
Sensors 2013, 13, 375-392; doi:10.3390/s130100375

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

An On-Time Power-Aware Scheduling Scheme for Medical

Sensor SoC-Based WBAN Systems

Tae-Ho Hwang
1,
*, Dong-Sun Kim

1
 and Jung-Guk Kim

2

1
 Multimedia IP Center, Korea Electronic Technology Institute, 6th Fl., #22, Daewangpangyo-ro 712

Bundang-gu Gyeonggi-do, Seongnam-si 463-400, Korea; E-Mail: dskim@keti.re.kr
2
 Department of Computer Engineering, Hankuk University of Foreign Studies, Institute Gyeonggi-do,

Yongin-si 449-791, Korea; E-Mail: jgkim@hufs.ac.kr

* Author to whom correspondence should be addressed; E-Mail: taeo@keti.re.kr;

Tel.: +82-31-739-7473; Fax: +82-32-739-7499.

Received: 22 October 2012; in revised form: 19 December 2012 / Accepted: 20 December 2012 /

Published: 27 December 2012

Abstract: The focus of many leading technologies in the field of medical sensor systems is

on low power consumption and robust data transmission. For example, the implantable

cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state,

requires a reliable wireless communication scheme with an extremely low duty-cycle, high

bit rate, and energy-efficient media access protocols. Because such devices must be

sustained for over 5 years without access to battery replacement, they must be designed to

have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient

scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode

current. The novelty of this scheduler is that it increases the determinacy of power

adjustment and the predictability of scheduling by employing non-pre-emptible dual

priority scheduling. This predictable scheduling also guarantees the punctuality of important

periodic tasks based on their serialization, by using their worst case execution time) and the

power consumption optimization. The scheduler was embedded into a system on chip (SoC)

developed to support the wireless body area network—a wakeup-radio and wakeup-timer

for implantable medical devices. This scheduling system is validated by the experimental

results of its performance when used with life-time extensions of ICD devices.

Keywords: on-time scheduling; power-aware; WBAN; wakeup-radio; wakeup-timer;

sensor SoC; ICD; TMO

OPEN ACCESS

Sensors 2013, 13 376

1. Introduction

Owing to the increase in today’s aging population there has been a gradually increasing demand for

medical implantable sensor devices such as pacemakers and defibrillators. A major issue in this field

has been the development of technologies for wireless networking between implantable devices [1–3].

One major goal of using this type of communication is to be able to externally monitor patients’ health

and the status of the devices they wear, both internally and externally. IEEE 802.15.6 [4] is a wireless

body area network (WBAN) standard for communications between medical implantable devices [5].

It specifies a frequency band and a Medium Access Control (MAC) protocol as its Physical Layer

(PHY) for in-body and on-body applications.

Since implanted medical devices are designed so that they will not need to be accessed for

maintenance over a long period of time, high-level constraints on power consumption are needed that

can sustain a device over several years with a duty-cycle of under 1%. Thus, the design of an

extremely low power RF transceiver [6,7] and a low-power system on chip (SoC) has been an

important issue.

In addition, approaches that utilize a wakeup-radio channel [8,9] and an energy-efficient

protocol [10–12] to minimise the sleep mode current have been introduced. For devices that require a

low duty-cycle and a long lifetime, power management in sleep mode is far more important than it is in

active mode. For this reason, the use of a wakeup-radio channel has been included in the IEEE

802.15.6 WBAN standard as an option. Each hardware block of a sensor-based WBAN device is

woken up from the power-off state by an external wakeup radio or by the schedule of a device.

Therefore, a device that uses an external wakeup radio and timer must be able to support efficient

saving and restoration of the contexts of communication, and sensors that transmit to or from

non-volatile memory. In addition, the power states of each hardware block, such as a modem, and RF

and I/O peripherals, must be managed on the system level, so that the system power spectrum is

reconfigured along with its forward task scheduling. Although low-power operations are important for

sensor devices, operational reliability must be sustained prior to power consumption in the case of

medical applications. Applications for medical sensor devices must guarantee the on-time execution of

periodic sensor data processing and actuator control. For this reason, sensor device applications are

usually implemented based on a power-aware scheduler that can manage both on-time periodic

activities and the power consumption of tasks.

There are two typical approaches to scheduling for medical sensor devices. One is the event-driven

scheduling approach [13]. Although it is simple and provides a predictable single task model, there can

be delays in data processing because it processes events in first-in first-out (FIFO) fashion with a

single task. The other approach is the pre-emptive multi-thread scheduling scheme, which is generally

used in popular operating systems such as μCOSII and MANTIS [14]. While it offers the benefit of

ease of design of complex applications, it has difficulty in supporting on-time predictable scheduling,

owing to pre-emptions and resource conflicts between tasks. Without predictable scheduling, a system

cannot enter a deep sleep mode. This paper presents a new scheduling scheme that encompasses the

benefits of both approaches, as it minimizes power consumption and guarantees on-time task execution

by increasing the predictability of a system, while using multi-thread scheduling.

