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Abstract: The focus of many leading technologies in the field of medical sensor systems is 

on low power consumption and robust data transmission. For example, the implantable 

cardioverter-defibrillator (ICD), which is used to maintain the heart in a healthy state, 

requires a reliable wireless communication scheme with an extremely low duty-cycle, high 

bit rate, and energy-efficient media access protocols. Because such devices must be 

sustained for over 5 years without access to battery replacement, they must be designed to 

have extremely low power consumption in sleep mode. Here, an on-time, energy-efficient 

scheduling scheme is proposed that performs power adjustments to minimize the sleep-mode 

current. The novelty of this scheduler is that it increases the determinacy of power 

adjustment and the predictability of scheduling by employing non-pre-emptible dual 

priority scheduling. This predictable scheduling also guarantees the punctuality of important 

periodic tasks based on their serialization, by using their worst case execution time) and the 

power consumption optimization. The scheduler was embedded into a system on chip (SoC) 

developed to support the wireless body area network—a wakeup-radio and wakeup-timer 

for implantable medical devices. This scheduling system is validated by the experimental 

results of its performance when used with life-time extensions of ICD devices. 

Keywords: on-time scheduling; power-aware; WBAN; wakeup-radio; wakeup-timer; 

sensor SoC; ICD; TMO 
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1. Introduction 

Owing to the increase in today’s aging population there has been a gradually increasing demand for 

medical implantable sensor devices such as pacemakers and defibrillators. A major issue in this field 

has been the development of technologies for wireless networking between implantable devices [1–3]. 

One major goal of using this type of communication is to be able to externally monitor patients’ health 

and the status of the devices they wear, both internally and externally. IEEE 802.15.6 [4] is a wireless 

body area network (WBAN) standard for communications between medical implantable devices [5].  

It specifies a frequency band and a Medium Access Control (MAC) protocol as its Physical Layer 

(PHY) for in-body and on-body applications. 

Since implanted medical devices are designed so that they will not need to be accessed for 

maintenance over a long period of time, high-level constraints on power consumption are needed that 

can sustain a device over several years with a duty-cycle of under 1%. Thus, the design of an 

extremely low power RF transceiver [6,7] and a low-power system on chip (SoC) has been an 

important issue. 

In addition, approaches that utilize a wakeup-radio channel [8,9] and an energy-efficient  

protocol [10–12] to minimise the sleep mode current have been introduced. For devices that require a 

low duty-cycle and a long lifetime, power management in sleep mode is far more important than it is in 

active mode. For this reason, the use of a wakeup-radio channel has been included in the IEEE 

802.15.6 WBAN standard as an option. Each hardware block of a sensor-based WBAN device is 

woken up from the power-off state by an external wakeup radio or by the schedule of a device. 

Therefore, a device that uses an external wakeup radio and timer must be able to support efficient 

saving and restoration of the contexts of communication, and sensors that transmit to or from  

non-volatile memory. In addition, the power states of each hardware block, such as a modem, and RF 

and I/O peripherals, must be managed on the system level, so that the system power spectrum is 

reconfigured along with its forward task scheduling. Although low-power operations are important for 

sensor devices, operational reliability must be sustained prior to power consumption in the case of 

medical applications. Applications for medical sensor devices must guarantee the on-time execution of 

periodic sensor data processing and actuator control. For this reason, sensor device applications are 

usually implemented based on a power-aware scheduler that can manage both on-time periodic 

activities and the power consumption of tasks. 

