact with the solution,

(ii) optical reading head and (iii) front-end and signal elaboration electronics.

2.1. Theoretical Background

The development of the present sensor is based on the fluorometric determination of pH [14].

Following the absorption of a photon, the excited moleculescan lose energy through non-radiative
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relaxation, emission of a photon or energy transfer to an acceptor. The reemitted photons usually

possess less energy, so they are shifted to the red part of thespectrum. This property represents a

great advantage, compared with the absorption spectroscopy, since it decreases the level of the shot

noise, which is proportional to the square root of the light intensity. In fact, when the emission light is

only observed, the signal-to-noise ratio is greatly improved. The sensor presented in this work makes

use of a polymerizable fluorescein, namely fluoresceinO-methacrylate, to detect pH changes in the

measured fluorescence intensity. FluoresceinO-methacrylate is a new kind of pH-sensitive fluorescent

monomer characterized by an excitation spectrum centered at λ = 490 nm and an emission spectrum

centered atλ = 520 nm. Lots of optical pH sensors based on the dissociationequilibrium of fluorescent

dyes are usually cross-sensitive to ionic strength. Nevertheless, fluorescein carries the least negative

charges compared with other fluorescent indicators such as HPTS and carboxyfluorescein, which leads

to a lower dependence on the ionic strength. Variations in ionic strength in the range from 50 mM to

400 mM causes a pH error of ca. 0.05 pH [15]. This error is acceptable and therefore fluorescein is a

suitable indicator for pH measurement in aqueous solutions. Fluorescein exhibits multiple, pH dependent

ionic equilibria [7]. Both the phenol and carboxylic acid functional groups of fluorescein are almost

completely ionized in aqueous solutions above pH 9.0 (Figure1). Acidification of the fluorescein dianion

first protonates the phenol (pKa ≈ 6.4) to yield the fluorescein monoanion, then the carboxylic acid

(pKa < 5.0) to produce the neutral species of fluorescein. Further acidification generates a fluorescein

cation (pKa ≈ 2.1). Only the monoanion and dianion of fluorescein are fluorescent, with quantum yields

of 0.37 and 0.93, respectively. A further equilibrium involves the formation of a colorless nonfluorescent

lactone (Figure1).

Figure 1. Ionization equilibria of fluorescein.

Nevertheless, the fluorescence emission spectrum of fluorescein, even in acidic solution, is dominated

by the dianion, with only small contributions from the monoanion. Consequently, the wavelength and

shape of the emission spectra resulting from excitation close to the dianion absorption peak at 490 nm

are relatively independent of pH, but the fluorescence intensity is dramatically reduced under acidic

conditions. The mass-action law relationships between pH and fluorescence intensity determines the

response curve of this sensing approach [16]. Considering a dye covalently linked to a polymer matrix,

definingImax andImin as the fluorescence contribution of the fully deprotonated and the fully protonated
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form of the fluorescent indicator, respectively, the relation between the fluorescence emission intensity

Is and pH, in the presence of the sample under test, becomes [17–19]:

pH = pKa − b · log

(

Imax − Is
Is − Imin

)

(1)

wherepKa is the acid-base constant of the indicator and b is a numerical coefficient, introduced to

determine the slope of the function betweenImax andImin. In fact, the chemical and physical properties

of the matrix including the dye (e.g., polarity and viscosity) could affect its sensitivity near thepKa, thus

having different slopes for the same indicator in differentmatrices. Rewriting Equation (1) in terms of

Is gives the well-known sigmoidal function [18]:

Is =
Imax + Imin · 10

−(pH−pKa
b

)

1 + 10−(pH−pKa
b

)
= Imin +

Imax − Imin

1 + 10−(pH−pKa
b

)
(2)

This equation results in a nonlinear relationship between the fluorescence intensityversus pH, which

has been used for the calculation of thepKa of the dye included in the polymer matrix.

2.2. Polymer Sensing Element

The polymer sensing element in contact with the solution transduces the level of pH into an optical

information; it consists of a polymer matrix and a pH-sensitive dye covalently bonded to the polymer

chains. The polymer matrix plays an important role because it is in direct contact with the solution and

it contains the sensitive dye inside its molecular structure, so it has to be: (i) robust towards the flow,

(ii) able to guarantee a fast penetration and mobility of thehydrogen ions, (iii) fast in response time,

(iv) well adherent to the substrate of the measuring cell, (v) characterized by absence of or reduced

dye leaching.