Sensors 2013, 13 377

Typical applications for a sensor node can be organized to include time-triggered periodic tasks and

event-triggered sporadic tasks. If a system can be organised only to manage periodic tasks, the

system’s predictability can be assured, and it becomes quite easy to determine the time to enter a deep

sleep mode. For systems in which event-triggered sporadic tasks cannot be avoided, two approaches to

increase the predictability of a system have been introduced. One of these is the time-triggered

message-triggered object (TMO) scheme [15,16]. In the TMO scheme, all executions of periodic tasks

are scheduled with pre-emption in a deadline-based manner. However, the execution of each sporadic

task is non-pre-emptible, and it can be postponed if there is a potential overlap of executions between

the nearest periodic task and a sporadic task in the future. This TMO scheduling scheme, which is

called basic concurrency constraint (BCC) [16], increases the predictability when sporadic tasks must

be managed. The other approach is a modified form of dual-priority scheduling (DPS) [17,18], which

resolves the conflicts between periodic and sporadic tasks by giving higher priority to periodic tasks,

while allowing pre-emptions. In this system, the speed of a CPU is determined based on the deadlines

and the worst case execution times (WCETs) of the tasks, thus offering improved power management.

In both approaches, however, on-time scheduling and the completion of a periodic task are not

guaranteed, because of pre-emptive deadline-based scheduling, so planned static power adjustment

based on the predictive scheduling of periodic tasks is impossible.

The scheduler presented in this paper represents a new approach, which supports a planned power

management scheme by using predictive scheduling based on the non-pre-emptive serialization of

periodic tasks, while incorporating the concepts of TMO’s BCC and the DPS. At the design stage of a

task system, all periodic tasks are serialized first by adjusting their initial offsets so that there is no

resource conflict, no pre-emption, and no execution overlap, in order to guarantee the on-time

invocation and completion of tasks. Once periodic tasks are serialized by a tool such as the one

described in [19], deadline-driven scheduling is not necessary, so it becomes possible to determine

whether or not to postpone the scheduling of a sporadic task. That is, the scheduling of a sporadic task

is postponed when the system predicts a potential overlap between the execution of a sporadic task and

the nearest periodic task. This prediction allows for a more planned and efficient power management.

To implement this scheduling strategy, four major power modes were defined and applied to the

scheduler so that each power mode supports the minimum consumption for each possible scheduling

scenario. In particular, the scheduler is designed to maximize the duration of the deep sleep mode,

based on its predictive scheduling.

This paper is organized as follows: Section 2 describes the design of an on-time power-aware

scheduler that is a realization of the above ideas, based on a dual priority scheduler. In Section 3, the

hardware structure of the developed chipset and the WBAN PHY/MAC protocol on an SoC are briefly

presented. Finally, in Section 4, we present discussion of the experimental results, and estimations

based on a simulation of the scheduler and its applicability to implantable devices.

Sensors 2013, 13 378

2. On-Time Power-Aware Scheduler

2.1. System, Task, and Power-Mode Model

In the developed system, a sensor-node application consists of several non-pre-emptible atomic

tasks. Tasks are divided into periodic tasks and sporadic tasks. All tasks are scheduled only when the

system is in an ACTIVE state. When the system is put into an INACTIVE state, by either the

application or the scheduler, scheduling is prohibited until the system is made ACTIVE by either a

wakeup-radio signal or a wakeup-timer. In addition to the task and system model, the power mode

model and the operation model of peripheral devices such as sensors and actuators must be considered.

The following are descriptions of the task, device, and power-mode models.

Notation 1: A periodic task and its nth periodic execution are denoted by TPi (o, p, w, g, m)

and TPi
n
, respectively.

where i is the identifier of a periodic task,

o is the initial offset of a periodic task,

p is the period of a periodic task,

w is the WCET of a periodic task,

g is the guard time of a periodic task, and

m is the power mode requested to run a periodic task.

The guard time of a periodic task is the predefined start-up time needed to enable the power and

hardware devices for running. All executions of periodic tasks in the system’s ACTIVE mode can be

serialized by a schedulability analysis tool [19] in order to prevent the pre-emption and overlap of

executions. Thus, the scheduler can schedule periodic tasks in an on-time FIFO manner and can predict

the timing characteristics in regard to their execution. The states of periodic tasks are classified into

RUNNABLE and INACTIVE. The state of a periodic task becomes RUNNABLE when the time_left

value in its task control block (TCB) falls into a non-positive value because the time_left value is the

amount of time left until the next periodic invocation. Upon the completion of a periodic job, a

periodic task becomes INACTIVE.

Notation 2: A sporadic task and its nth execution are denoted by SPi (e, w, m) and SPi
n
,

respectively.

where i is the identifier of a sporadic task,

e is the event that triggers a sporadic task,

w is the WCET of a periodic task, and

m is the power mode requested to run a sporadic task.

A periodic task can directly activate a sporadic task by sending an event to a sporadic task.