There are two typical approaches to scheduling for medical sensor devices. One is the event-driven 

scheduling approach [13]. Although it is simple and provides a predictable single task model, there can 

be delays in data processing because it processes events in first-in first-out (FIFO) fashion with a 

single task. The other approach is the pre-emptive multi-thread scheduling scheme, which is generally 

used in popular operating systems such as μCOSII and MANTIS [14]. While it offers the benefit of 

ease of design of complex applications, it has difficulty in supporting on-time predictable scheduling, 

owing to pre-emptions and resource conflicts between tasks. Without predictable scheduling, a system 

cannot enter a deep sleep mode. This paper presents a new scheduling scheme that encompasses the 

benefits of both approaches, as it minimizes power consumption and guarantees on-time task execution 

by increasing the predictability of a system, while using multi-thread scheduling. 
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Typical applications for a sensor node can be organized to include time-triggered periodic tasks and 

event-triggered sporadic tasks. If a system can be organised only to manage periodic tasks, the 

system’s predictability can be assured, and it becomes quite easy to determine the time to enter a deep 

sleep mode. For systems in which event-triggered sporadic tasks cannot be avoided, two approaches to 

increase the predictability of a system have been introduced. One of these is the time-triggered 

message-triggered object (TMO) scheme [15,16]. In the TMO scheme, all executions of periodic tasks 

are scheduled with pre-emption in a deadline-based manner. However, the execution of each sporadic 

task is non-pre-emptible, and it can be postponed if there is a potential overlap of executions between 

the nearest periodic task and a sporadic task in the future. This TMO scheduling scheme, which is 

called basic concurrency constraint (BCC) [16], increases the predictability when sporadic tasks must 

be managed. The other approach is a modified form of dual-priority scheduling (DPS) [17,18], which 

resolves the conflicts between periodic and sporadic tasks by giving higher priority to periodic tasks, 

while allowing pre-emptions. In this system, the speed of a CPU is determined based on the deadlines 

and the worst case execution times (WCETs) of the tasks, thus offering improved power management. 

In both approaches, however, on-time scheduling and the completion of a periodic task are not 

guaranteed, because of pre-emptive deadline-based scheduling, so planned static power adjustment 

based on the predictive scheduling of periodic tasks is impossible. 

The scheduler presented in this paper represents a new approach, which supports a planned power 

management scheme by using predictive scheduling based on the non-pre-emptive serialization of 

periodic tasks, while incorporating the concepts of TMO’s BCC and the DPS. At the design stage of a 

task system, all periodic tasks are serialized first by adjusting their initial offsets so that there is no 

resource conflict, no pre-emption, and no execution overlap, in order to guarantee the on-time 

invocation and completion of tasks. Once periodic tasks are serialized by a tool such as the one 

described in [19], deadline-driven scheduling is not necessary, so it becomes possible to determine 

whether or not to postpone the scheduling of a sporadic task. That is, the scheduling of a sporadic task 

is postponed when the system predicts a potential overlap between the execution of a sporadic task and 

the nearest periodic task. This prediction allows for a more planned and efficient power management. 

To implement this scheduling strategy, four major power modes were defined and applied to the 

scheduler so that each power mode supports the minimum consumption for each possible scheduling 

scenario. In particular, the scheduler is designed to maximize the duration of the deep sleep mode, 

based on its predictive scheduling. 

This paper is organized as follows: Section 2 describes the design of an on-time power-aware 

scheduler that is a realization of the above ideas, based on a dual priority scheduler. In Section 3, the 

hardware structure of the developed chipset and the WBAN PHY/MAC protocol on an SoC are briefly 

presented. Finally, in Section 4, we present discussion of the experimental results, and estimations 

based on a simulation of the scheduler and its applicability to implantable devices. 
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2. On-Time Power-Aware Scheduler 

2.1. System, Task, and Power-Mode Model 

In the developed system, a sensor-node application consists of several non-pre-emptible atomic 

tasks. Tasks are divided into periodic tasks and sporadic tasks. All tasks are scheduled only when the 

system is in an ACTIVE state. When the system is put into an INACTIVE state, by either the 

application or the scheduler, scheduling is prohibited until the system is made ACTIVE by either a 

wakeup-radio signal or a wakeup-timer. In addition to the task and system model, the power mode 

model and the operation model of peripheral devices such as sensors and actuators must be considered. 