2.2.1. Fabrication of the Polymer Matrix

All chemicals needed for the realization of a hydrophilic, highly swellable polymer matrix

containing an optical sensing element were of analytical grade, purchased from Sigma-Aldrich

(Milan, Italy) and used without further purification. All aqueous solutions were prepared using

distilled water. The matrix was prepared by the free-radical polymerization of 2-hydroxyethyl

methacrylate (HEMA), whose thermodynamic affinity for water is well known [20], catalysed by the

radical photoinitiator 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone (Irgacure 2959, BASF,

Ludwigshafen, Germany), used at 1.0% wt. The polymerization was run in the presence of a

tetrafunctional monomer, namely 1,6-hexanediol diacrylate (HDDA) added at 5.0% wt with respect to

HEMA, acting as crosslinker to avoid an excessive swelling degree of the acrylate matrix in contact

with water, which could result in a poor mechanically resistance. Fluorescein O-methacrylate 97%

(Figure 2(a)) was added to the acrylates mixture at 1.0% wt with respect to HEMA monomer; its

methacrylate moiety allows for a covalent inclusion of the fluoresceine comonomer within the swellable

polymer matrix, thus suppressing the severe drawback of indicator leaching. The covalent bonding

between the HEMA matrix and the fluorescent dye is depicted inFigure2(b). The overall swelling ratio

of the polymer matrix in aqueous solutions was finely tuned byadding different amounts (up to 6.0% wt)
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of a flexible macromer, namely poly(ethylene glycol) diacrylate (PEGDA, Ebecryl13, Cytec Industries,

Woodland Park, NJ, USA), to further improve the polymer chain flexibility, and in turn ion mobility

within the polymer matrix [21]. The mixture of chemicals was accurately mixed using a magnetic stirrer

before being deposited by spin coating (500 rpm, 30 s) onto a transparent PVC substrate (Figure3(a)),

and cured by UV-irradiation with a medium pressure mercury lamp under nitrogen with a light intensity

on the surface of the sample of 30mW/cm2 for different time up to 70 s.

Figure3(b) reports a SEM micrograph of a cross-section of the sensing polymer film (thickness about

25 µm) deposited onto the PVC substrate (thickness 150µm). Because of the manual realization of

the sensing elements, it was difficult to firmly control the thickness of the polymer sensing layer; this

disuniformity between different sensing elements may cause some variation in terms of response time

and sensitivity. The polymer film uniformity could be improved through the application of instrumental

deposition techniques, like the one reported by Tianet al. [22,23].

Figure 2. (a) Molecular structure of FluoresceinO-methacrylate. (b) Molecular structure of

poly(HEMA) covalently bonded to FluoresceinO-methacrylate units.

(a) (b)

Figure 3. (a) Top-view picture of the hydrophilic polymer matrix including the fluorescent

indicator, used as the sensing element, excited by a blue LED. (b) SEM cross-section

picture of the hydrophilic polymer matrix including the fluorescent indicator, used as the

sensing element.
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2.3. Optical Reading Head

A schematic representation of the realized optical setup isreported in Figure4. To perform

fluorescence intensity variation measurements, it is necessary to excite the fluorescein; in the present

work excitation was induced by a blue LED (λpeak
∼= 480 nm), and the emitted fluorescence signal was

collected. Since the optical power emitted by the LED is muchhigher than the emitted fluorescence,

two filters inside the optical head have been positioned; in particular an excitation filter on the light

emitted by the LED (λcutoff = 485 nm, ODL S.r.l., BG12, Bergamo, Italy) and an emission filter

(∆λ = 515–535 nm, Thorlabs, MF525-39, Munich, Germany) on the optical path of the fluorescence

light towards the photodetector. The unwanted excitation light collected by the fluorescence channel

produces an offset in the signal of interest comparable withthe offsets introduced by the electronics.

Thus, it can be compensated by a proper calibration of the sensor. Finally, two photodiodes have been

used, one to collect the fluorescence signal and one to monitor the optical power emitted by the LED.

The monitor photodiode is used to detect possible variations of the excitation optical power.