In addition, a sporadic task can be activated by a device that was initialized by a periodic task. All

devices of the system, such as sensors and actuators, conform to a typical activity sequence, as follows.

Each device must be initialized by a periodic task in order to function. After initialization, the device

works independently and then generates an interrupt. The interrupt handler again generates an event to

Sensors 2013, 13 379

trigger the sporadic task that is responsible for post-processing. For example, a sensor device

completes the sampling of data following its initialization by a periodic task, and it then signals the end

of sampling by generating an interrupt. The sporadic task that is triggered by the interrupt sends the

sensor data to an external device via a UART port, when it is scheduled.

Unlike the scheduling of periodic tasks, the scheduling of an activated sporadic task is postponed

when an overlap is predicted between the execution of the sporadic task and the execution of the

nearest periodic task. The states of sporadic tasks are classified as SUSPENDED, INACTIVE, or

RUNNABLE. When a sporadic task terminates its execution and there is no initialized event source for

the sporadic task, the state is set to SUSPENDED. Once the event-source device is initialized by

another periodic task, the sporadic task waits for the event in an INACTIVE state. When the awaited

event eventually occurs, the sporadic task goes into a RUNNABLE state. However, a RUNNABLE

sporadic task can only be scheduled immediately when the following three conditions are met:

• There is no current execution of another task.

• There is no preceding RUNNABLE sporadic task.

• It is predicted that the execution of the sporadic task will not disturb the future execution of

the coming periodic task, considering the WCET of the sporadic task.

If these conditions are not met, the sporadic task must wait to be scheduled until the three

conditions are met in the RUNNABLE state. Figure 1 presents a diagram of the transition of task states

with the scheduler.

Figure 1. (a) State transition of a periodic task. (b) State transition of a sporadic task.

(b)(a)

RUNNABLE

time_left

expired

INACTIVE

finish SUSPENDED

an event

occur

RUNNABLE

INACTIVE

finish

event source

activated

With the above task model, four power modes are supported for power-aware scheduling: task-power

mode, wait_event, sleep_with_timer, and sleep_with_radio. The sleep_with_radio and sleep_with_timer

are modes for the system’s INACTIVE state, and the others are for its ACTIVE state. The task-power

mode is a task-specific mode, in that only necessary devices are turned on for the execution of a task.

This power mode also includes the configurations of the microcontroller unit (MCU) and memory.

When no task is being run, the system’s power mode can be any one of the following: wait_event,

Sensors 2013, 13 380

sleep_with_timer, or sleep_with_radio. In the wait_event mode, the MCU and the system timer are

enabled with the lowest possible power support and the lowest possible clock frequency, such as

32 kHz oscillator. Devices such as sensors and transceivers that are enabled by a periodic task can be

kept enabled in this mode following the termination of a periodic task. Therefore, the wait_event mode

indicates a power mode, in that a periodic task or a sporadic task can be scheduled in the near future.

The sleep_with_timer mode is a lower-power mode, in that all system power supports are turned off,

except for the wakeup timer. The system enters into sleep_with_timer when there is no RUNNABLE

sporadic task, and when the amount of the time left until the next invocation of a periodic task is

greater than minSleepInterval. The predefined value of minSleepInterval is the amount of time that is

required for the system to recover its power in order to execute a task. Finally, the system enters into

sleep_with_radio upon the request of an application. The sleep_with_radio is the lowest-power mode,

in that all system power supports are turned off except for the wakeup-radio receiver. The contexts of

the registers and memory must be saved in non-volatile memory when the system enters into either the

sleep_with_timer or the sleep_with_radio mode. Additionally, the saved contexts must be restored

when the system exits from one of these modes.

A power mode transition is performed by the scheduler calling the Power_Adjust() function. The

Power_Adjust() function is designed to reconfigure hardware according to a given power descriptor

before and after a task receives a schedule. The reconfiguration of hardware includes the modification

of the MCU clock rate, voltage scaling, turning on of the peripherals, and scaling of the system timer.

2.2. Design of an On-Time Power-Aware Scheduler

The scheduling system consists of two main modules, the task scheduler and the event handler.

The scheduler keeps the TCBs of tasks either in the periodic task queue (PTQ) or in the sporadic task

queue (STQ), as shown in Figure 2.

Figure 2. Structure of on-time power-aware scheduling system.

System

Timer

Sensor,

Actuator

WBAN

Transceiver
Peripherals

interrupt

Event Handler

Scheduler
Task Queue

PTQ

STQ

executes

updates

Wakeup

Timer

Wakeup

Radio

The event handler is responsible for handling hardware interrupts from the system timer, wakeup

timer, wakeup radio, peripherals, and the WBAN transceiver. For example, when an interrupt from the

system timer occurs, it updates the time-left values of all periodic tasks. If a task with a non-positive

time_left is found, the state of the task is changed from INACTIVE to RUNNABLE, and the time_left

Sensors 2013, 13 381

value is reloaded with the value of that period, minus guard_time, to allow the system to prepare the

start-up for the task. When there is an interrupt from a device, the handler prepares an event for the

sporadic task that is responsible for that device and changes the state of the sporadic task from

INACTIVE to RUNNABLE. If the event handler receives either a wakeup-timer interrupt or a

wakeup-radio interrupt, it resumes the operation of the system by restoring the system context.