The following are descriptions of the task, device, and power-mode models. 

Notation 1: A periodic task and its nth periodic execution are denoted by TPi (o, p, w, g, m) 

and TPi
n
, respectively. 

where i is the identifier of a periodic task, 

o is the initial offset of a periodic task, 

p is the period of a periodic task, 

w is the WCET of a periodic task, 

g is the guard time of a periodic task, and 

m is the power mode requested to run a periodic task. 

The guard time of a periodic task is the predefined start-up time needed to enable the power and 

hardware devices for running. All executions of periodic tasks in the system’s ACTIVE mode can be 

serialized by a schedulability analysis tool [19] in order to prevent the pre-emption and overlap of 

executions. Thus, the scheduler can schedule periodic tasks in an on-time FIFO manner and can predict 

the timing characteristics in regard to their execution. The states of periodic tasks are classified into 

RUNNABLE and INACTIVE. The state of a periodic task becomes RUNNABLE when the time_left 

value in its task control block (TCB) falls into a non-positive value because the time_left value is the 

amount of time left until the next periodic invocation. Upon the completion of a periodic job, a 

periodic task becomes INACTIVE. 

Notation 2: A sporadic task and its nth execution are denoted by SPi (e, w, m) and SPi
n
, 

respectively. 

where i is the identifier of a sporadic task, 

e is the event that triggers a sporadic task, 

w is the WCET of a periodic task, and 

m is the power mode requested to run a sporadic task. 

A periodic task can directly activate a sporadic task by sending an event to a sporadic task.  

In addition, a sporadic task can be activated by a device that was initialized by a periodic task. All 

devices of the system, such as sensors and actuators, conform to a typical activity sequence, as follows. 

Each device must be initialized by a periodic task in order to function. After initialization, the device 

works independently and then generates an interrupt. The interrupt handler again generates an event to 
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trigger the sporadic task that is responsible for post-processing. For example, a sensor device 

completes the sampling of data following its initialization by a periodic task, and it then signals the end 

of sampling by generating an interrupt. The sporadic task that is triggered by the interrupt sends the 

sensor data to an external device via a UART port, when it is scheduled. 

Unlike the scheduling of periodic tasks, the scheduling of an activated sporadic task is postponed 

when an overlap is predicted between the execution of the sporadic task and the execution of the 

nearest periodic task. The states of sporadic tasks are classified as SUSPENDED, INACTIVE, or 

RUNNABLE. When a sporadic task terminates its execution and there is no initialized event source for 

the sporadic task, the state is set to SUSPENDED. Once the event-source device is initialized by 

another periodic task, the sporadic task waits for the event in an INACTIVE state. When the awaited 

event eventually occurs, the sporadic task goes into a RUNNABLE state. However, a RUNNABLE 

sporadic task can only be scheduled immediately when the following three conditions are met: 

• There is no current execution of another task. 

• There is no preceding RUNNABLE sporadic task. 

• It is predicted that the execution of the sporadic task will not disturb the future execution of 

the coming periodic task, considering the WCET of the sporadic task. 

If these conditions are not met, the sporadic task must wait to be scheduled until the three 

conditions are met in the RUNNABLE state. Figure 1 presents a diagram of the transition of task states 

with the scheduler. 

Figure 1. (a) State transition of a periodic task. (b) State transition of a sporadic task. 
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With the above task model, four power modes are supported for power-aware scheduling: task-power 

mode, wait_event, sleep_with_timer, and sleep_with_radio. The sleep_with_radio and sleep_with_timer 

are modes for the system’s INACTIVE state, and the others are for its ACTIVE state. The task-power 

mode is a task-specific mode, in that only necessary devices are turned on for the execution of a task. 

This power mode also includes the configurations of the microcontroller unit (MCU) and memory. 