Figure 4. Schematic representation of the optical setup realized to perform fluorescence

intensity measurements. It consists of a blue LED to excite the fluorescein, two optical

filters (an excitation and an emission filter respectively) and finally two photodiodes, one to

collect the fluorescence signal and one to monitor the optical power emitted by the LED.
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Excitation
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2.4. Front-End and Signal Elaboration Electronics

An electronic board has been developed to drive the LED, acquire and process the emitted

fluorescence signal and the optical power emitted by the LED.In order to reduce the effect of

photobleaching, which is typical in fluorescent indicators, the blue LED was excited by current pulses

(duration 800 ms) at a frequency of 0.125 Hz [24]. Moreover, to increase the robustness against

the interferences and because of the low signal-to-noise ratio, the lock-in technique has been used,

modulating sinusoidally the LED driving current during thepulse and demodulating the collected signal
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with the same signal (frequency = 6.06 kHz), as shown in Figure5. In this way, only the signal of interest

presents a non-zero average value, which is representativeof the excitation and fluorescence intensities.

Figure 5. Schematic representation of the electronic board developed and realized to acquire

and process the emitted fluorescence signal and the optical power emitted by the LED.

The lock-in technique has been used, modulating the LED driving signal and demodulating

the collected signal with the same sinusoidal signal. Only the signal of interest presents a

non-zero average value.
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For the performed measurements, the fluorescence-to-monitor ratio was considered, thus avoiding that

the variations in the optical power emitted by the LED could influence the fluorescence measurements.

In fact, the fluorescence intensityIs is a function of the absorbed light [14], as reported in Equation (3):

Is = kI0φǫλlC (3)

whereI0 is the intensity of the exciting beam,φ is the quantum yield of the fluorophore,ǫλ is the molar

absorptivity atλex, l is the optical path length in the sample,C is the concentration of the fluorophore

andk is an instrumental factor. Considering the fluorescence-to-monitor ratio, it yields:

IRatio =
Is
I0

= kφǫλlC (4)

As shown in Equation (4), the ratio signal is independent from the optical power emitted by the LED.

In the next sections of the article, it will be referred to thefluorescence-to-monitor ratio asIRatio and to

the normalized fluorescence-to-monitor ratio asINorm, defined as:

INorm =
Is

I0 · IRatio|Max

(5)

3. Experimental Results

In order to test the sensor, a fluidic system has been realized. As shown in the schematic representation

in Figure 6(a) and in the picture in Figure6(b), it consists of (i) a closed loop circulator, (ii) the

optical head with the sensing element inside, (iii) a beakerwith a reference glass electrode pH-meter

(Eutech Instruments, XS pH 700, Nijkerk, The Netherlands) to measure the pH of the solution and a

thermocouple to measure the temperature of the solution andcorrect the pH value.

All the measurements were performed at room temperature, with a flow rate of 200 mL/min. The pH

of the solution was changed by adding acetic acid or ammoniumhydroxide to the solution.
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Figure 6. (a) Schematic representation of the fluidic system used to testthe pH sensor.

It consists of (i) a closed loop circulator, (ii) the opticalhead with the sensing element inside,

(iii) a beaker with a reference glass electrode pH-meter to measure the pH of the solution

and a thermocouple to measure the temperature of the solution and correct the pH value.

(b) Picture of the fluidic system used to test the pH sensor.
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3.1. Characterization of the Sensor pKa

A fluorometric titration has been performed to investigate thepKa of the indicator inside the polymer

matrix in aqueous solutions. In Figure7, INorm versus time acquired at different pH values is shown.

The steady state pH values of the solution as measured by the reference instrument are reported close to

the curve. In Figure8, the average of theINorm signal over a time interval of 60 s for every reference pH

value is shown.

INorm values have been fitted to a sigmoidal function, representedin Figure8 and determined by

applying Equations (5) and (2), whereImax = 1.98, Imin = 1 andb = 1.10. ThepKa of the indicator

was thus estimated to be 7.9. This value is bigger than the onereported in literature for the fluorescein

in aqueous solutions,i.e., 6.4 [25]. According to Vasylevskaet al. [18], an increase inpKa is observed

upon covalent immobilization of the indicator and is attributed to the decrease in the polarity of the

microenvironment.

The sigmoidal interpolation curve can be approximated witha linear curve for a range of values of

pH close to thepKa of the indicator. In particular, here we propose to considera linearity range between

7 and 8. In the next section, the linearity characteristics of the sensor within this range are presented.
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Figure 7. INorm versus time of a measurement performed in an aqueous solution, changing

the pH value of the solution. The steady state pH values of thesolution as measured by the

reference instrument are reported close to the curve.
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3.2. Evaluation of the Non-Linearity Error

In Figure9, INorm versus time acquired at different pH values in the range 7.0–8.0 is shown. It can be

noted that the new normalization ofIRatio tends to expand and shift the ranges of values ofINorm respect

to the data shown in Figure7.