The scheduler is called when the handling of the interrupt is complete.

In addition to handling hardware interrupts, the event handler also generates an event to trigger a

sporadic task at the request of a periodic task, and as a result, the event handler changes the state of the

target sporadic task from INACTIVE to RUNNABLE. In this case, the scheduler is not called

immediately, because the periodic task that requested the event is still running.

Figures 3, 4 and 5 graphically illustrate several scheduling and power adjustment scenarios.

In Figure 3, ma and ga denote the power mode and guard time, respectively, of the task a. In the

beginning, the scheduler sets the power mode as ma for TPa and initializes the device D1 at the time of t1,

which is prior to the starting point of the task instance TPa
i
 owing to its ga. The execution of the

periodic task instance TPa
i
 activates the sensor device D1 by calling Request(). The system then

changes the state of the sporadic task SPb from the SUSPENDED state to INACTIVE in order to allow

the task to wait for an event. When TPa
i
 terminates at t2, the scheduler turns the system power mode to

wait_event, because there is an INACTIVE sporadic task whose execution is potentially possible in the

near future. When an interrupt from D1 occurs at t3, the system determines whether or not to schedule

the sporadic task SPb by considering the WCET of SPb, as well as the earliest possible start time of the

upcoming periodic task. In Figure 3, when SPb is scheduled, the power mode is set to the task-power

mode mb, since no execution will overlap with a periodic task, and SPb then terminates.

Figure 3. Typical power mode transition scenario.

PTQ

STQ

Device

ma

Power_Adjust()

interrupt

D1

Request (D1)

TurnOff (D1)

TurnOn (D1)

SPb
i

TPa
i

t1 t2 t3

wait_event mb

ga

t4

When SPb is completed at t2 in Figure 4, the task state is set to SUSPENDED again. At this time,

the power mode is determined to be either wait_event or sleep_with_timer by considering the time left

until the next periodic task and the number of sporadic tasks that are INACTIVE. At t2, the power

mode is set to sleep_with_timer because there is no INACTIVE sporadic task, and the time left until

the next periodic task is longer than minSleepInterval. At t4, if SPd calls TurnOff(system), the system

enters into the sleep_with_radio mode.

Sensors 2013, 13 382

Figure 4. Power mode transition scenario using sleep_with_timer and sleep_with_radio.

PTQ

STQ

Device

Power_Adjust()

D1

SPb
i

TPc
j

D2

SPd
j

t2t1 t3 t4

Request (D1)

TPa
i

TurnOn (D1)

interrupt TurnOff (D1)

TurnOn (D2)

Request (D2)

sleep_with_timer sleep_with_radio

interrupt

TurnOff (system)

In Figure 5, when an interrupt from D1 occurs at t3, the scheduler knows that SPb
i
 overlaps with

TPc
j
, the execution of the next periodic task, by comparing the WCET of SPb with the nearest time-left

value. As a result, scheduling of the sporadic task SPb
i
 is postponed.

Figure 5. Power mode transition scenario when there is an overlap of executions.

PTQ

STQ

Device

Power_Adjust()

D1

SPb
i

TPc
j

D2

SPd
j

ma

t1

Request (D1)

TPa
i

TurnOn (D1)

TurnOff (D1)

TurnOn (D2)

Request (D2)

interrupt
TurnOff (D2)

t3

mc

SPb
i

t4

mb md

t2 t5 t6

wait_event

interrupt

Overall, the scheduler assumes control when the event handler completes a cycle of interrupt

processing and when the running of a task is complete. The scheduler action is straightforward, since it

considers the task model, power mode model, and the time when the scheduler takes control of the

CPU, as follows:

1. If there is at least one RUNNABLE periodic task, set the task-power mode and call

the task.

2. Otherwise, if there is at least one RUNNABLE sporadic task, determine whether or not

it can be scheduled immediately by comparing the WCET of this task and the time_left

Sensors 2013, 13 383

value of the next periodic task. If immediate scheduling is possible, set task-power

mode and call the task. If it is not possible, set the system power mode as wait_event.

3. If there is no RUNNABLE task but there is at least one INACTIVE sporadic task, set

the power mode as wait_event.

4. If there is no RUNNABLE or INACTIVE task,

4.1. If there was a turn_off_system request from a task, set the power mode as

sleep_with_radio.

4.2. Else if the time left until the invocation of the next coming periodic task is larger

than minSleepInterval, set the power mode as sleep_with_timer. Otherwise, set

wait_event mode.

As given above, the running of a task is implemented in the form of a call to a task-body by the

scheduler, because all tasks run without pre-emption. Figure 6 outlines the scheduler’s actions

in detail.