When no task is being run, the system’s power mode can be any one of the following: wait_event, 
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sleep_with_timer, or sleep_with_radio. In the wait_event mode, the MCU and the system timer are 

enabled with the lowest possible power support and the lowest possible clock frequency, such as  

32 kHz oscillator. Devices such as sensors and transceivers that are enabled by a periodic task can be 

kept enabled in this mode following the termination of a periodic task. Therefore, the wait_event mode 

indicates a power mode, in that a periodic task or a sporadic task can be scheduled in the near future. 

The sleep_with_timer mode is a lower-power mode, in that all system power supports are turned off, 

except for the wakeup timer. The system enters into sleep_with_timer when there is no RUNNABLE 

sporadic task, and when the amount of the time left until the next invocation of a periodic task is 

greater than minSleepInterval. The predefined value of minSleepInterval is the amount of time that is 

required for the system to recover its power in order to execute a task. Finally, the system enters into 

sleep_with_radio upon the request of an application. The sleep_with_radio is the lowest-power mode, 

in that all system power supports are turned off except for the wakeup-radio receiver. The contexts of 

the registers and memory must be saved in non-volatile memory when the system enters into either the 

sleep_with_timer or the sleep_with_radio mode. Additionally, the saved contexts must be restored 

when the system exits from one of these modes. 

A power mode transition is performed by the scheduler calling the Power_Adjust() function. The 

Power_Adjust() function is designed to reconfigure hardware according to a given power descriptor 

before and after a task receives a schedule. The reconfiguration of hardware includes the modification 

of the MCU clock rate, voltage scaling, turning on of the peripherals, and scaling of the system timer. 

2.2. Design of an On-Time Power-Aware Scheduler 

The scheduling system consists of two main modules, the task scheduler and the event handler.  

The scheduler keeps the TCBs of tasks either in the periodic task queue (PTQ) or in the sporadic task 

queue (STQ), as shown in Figure 2. 

Figure 2. Structure of on-time power-aware scheduling system. 
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The event handler is responsible for handling hardware interrupts from the system timer, wakeup 

timer, wakeup radio, peripherals, and the WBAN transceiver. For example, when an interrupt from the 

system timer occurs, it updates the time-left values of all periodic tasks. If a task with a non-positive 

time_left is found, the state of the task is changed from INACTIVE to RUNNABLE, and the time_left 
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value is reloaded with the value of that period, minus guard_time, to allow the system to prepare the 

start-up for the task. When there is an interrupt from a device, the handler prepares an event for the 

sporadic task that is responsible for that device and changes the state of the sporadic task from 

INACTIVE to RUNNABLE. If the event handler receives either a wakeup-timer interrupt or a 

wakeup-radio interrupt, it resumes the operation of the system by restoring the system context.  

The scheduler is called when the handling of the interrupt is complete. 

In addition to handling hardware interrupts, the event handler also generates an event to trigger a 

sporadic task at the request of a periodic task, and as a result, the event handler changes the state of the 

target sporadic task from INACTIVE to RUNNABLE. In this case, the scheduler is not called 

immediately, because the periodic task that requested the event is still running. 

Figures 3, 4 and 5 graphically illustrate several scheduling and power adjustment scenarios.  

In Figure 3, ma and ga denote the power mode and guard time, respectively, of the task a. In the 

beginning, the scheduler sets the power mode as ma for TPa and initializes the device D1 at the time of t1, 

which is prior to the starting point of the task instance TPa
i
 owing to its ga. The execution of the 

periodic task instance TPa
i
 activates the sensor device D1 by calling Request(). The system then 

changes the state of the sporadic task SPb from the SUSPENDED state to INACTIVE in order to allow 

the task to wait for an event. When TPa
i
 terminates at t2, the scheduler turns the system power mode to 

wait_event, because there is an INACTIVE sporadic task whose execution is potentially possible in the 

near future. When an interrupt from D1 occurs at t3, the system determines whether or not to schedule 

the sporadic task SPb by considering the WCET of SPb, as well as the earliest possible start time of the 

upcoming periodic task. In Figure 3, when SPb is scheduled, the power mode is set to the task-power 

mode mb, since no execution will overlap with a periodic task, and SPb then terminates. 