For every reference pH value, the average ofINorm has been calculated over an interval of 60 s.

Afterward, these values were fitted to a linear function as:

ĪNorm = 0.546 · pHReference − 3.285 (6)

where ĪNorm is the average value ofINorm andpHReference is the pH measured by the reference pH

electrode. Hence, the estimated pH values were calculated as:

pHEstimated =
ĪNorm − q

m
=

ĪNorm + 3.285

0.546
(7)

In Figure10(a) the estimated valuesversus reference pH are shown, together with the fitting line

(R = 0.9958), whereas Figure10(b) shows the difference between the estimated and reference pH
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values, for every reference pH value. Thus, the Integral Non-linearity error, which is a parameter

representing the maximum deviation between the sigmoidal interpolation curve of Equation (2) and the

linear interpolation curve of Equation (6), was calculated to be 0.02 units of pH, which represents the2%

in the range 7.0–8.0. Finally, the Integral Non-linearity error was calculated also for the measurement

reported in Figure7 and was determined to be 0.05 units of pH, which represents the 5% in the range

7.0–8.0. These small variations between the Integral Non-linearity errors are probably due to different

sensing elements used to perform these tests.

Figure 9. INorm versus time acquired at different pH values in the range 7.0–8.0. The steady

state pH values of the solution as measured by the reference instrument are reported close to

the curve.
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Figure 10. (a) Estimatedversus reference pH and fitting line. (b) Difference between

estimated and reference pHversus reference pH.
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3.3. Short Term Stability

Figure11(a) shows the estimated pH values, determined through Equation (7), versus time acquired

firstly changing the pH of the solution and then keeping it constant. Assuming that the pH of the solution

is completely stabilized at t = 60 min, the short term stability can be determined by evaluating the
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deviations of the estimated pH respect to its mean value in the time interval 60–100 min. As shown

in Figure11(b), no significant drifts have been observed in this time interval; all deviations are within

0.15% of the mean value of the estimated pH.

Figure 11. (a) Estimated pHversus time of a measurement performed changing the pH value

of the solution and then keeping it constant. The steady state pH values of the solution as

measured by the reference instrument are reported close to the curve. (b) Deviations of the

estimated pH respect to its mean value in the time interval 60–100 min. All deviations are

within 0.15% of the mean value of the estimated pH (dashed lines).
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3.4. Response Time

The sensor response time, the so-calledτ90, is defined as the time required for the sensor output to

reach 90% of the change from its previous value to the final settled value. To measure the response time

of the developed sensor, the fluidic system reported in Figure12has been realized.

The setup shown in Figure6(a) has been integrated by a 3-way valve, thus allowing switching between

two different buffer solutions (Fisher Scientific, Sigma-Aldrich). The measurement was performed by

pumping the first buffer solution till the sensor stabilized, then switching to the second buffer solution and

waiting for the stabilization of the sensor and finally switching back to the first one. The measurements

were performed with the same sensing element (50µm thick), at room temperature at a flow rate of

200 mL/min. The whole circuit volume was about 200 mL. In Figure 13(a–c), INorm versus time is

reported for three different test conditions.

In Table 1, the calculated rise and fall times (τ90) of the performed measurements are reported.

The response time of the sensor depends on several factors, such as the flow-rate and the thickness

of the film. Response times reported in Figure13 are substantially different compared with those of

Figures7, 9 and 11(a). This large difference can be ascribed to the thickness of the sensing film.

We have experimentally observed that even small differences in thickness can result in large changes

in the dynamic response of the sensor. Moreover, the response time depends on the initial and final

pH value. In fact, from the data reported in Table1, it can be noticed that the response time is highly

dependent on the pH values with respect to thepKa of the fluorescent dye. In fact, the response time

is longer for the first variation of pH, (pH = 7.0 → 8.0, Figure13(a)), which has been done between
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pH values below or equal to thepKa (pKa ≈ 7.9). If the final pH value is much higher than thepKa,

the response time is significantly reduced; in fact, considering the second variation (pH = 8.0 → 9.0,

Figure13(b)), the response time is improved. Nevertheless, it can benoticed that, if the variation is

done between two pH values chosen so that they are on either side of thepKa value, (pH = 7.0 → 9.0,

Figure13(c)), the rise and fall times are further improved (7 min per unit of pH and 13 min per unit of

pH, respectively). Finally, it can be noticed that, if the final pH value is higher than thepKa, the rise

time is lower than the fall time, whereas if the final pH value is lower than thepKa, the fall time is lower

than the rise time.