Figure 6. Operations of on-time power-aware scheduler.

nrp : the number of RUNNABLE periodic tasks

nrs : the number of RUNNABLE sporadic tasks

nis : the number of INACTIVE sporadic tasks

TimeLeft : the amount of time left to the next periodic task

Sched ()

 1 while nrp + nrs > 0, do

 2 if nrp > 0, then

 3 Get id of the next runnable periodic task

 4 nrp ← nrp – 1

 5 Power_Adjust (mid)

 6 Run TPid

 7 Change the state of TPid to INACTIVE

 8 else if nrs > 0, then

 9 Get id of the next runnable sporadic task that can be finished within TimeLeft

10 if id > 0, then

11 nrs ← nrs – 1

12 Power_Adjust (mid)

13 Run SPid

14 Change the state of SPid to SUSPENDED

15 nis ← nis – 1

16 else

17 Power_Adjust(wait_event)

19 return to event handler

18 if nis = 0 and there is a request for turning off the system, then

19 Enable_Wakeup_Rradio ()

20 Power_Adjust (sleep_with_radio)

21 else if nis = 0 and TimeLeft > miniSleepInterval, then

22 Enable_Wakeup_Timer (TimeLeft)

23 Power_Adjust (sleep_with_timer)

24 else

25 Power_Adjust(wait_event)

26 return to event handler

Sensors 2013, 13 384

3. Implementation

The proposed scheduler was deployed for use with an implantable cardioverter-defibrillator (ICD)

device that was developed in a project called ―Component Development of Ultra-Low Power ICTS‖,

which was supported by the Korean government. The ICD is a small battery-powered electrical

impulse generator that is implanted into a patient who is at risk of sudden cardiac death due to

ventricular fibrillation and ventricular tachycardia. The device is programmed to detect cardiac

arrhythmia and correct it by delivering a jolt of electricity. The device can also transmit health status

information and alarms to an on-body device. The structure of the ICD device is shown in Figure 7.

A problem in a patient’s heart can be detected by the difference between the voltages of the two ICD

leads that are inserted into the heart. The analogue signal is amplified and then converted into a digital

signal by means of 12-bit analogue-to-digital (ADC) after noise filtering. The acquired electrocardiography

(ECG)/electromyography (EMG) data are transmitted to an external monitoring device and are

processed by the application of a cardiac arrhythmia detection device.

Figure 7. Structure of the ICD device.

For the ICD device, an SoC and its hardware platform were implemented, as shown in Figure 8.

The transceiver module is responsible for transmitting ECG/EMG signals and signalling an arrhythmia

by means of an alarm.

The developed SoC consists mainly of a digital modem, an 8-bit micro-controller, and MAC

hardware. The digital modem has a modulator with a 6-bit digital-to-analogue converter (DAC) and a

demodulator with a 4-bit ADC. The 24/12/6-MHz micro-controller executes the 8051 instruction set

and supports 64 kB of program memory for the software MAC protocol and applications. It also

provides a four-channel direct memory access (DMA) controller that is used in the saving and

restoration of contexts.

The micro-controller also supports four hardware interrupts for two full-duplex serial

communication interfaces and two 16-bit timers. The hardware MAC supports cyclic redundancy

check (CRC), forward error correction (FEC), and four programmable timers in order to check the

timing rules of the MAC. It also supports the 128-bit Advanced Encryption Standard (AES). Table 1

briefly lists the PHY characteristics.

2.4 GHz

Wakeup

Link

MEMS SensorSwitching

Circuit

High Voltage

Defibrillation

High Voltage

Generation

(~650V)

12 bit

ADC

Sense-

Amplifier

Bandpass

Filter

Lead

MCU

RF

Transceiver

On-Body

Base Station

402~405

MHz

RF Link

Wakeup

Tx

Circuit

Wakeup

Rx

Circuit

Sensors 2013, 13 385

Figure 8. Hardware platform with an SoC for implanted medical devices. (a) Internal

block diagram of the SoC. (b) SoC layout. (c) WBAN SoC. (d) Bipolar lead connection to

the implant defibrillation device (medical Ti case, 56 × 43×22 mm). (e) Modules for

arrhythmia detection/defibrillation (ECG/EMG signal analyser/650 V stimulation), and the

transceiver SoC module.

2.4GHz

Wakeup

RF Block Flash Memory

MICS Band

RF Block

PLL

and

LDO

Embedded

SRAM

MCU

BB/Modem

Peri.

(d)

(e)

(b)
(c)

(a)

Wakeup

RF

 Signal

(2.4GHz)

Micro

Controller

(8051)

MAC Acclerator

Ctrl.

Modem

Int

TRx FIFO

FEC (BCH) MAC Timer

MAC Frame

Contoller
Auto-ACK

RF

Transceiver

Wakeup

Receiver

Rx

Tx

Ctrl.
SPI0

Power Mgnt.

DMA

SRAM

(4KB)

DPSRAM

(4KB)

FLASH

(64KB)
UARTs

TIMERs

ADC

SPI1

GPIO

DEBUG

Baseband Processor

Block

RF

Modulated

Signal

(MICS band)

Int

Table 1. PHY characteristics of the hardware MAC.