Figure 3. Typical power mode transition scenario. 
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When SPb is completed at t2 in Figure 4, the task state is set to SUSPENDED again. At this time, 

the power mode is determined to be either wait_event or sleep_with_timer by considering the time left 

until the next periodic task and the number of sporadic tasks that are INACTIVE. At t2, the power 

mode is set to sleep_with_timer because there is no INACTIVE sporadic task, and the time left until 

the next periodic task is longer than minSleepInterval. At t4, if SPd calls TurnOff(system), the system 

enters into the sleep_with_radio mode. 
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Figure 4. Power mode transition scenario using sleep_with_timer and sleep_with_radio. 
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In Figure 5, when an interrupt from D1 occurs at t3, the scheduler knows that SPb
i
 overlaps with 

TPc
j
, the execution of the next periodic task, by comparing the WCET of SPb with the nearest time-left 

value. As a result, scheduling of the sporadic task SPb
i
 is postponed. 

Figure 5. Power mode transition scenario when there is an overlap of executions. 
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Overall, the scheduler assumes control when the event handler completes a cycle of interrupt 

processing and when the running of a task is complete. The scheduler action is straightforward, since it 

considers the task model, power mode model, and the time when the scheduler takes control of the 

CPU, as follows: 

1. If there is at least one RUNNABLE periodic task, set the task-power mode and call  

the task. 

2. Otherwise, if there is at least one RUNNABLE sporadic task, determine whether or not 

it can be scheduled immediately by comparing the WCET of this task and the time_left 
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value of the next periodic task. If immediate scheduling is possible, set task-power 

mode and call the task. If it is not possible, set the system power mode as wait_event.  

3. If there is no RUNNABLE task but there is at least one INACTIVE sporadic task, set 

the power mode as wait_event. 

4. If there is no RUNNABLE or INACTIVE task, 

4.1. If there was a turn_off_system request from a task, set the power mode as 

sleep_with_radio. 

4.2. Else if the time left until the invocation of the next coming periodic task is larger 

than minSleepInterval, set the power mode as sleep_with_timer. Otherwise, set 

wait_event mode. 

As given above, the running of a task is implemented in the form of a call to a task-body by the 

scheduler, because all tasks run without pre-emption. Figure 6 outlines the scheduler’s actions  

in detail. 

Figure 6. Operations of on-time power-aware scheduler. 

nrp : the number of RUNNABLE periodic tasks

nrs : the number of RUNNABLE sporadic tasks

nis : the number of INACTIVE sporadic tasks

TimeLeft : the amount of time left to the next periodic task

Sched ( )

  1 while   nrp + nrs > 0,  do

  2 if   nrp > 0, then 

  3 Get id of the next runnable periodic task

  4 nrp ← nrp – 1

  5 Power_Adjust ( mid )

  6 Run TPid

  7 Change the state of TPid to INACTIVE

  8 else  if   nrs > 0,  then

  9 Get id of the next runnable sporadic task that can be finished within TimeLeft

10 if   id > 0,  then  

11 nrs ← nrs – 1

12 Power_Adjust ( mid )

13 Run SPid

14 Change the state of SPid to SUSPENDED

15 nis ← nis – 1

16 else

17 Power_Adjust(wait_event)

19 return to event handler

18 if  nis = 0 and there is a request for turning off the system, then

19 Enable_Wakeup_Rradio ( )

20 Power_Adjust (sleep_with_radio)

21 else if  nis = 0 and TimeLeft  >  miniSleepInterval, then

22 Enable_Wakeup_Timer ( TimeLeft )

23 Power_Adjust (sleep_with_timer)

24 else

25 Power_Adjust(wait_event)

26 return to event handler
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3. Implementation 

The proposed scheduler was deployed for use with an implantable cardioverter-defibrillator (ICD) 

device that was developed in a project called ―Component Development of Ultra-Low Power ICTS‖, 

which was supported by the Korean government. The ICD is a small battery-powered electrical 

impulse generator that is implanted into a patient who is at risk of sudden cardiac death due to 

ventricular fibrillation and ventricular tachycardia. The device is programmed to detect cardiac 

arrhythmia and correct it by delivering a jolt of electricity. The device can also transmit health status 

information and alarms to an on-body device. The structure of the ICD device is shown in Figure 7.  