Figure 12. Schematic representation of the fluidic system used to measure the pH sensor

response time. It consists of (i) a closed loop circulator, (ii) the optical head with the sensing

element inside, (iii) a beaker with a glass electrode pH-meter to measure the pH of the

solution and a thermocouple to measure the temperature of the solution and correct the pH

value. A 3-way valve has been added to switch between two different buffer solutions.
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Table 1. Rise and fall times estimated during the three performed tests.

Rise time τ90 (min) Fall time τ90 (min)

pH = 7.0 → 8.0 54.0 23.0

pH = 8.0 → 9.0 9.5 17.0

pH = 7.0 → 9.0 14.0 26.0

Nevertheless, this dynamic behavior can be improved by using thinner polymer sensing elements.

The thickness of the sensing element depends on a trade-off between the response time and the

signal-to-noise ratio. As long as the signal-to-noise ratio of our sensor remains high enough, it is possible

to use thinner polymer films and thus achieve shorter response time.
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Figure 13. INorm versus time acquired during the three tests performed to evaluate the

response time of the sensor and its dependency on the pH value. (a) Sensor response to a

change in pH from 7 to 8 and back; (b) sensor response to a change in pH from 8 to 9 and

back; (c) sensor response to a change in pH from 7 to 9 and back.
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3.5. Reproducibility

The reproducibility of the pH sensor has been evaluated using the fluidic system represented in

Figure 12, by changing the pH between the same two buffer solutions,i.e., 8.0 and 9.0 (Fisher,

Sigma-Aldrich, Milan, Italy). In Figure14(a), INorm versus time is reported. The first test (blue) was

performed the day before the second test (red), using the same polymer sensing element. In Figure14(b)

the mean values of theINorm signal, measured atpH = 8.0 andpH = 9.0, are reported, together with

the error bars.

The mean values were calculated considering the average values ofINorm in the steady-states at

pH = 8.0 and pH = 9.0 respectively. The error bars represent the standard deviations; for the reference pH

values they were determined through the uncertainty reported on the datasheet of the buffer solutions,i.e.,

pH = 8.0± 0.02 and pH = 9.0± 0.02 respectively, whereas for theINorm signal they were determined by
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the sample standard deviation (s). Finally, the mean values (ĪNorm) and the relative standard deviations

(σ = s/ĪNorm) of INorm were determined to be0.425±1.80% at pH = 8.0 and0.993±0.60% at pH = 9.0.

Figure 14. (a) AcquiredINorm versus time changing the pH value between 8.0 and 9.0 to

evaluate the reproducibility of the pH sensor. Two tests were performed (blue line and red

line) on two consecutive days. (b) Mean values and error bars of theINorm signal, measured

at pH = 8.0 and pH = 9.0.
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4. Discussion and Conclusions

A disposable optical fluorescence sensor has been developed. The sensor is based on the

pH-dependent fluorescence of a purposely developed polymermatrix including a fluorescent monomer

(fluoresceinO-methacrylate 97%). This fluorescent monomer is covalentlybonded to the hydrophilic

polymer chains to realize a disposable sensing element without the risk of dye leaching. The optical

head and the front-end electronics have been also developedto collect and process the fluorescence

signal together with the electronics to acquire and processthe signals of interest. Since thepKa of the

sensing element has been calculated to be 7.9, the sensor is suitable for measurement of near neutral

solutions. Good performance in terms of linearity (in the range 7.0–8.0), stability and reproducibility

has been observed.

It has to be noticed that the response time strongly depends on the measuring conditions,i.e.,

amplitude of the pH range and its limit values. Obviously, this parameter also depends on the

physico-chemical characteristics of the sensing element.In fact, it has been observed that the response

time could change considerably for different sensing elements. This variation is mainly due to different

thicknesses and cross-linking degrees of the sensing elements, caused by the manual realization. For a

thickness of the sensing film of 50µm, we measured a response time between 10 min and 1 h. For many

applications, this dynamic response may be sufficient; nevertheless it is always possible to reduce the

thickness of the polymer film to improve the response time. Furthermore, it was observed that the

response time diverges in the case of pH excursions that havetheir final value close topKa of the sensing
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element. Therefore, to improve the sensor dynamic response, this value can be tuned by adjusting the

sensing matrix to prevent, in the application of interest, this condition to occur.

Future work will focus on the realization of the sensing elements in order to diminish the performance

spread and improve their uniformity.
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