Frequency Band 402–405 MHz

Channel/BW 10 (300 kHz/Ch)

Modulation DBPSK/DQPSK

Data Rate 300 kbps

FEC BCH

Pulse Shape Filter Gaussian Filter

Power Consumption Avg. 12 mA

Hardwired Low-MAC
Auto-CRC/FEC, Auto-ACK

MAC Frame Handling

RF Wakeup 2.45 GHz (OOK, Avg. 235 nA)

Sensors 2013, 13 386

Figure 9 presents a profile of the power controllable hardware components. In the figure, the power

consumption ratio of each block is represented as a percentage. Each minus value enclosed in

parentheses represents the power saving ratio when a block is turned off. The scheduler turns each

component on and off using the Power Management Unit (PMU) according to the power descriptor of

a given task. Two requirements of the developed ICD are that it must be sustained over several years

with a low duty-cycle (avg. 0.3–0.6%) and must support a high bit rate (about 300 kbps)

communication. By considering an environment with a high packet error rate [20], it employs the

selective automatic repeat request (ARQ) [21] and the Bose, Chaudhri, Hocquenghem (BCH) block

code for FEC. All necessary functions of the protocol were implemented with a number of periodic

and sporadic tasks. The application to detect a cardiac arrhythmia was also organized with one

sporadic and one periodic task. Once an in-body device has been alerted by a 2.4 GHz radio signal, it

makes a handshake with a monitoring device and then begins sensing and transmitting data.

Figure 9. Power consumption and saving ratios of power-controllable hardware components.

4. Experimental Results

Several experiments with an animal were performed in order to verify the operation of the ICD and

the scheduler. Figure 10 shows the main steps of the experiments.

In order to measure the basic power consumption of the SoC’s communication module, a National

Instrument PXI 4071 multi-meter device was used, with a transmit data length of 20 bytes, a supply

voltage of from 1.8 V to 3.3 V, and an MCU clock rate of zero or from 32 K to 32 MHz. The graph in

the upper part of Figure 11 shows the amounts of power consumed according to the operation time of

continuous data transmissions. The graph in the lower part of the figure shows the amounts of power

consumed according to the power mode in a packet transmission.

Table 2 provides descriptions of the six power modes and the average amount of current consumed

in each mode. A task that accesses the transceiver works at either PM4 or at PM5. A task that performs

sensing via the ADC runs in the PM3 mode. In the duration of waiting for an event, the scheduler

changes the power mode to the PM2 mode. After the processing is complete, the system enters into

PM1 or PM0 in order to sleep.

Sensors 2013, 13 387

Figure 10. (a) Experiment with an animal. (b) Detection of ECG/EMG signal. (c) MAC

frame sniffing. (d) Remote monitoring of ECG/EMG signals.

Figure 11. Amounts of power consumed by on-time power-aware scheduler during

transmission of packets.

Sensors 2013, 13 388

Table 2. Power modes and measured current in each mode.

Power Mode Avg. Current (μA) Description

PM0 0.235 Sleep with radio mode

PM1 820 Sleep with timer mode

PM2 4,023
Waiting for an event: 32.768 kHz MCU

Enables half memory one or more standby devices

PM3 9,944
Processing data: 6 MHz MCU

Enables all memory timer, ADC blocks, standby transceiver

PM4 17,402
Transmitting frames: full-speed MCU

Enables all memory, transmitter, and required IO blocks

PM5 18,532
Receiving Frames: full-speed MCU

Enables all memory, receiver requires IO blocks

The developed system has been compared with a μCOSII-based system. A μCOSII-based system [22]

with a normal multi-tasking scheduler, however, only supports a simple form of power management, in

that only the sleep() function and sleep_with_radio are supported. That is, the μCOSII-based system

does not use the Power_Adjust(), the wait_event, or the sleep_with_timer modes. As can be seen in

Figure 12, the amount of power consumed by the μCOSII-based system increased because no power

adjustment and no scaling of the MCU voltage/clock were used for a task. In addition, the operation

time of the hardware was extended, because the related hardware must be previously turned on for the

on-time execution of the protocol.

Figure 12. Measurement of current consumed by μCOSII-based system during

transmission of a packet.

Based on measurements of the basic power consumption, a simulation-based estimation of the

lifetimes of the two systems was performed. The power consumption of a device can be defined as the

sum of the amounts of current consumed in each power mode [23]. These amounts can be obtained by

multiplying the necessary current I of a given mode by the work time t, where Qtotal is amount of

electric charge consumed by the module, as follows:

5

0

PM

total i i

i PM

Q t I


  (1)

Data Processing

6 ~ 14mA

Tx

35mA

Rx

25mA

PM0

Time (msec)

C
u

rr
en

t
(m

A
)

Sensors 2013, 13 389

The lifetime of an ICD device can be estimated by using the amount of current it consumes, where

Qbattery is the capacity of battery:

battery

total

Q
Lifetime

Q
 (2)

Using the lifetime estimation method given above Equations (1) and (2), the power consumption of

the hardware devices shown in Figure 9 was modelled using the Mathworks Matlab simulation tool.