A problem in a patient’s heart can be detected by the difference between the voltages of the two ICD 

leads that are inserted into the heart. The analogue signal is amplified and then converted into a digital 

signal by means of 12-bit analogue-to-digital (ADC) after noise filtering. The acquired electrocardiography 

(ECG)/electromyography (EMG) data are transmitted to an external monitoring device and are 

processed by the application of a cardiac arrhythmia detection device. 

Figure 7. Structure of the ICD device. 

 

For the ICD device, an SoC and its hardware platform were implemented, as shown in Figure 8. 

The transceiver module is responsible for transmitting ECG/EMG signals and signalling an arrhythmia 

by means of an alarm. 

The developed SoC consists mainly of a digital modem, an 8-bit micro-controller, and MAC 

hardware. The digital modem has a modulator with a 6-bit digital-to-analogue converter (DAC) and a 

demodulator with a 4-bit ADC. The 24/12/6-MHz micro-controller executes the 8051 instruction set 

and supports 64 kB of program memory for the software MAC protocol and applications. It also 

provides a four-channel direct memory access (DMA) controller that is used in the saving and 

restoration of contexts. 

The micro-controller also supports four hardware interrupts for two full-duplex serial 

communication interfaces and two 16-bit timers. The hardware MAC supports cyclic redundancy 

check (CRC), forward error correction (FEC), and four programmable timers in order to check the 

timing rules of the MAC. It also supports the 128-bit Advanced Encryption Standard (AES). Table 1 

briefly lists the PHY characteristics. 
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Figure 8. Hardware platform with an SoC for implanted medical devices. (a) Internal 

block diagram of the SoC. (b) SoC layout. (c) WBAN SoC. (d) Bipolar lead connection to 

the implant defibrillation device (medical Ti case, 56 × 43×22 mm). (e) Modules for 

arrhythmia detection/defibrillation (ECG/EMG signal analyser/650 V stimulation), and the 

transceiver SoC module. 
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Table 1. PHY characteristics of the hardware MAC. 

Frequency Band 402–405 MHz 

Channel/BW 10 (300 kHz/Ch) 

Modulation DBPSK/DQPSK 

Data Rate 300 kbps 

FEC BCH 

Pulse Shape Filter Gaussian Filter 

Power Consumption Avg. 12 mA 

Hardwired Low-MAC 
Auto-CRC/FEC, Auto-ACK 

MAC Frame Handling 

RF Wakeup 2.45 GHz (OOK, Avg. 235 nA) 
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Figure 9 presents a profile of the power controllable hardware components. In the figure, the power 

consumption ratio of each block is represented as a percentage. Each minus value enclosed in 

parentheses represents the power saving ratio when a block is turned off. The scheduler turns each 

component on and off using the Power Management Unit (PMU) according to the power descriptor of 

a given task. Two requirements of the developed ICD are that it must be sustained over several years 

with a low duty-cycle (avg. 0.3–0.6%) and must support a high bit rate (about 300 kbps) 

communication. By considering an environment with a high packet error rate [20], it employs the 

selective automatic repeat request (ARQ) [21] and the Bose, Chaudhri, Hocquenghem (BCH) block 

code for FEC. All necessary functions of the protocol were implemented with a number of periodic 

and sporadic tasks. The application to detect a cardiac arrhythmia was also organized with one 

sporadic and one periodic task. Once an in-body device has been alerted by a 2.4 GHz radio signal, it 

makes a handshake with a monitoring device and then begins sensing and transmitting data. 