Three inputs were given to the lifetime simulation model: (1) the amounts of power consumed in the

stepwise data transmission processing, (2) the power consumption and saving ratios of the power

controllable hardware components, and (3) the duty-cycle, which represents the ratio of the processing

time of data transmission/reception. In this simulation, a 3,000 mAh battery was assumed, and duty-cycle

values ranging from 0.2% to 1% were used to determine the work times of the power modes. Figure 13

shows the resulting comparison of the lifetimes of the two systems.

Figure 13. Comparison of lifetimes of the two systems.

The results show that the lifetime of the on-time power-aware scheduler is approximately 30%

longer than that of the μCOSII-based system. This improvement was the straightforward result of the

intelligent power adjustment that was made based on the prediction of executions in the system’s

active mode. In the μCOSII-based system, wait_event cannot be used, and the sleep_with_timer mode

can hardly be used because it does not support such predictive scheduling. In addition, the μCOSII-based

system must circulate non-optimized power when the system is active, which leads to quite large

differences in the amounts of power that are consumed in the active and inactive modes of the two

systems. Another reason for the power saving is that the scheduler can operate with a single stack

memory because there is no pre-emption, even in the scheduling of multiple tasks. Thus, the scheduler

can reduce the scheduling latency and the size of the volatile memory, which leads to faster sleep and

Sensors 2013, 13 390

wake-up operations. To compare the scheduling latencies of the developed system and the μCOSII-

based system, an application that performs the acquisition of data from a sensor and the transmission

of data to an external device was executed 20 times. As shown in the results in Table 3, the new

system shows, at worst, a scheduling latency reduction of about 5.3%.

Table 3. Comparison of scheduling latencies.

Multi-tasking

Scheduler (μCOSII)

On-time Power-aware

Scheduler

Context Switching Time (μs) 35 21

Scheduling

Overhead

(μs)

Worst 189 170

Best 170 166

Average 175 168

Table 4 presents the MCU utilizations and code sizes of the two systems when the same application

was launched. The difference in the codeSS sizes is mainly due to the size of the kernels. The MCU

utilization factors represent when the systems are active. In cases in which the developed scheduler

was used, the MCU utilization was reduced to 2.32%. This result is attributed to the fact that the

developed system is smaller and does not need any synchronization primitives because it does not

perform pre-emption.

Table 4. Comparison of system resources required.

Multi-tasking

Scheduler (μCOSII)

On-time Power-aware

Scheduler

MCU Utilization 5.07% 2.32%

Code Size in Bytes (Data/Program, μs) 5,065/42,155 1,958/33,679

5. Conclusions

In order to achieve low-power and reliable on-time periodic operations of a medical sensor device,

management of the power mode of the system based on the prediction of the timing behaviours of

tasks is most important. This paper has reported on the development of a new on-time, power-aware

scheduler based on dual priority scheduling [18] and the TMO’s BCC scheme [16]. The scheduler

supports three key features. The first is that periodic tasks are serialized without pre-emption or delay.

This eliminates the synchronization overheads between tasks and makes it possible to have predictable

power management. The second feature is the postponement of a sporadic task for the on-time

scheduling of an important periodic task when an overlap between their execution is expected in the

near future. The third feature is the support of the optimized power mode, which is activated according

to each possible scheduling scenario. For purposes of commercialization following field tests, the

scheduler was implemented in a battery-powered electrical impulse generator that was developed as an

SoC to prevent sudden cardiac death due to ventricular fibrillation and ventricular tachycardia. The

experimental and analytical results show that the developed scheduler can increase the system’s

lifetime by up to 30%, as compared to a commercial RTOS-based system, when the duty-cycle is less

than 1% in a WBAN node.

Sensors 2013, 13 391

The developed system will be deployed in complex sensor systems that perform acquisitions of live

body signals and audio/video and environmental information on a textile-based wearable computing

platform. To deploy the new scheduler in a sensor-based system, the last remaining aspect to be

clarified involves classifying the power mode of a new system case by case, in order to optimize the

power consumption.

Acknowledgments

This work was supported by the IT R/D program of MKE/KCC/KEIT (10041108, Development of

Integrated Textile Fabrics Flexible Platform Monitoring System for Safety and Ease of Living).

References

1. Lo, B.; Yang, G. Body Sensor Networks—Research Challenges and Opportunities. In Proceedings

of the IET Seminar, Antennas Propagation, Body-Centric Wireless Communication, London, UK,

24 April 2007; pp. 26–32.

2. Gust, H.B.; Warren, M.S.; Margaret, A.H.; Ian, G.C.; Iain, C.M.; Luc, J.; Dominic, T.; Robert, E.P.;

David, J.W.; Derek, T.C.; et al. An Entirely subcutaneous implantable cardioverter-defibrillator.