Figure 9. Power consumption and saving ratios of power-controllable hardware components. 

 

4. Experimental Results 

Several experiments with an animal were performed in order to verify the operation of the ICD and 

the scheduler. Figure 10 shows the main steps of the experiments. 

In order to measure the basic power consumption of the SoC’s communication module, a National 

Instrument PXI 4071 multi-meter device was used, with a transmit data length of 20 bytes, a supply 

voltage of from 1.8 V to 3.3 V, and an MCU clock rate of zero or from 32 K to 32 MHz. The graph in 

the upper part of Figure 11 shows the amounts of power consumed according to the operation time of 

continuous data transmissions. The graph in the lower part of the figure shows the amounts of power 

consumed according to the power mode in a packet transmission. 

Table 2 provides descriptions of the six power modes and the average amount of current consumed 

in each mode. A task that accesses the transceiver works at either PM4 or at PM5. A task that performs 

sensing via the ADC runs in the PM3 mode. In the duration of waiting for an event, the scheduler 

changes the power mode to the PM2 mode. After the processing is complete, the system enters into 

PM1 or PM0 in order to sleep. 
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Figure 10. (a) Experiment with an animal. (b) Detection of ECG/EMG signal. (c) MAC 

frame sniffing. (d) Remote monitoring of ECG/EMG signals. 

 

Figure 11. Amounts of power consumed by on-time power-aware scheduler during 

transmission of packets. 
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Table 2. Power modes and measured current in each mode. 

Power Mode Avg. Current (μA) Description 

PM0 0.235 Sleep with radio mode  

PM1 820 Sleep with timer mode  

PM2 4,023 
Waiting for an event: 32.768 kHz MCU 

Enables half memory one or more standby devices 

PM3 9,944 
Processing data: 6 MHz MCU 

Enables all memory timer, ADC blocks, standby transceiver 

PM4 17,402 
Transmitting frames: full-speed MCU 

Enables all memory, transmitter, and required IO blocks 

PM5 18,532 
Receiving Frames: full-speed MCU 

Enables all memory, receiver requires IO blocks 

The developed system has been compared with a μCOSII-based system. A μCOSII-based system [22] 

with a normal multi-tasking scheduler, however, only supports a simple form of power management, in 

that only the sleep() function and sleep_with_radio are supported. That is, the μCOSII-based system 

does not use the Power_Adjust(), the wait_event, or the sleep_with_timer modes. As can be seen in 

Figure 12, the amount of power consumed by the μCOSII-based system increased because no power 

adjustment and no scaling of the MCU voltage/clock were used for a task. In addition, the operation 

time of the hardware was extended, because the related hardware must be previously turned on for the 

on-time execution of the protocol. 

Figure 12. Measurement of current consumed by μCOSII-based system during 

transmission of a packet. 

 

Based on measurements of the basic power consumption, a simulation-based estimation of the 

lifetimes of the two systems was performed. The power consumption of a device can be defined as the 

sum of the amounts of current consumed in each power mode [23]. These amounts can be obtained by 

multiplying the necessary current I of a given mode by the work time t, where Qtotal is amount of 

electric charge consumed by the module, as follows: 
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The lifetime of an ICD device can be estimated by using the amount of current it consumes, where 

Qbattery is the capacity of battery: 

battery

total

Q
Lifetime

Q
  (2) 

Using the lifetime estimation method given above Equations (1) and (2), the power consumption of 

the hardware devices shown in Figure 9 was modelled using the Mathworks Matlab simulation tool. 

Three inputs were given to the lifetime simulation model: (1) the amounts of power consumed in the 

stepwise data transmission processing, (2) the power consumption and saving ratios of the power 

controllable hardware components, and (3) the duty-cycle, which represents the ratio of the processing 

time of data transmission/reception. In this simulation, a 3,000 mAh battery was assumed, and duty-cycle 

values ranging from 0.2% to 1% were used to determine the work times of the power modes. Figure 13 

shows the resulting comparison of the lifetimes of the two systems. 