N. Engl. J. Med. 2010, 363, 36–39.

3. Chen, M.; Gonzalez, S.; Vasilakos, A.; Cao, H. Body area networks: A survey. Mobile Networks Appl.

2010, 16, 171–193.

4. IEEE 802.15.6 TG6. Available online: http://www.ieee802.org/15/pub/TG6.html (accessed on

29 February 2012).

5. Davenport, D.M.; Ross, F.J. Wearable and Implantable Body Sensor Networks for Ambulatory

Patient Monitoring. In The Sixth International Workshop, Berkeley, CA, USA, 10–11 August

2009; pp. 41–45.

6. Bohorquez, J.D.; Chandrakasan, A. A 350W CMOS MSK Transmitter and 400W OOK

Super-Regenerative Receiver for Medical Implant Communications. In IEEE Symposium on VLSI

Circuits, Honolulu, HI, USA, 18–20 June 2008; pp. 32–33.

7. Higgins, H. Body Implant Communication—Is it a Reality. In Proceedings of Antennas and

Propagation for Body-centric Wireless Communication, London, UK, 24 April 2007; pp. 33–36.

8. Miller, M.J.; Vaidya, N.H. Minimizing energy consumption in sensor networks using a wakeup

radio. Wireless Commun. Network. Conf. 2004, 4, 2335–2340.

9. Ameen, M.A.; Ullah, N.; Kwak, K. Design and Analysis of a Mac Protocol for Wireless Body

Area Network Using Wakeup-Radio. In 11th IEEE International Symposium on Communications

and Information Technologies (ISCIT), Hangzhou, China, 12–14 October 2011; Volume 1,

pp. 148–153.

10. Shankar, V.; Schwiebert, L. Energy-efficient Protocols for Wireless Communication in Biosensor

Networks. In 12th IEEE International Symposium, San Diego, CA, USA, 8–12 January 2001;

Volume 1, pp. 114–118.

11. Wang, X.; Vasilakos, A.V.; Chen, M.; Liu, Y.; Kwon, T.T. A survey of green mobile networks:

Opportunities and challenges. Mobile Networks Appl. 2012, 17, 4–20.

Sensors 2013, 13 392

12. Chilamkurti, N.; Zeadally, S.; Vasilakos, A.; Sharma, V. Cross-layer support for energy efficient

routing in wireless sensor networks. J. Sensors 2009, 2009, 134165, doi:10.1155/2009/134165.

13. TinyOS. Available online: www.tinyos.net/ (accessed on 20 August 2012).

14. Shah, B.; James, C.; Hui, D.; Jing, D.; Jeff, R.; Anmol, S.; Brian, S.; Charles, G.; Adam, T.;

Richard, H.; et al. MANTIS OS: An embedded multithreaded operating system for wireless micro

sensor platforms. ACM Kluwer Mobile Networks Appl. (MONET) 2005, 10, 563–579.

15. Kim, K.H.; Kopetz, H. A Real-Time Object Model RTO.k and an Experimental Investigation of

Its Potentials. In Proceedings of the 18th IEEE Computer Software & Applications Conference,

Los Alamitos, CA, USA, 22–24 September 1994; pp. 392–402.

16. Kim, J.G.; Kim, M.H.; Heu, S. Architectures and Functions of the TMO Kernels for Ubiquitous &

Embedded Real-Time Distributed Computing. In Proceedings of UIC, Wuhan, China, 3–6 September

2006; pp. 71–82.

17. Davis, R.; Wellings, A. Dual Priority Scheduling. In Proceedings of the 16th IEEE Real-Time

Systems Symposium, Pisa, Italy, 4–7 December 1995; pp. 100–109.

18. Moncusi, M.A.; Arenas, A.; Labarta, J. Improving energy saving in hard real time systems via a

modified dual priority scheduling. SIGARCH Comput. Archit. 2001, 29, 19–24.

19. Kim, H.; Kim, J.G. An Efficient Task Serializer for Hard Real-time TMO Systems.

In Proceedings of the 11th IEEE International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing, IEEE Computer Society Press, Orlando, FL, USA, 2008;

pp. 405–413.

20. Sukor, M.; Ariffin, S. Performance Study of Wireless Body Area Network in Medical

Environment. In Second Asia International Conference on, Kuala Lumpur, Malaysia, 13–15 May

2008; pp. 202–206.

21. Richard, A.; Comroe, D.J.; Costello, Jr. ARQ schemes for data transmission in mobile radio

systems. IEEE J. Selective Areas Commun. 1984, 2, 472–481.

22. μCOSII. Available online: http://micrium.com/page/home (accessed on 10 July 2010).

23. Mainwaring, A.; Polastre, J.; Szewczyk, R.; Culler, D.; Anderson, J. Wireless Sensor Networks

for Habitat Monitoring. In First ACM International Workshop on Wireless Sensor Networks and

Applications, Atlanta, GA, USA, 28 September 2002; pp. 88–97.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