Figure 13. Comparison of lifetimes of the two systems. 

 

The results show that the lifetime of the on-time power-aware scheduler is approximately 30% 

longer than that of the μCOSII-based system. This improvement was the straightforward result of the 

intelligent power adjustment that was made based on the prediction of executions in the system’s 

active mode. In the μCOSII-based system, wait_event cannot be used, and the sleep_with_timer mode 

can hardly be used because it does not support such predictive scheduling. In addition, the μCOSII-based 

system must circulate non-optimized power when the system is active, which leads to quite large 

differences in the amounts of power that are consumed in the active and inactive modes of the two 

systems. Another reason for the power saving is that the scheduler can operate with a single stack 

memory because there is no pre-emption, even in the scheduling of multiple tasks. Thus, the scheduler 

can reduce the scheduling latency and the size of the volatile memory, which leads to faster sleep and 



Sensors 2013, 13 390 

 

 

wake-up operations. To compare the scheduling latencies of the developed system and the μCOSII-

based system, an application that performs the acquisition of data from a sensor and the transmission 

of data to an external device was executed 20 times. As shown in the results in Table 3, the new 

system shows, at worst, a scheduling latency reduction of about 5.3%. 

Table 3. Comparison of scheduling latencies. 

 
Multi-tasking 

Scheduler (μCOSII) 

On-time Power-aware 

Scheduler 

Context Switching Time (μs) 35 21 

Scheduling 

Overhead 

(μs) 

Worst 189 170 

Best 170 166 

Average 175 168 

Table 4 presents the MCU utilizations and code sizes of the two systems when the same application 

was launched. The difference in the codeSS sizes is mainly due to the size of the kernels. The MCU 

utilization factors represent when the systems are active. In cases in which the developed scheduler 

was used, the MCU utilization was reduced to 2.32%. This result is attributed to the fact that the 

developed system is smaller and does not need any synchronization primitives because it does not 

perform pre-emption. 

Table 4. Comparison of system resources required. 

 
Multi-tasking 

Scheduler (μCOSII) 

On-time Power-aware 

Scheduler 

MCU Utilization 5.07% 2.32% 

Code Size in Bytes (Data/Program, μs) 5,065/42,155 1,958/33,679 

5. Conclusions 

In order to achieve low-power and reliable on-time periodic operations of a medical sensor device, 

management of the power mode of the system based on the prediction of the timing behaviours of 

tasks is most important. This paper has reported on the development of a new on-time, power-aware 

scheduler based on dual priority scheduling [18] and the TMO’s BCC scheme [16]. The scheduler 

supports three key features. The first is that periodic tasks are serialized without pre-emption or delay. 

This eliminates the synchronization overheads between tasks and makes it possible to have predictable 

power management. The second feature is the postponement of a sporadic task for the on-time 

scheduling of an important periodic task when an overlap between their execution is expected in the 

near future. The third feature is the support of the optimized power mode, which is activated according 

to each possible scheduling scenario. For purposes of commercialization following field tests, the 

scheduler was implemented in a battery-powered electrical impulse generator that was developed as an 

SoC to prevent sudden cardiac death due to ventricular fibrillation and ventricular tachycardia. The 

experimental and analytical results show that the developed scheduler can increase the system’s 

lifetime by up to 30%, as compared to a commercial RTOS-based system, when the duty-cycle is less 

than 1% in a WBAN node. 
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The developed system will be deployed in complex sensor systems that perform acquisitions of live 

body signals and audio/video and environmental information on a textile-based wearable computing 

platform. To deploy the new scheduler in a sensor-based system, the last remaining aspect to be 

clarified involves classifying the power mode of a new system case by case, in order to optimize the 

power consumption. 
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