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Abstract: Feature selection, also known as attribute selection gisebhnique of selecting
a subset of relevant features for building robust object el&dIt is becoming more and
more important for large-scale sensors applications witlcaabilities. The core idea of
this paper is derived from a straightforward and intuitivenpiple saying that, if a feature
subset (pattern) has more representativeness, it shouldtgeself-organized, and as a result
it should be more insensitive to artificially seeded noism{so In the light of this heuristic
finding, we established the whole set of theoretical prilesipbased on which we proposed
a two-stage framework to evaluate the relative importari¢deature subsets, called seeding
and harvest (S&H for short). At the first stage, we inject a hanof artificial noise points
into the original dataset; then at the second stage, wetresan outlier detector to identify
them under various feature patterns. The more preciselggbded points can be extracted
under a particular feature pattern, the more valuable apditant the corresponding feature
pattern should be. Besides, we compared our method withradestate-of-the-art feature
selection methods on a number of real-life datasets. Therewpnt results significantly
confirm that our method can accomplish feature reductidsstagth high accuracy as well
as low computing complexity.
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1. Introduction

There are more and more sensor applications requiringcaatifintelligence (Al), machine learning
and data mining technologies to identify new, potential arseéful knowledge from datasetg]|
which are becoming larger and larger in real life along witle ttmergence of interneg][ and
bio-informatics B]. Thus, data preprocessing is becoming increasingly atueispecially the data
reduction process, by which the Al modules of sensors cotddyce their results within acceptable
computing time.

As illustrated in Figurel, there are mainly two categories of data reduction mettogies$, which are
instance-based ones and attribute-based (feature-basesl)

Instance-based data reduction methods like various saggkchniques have been studied
thoroughly B,5], whose main purpose is to reduce total entities in a datas&dwever, in many
applications such as decision support, pattern recognara financial forecast$], we cannot solve
the whole problem only relying on instance reduction, beedbere are often hundreds, thousands, even
millions of attributes in real-life datasets, and most aithmay be irrelevant or redundant. That is to
say, the bottleneck here lies in the number of featuresgaaksof the number of instances. Meanwhile,
as we know, high dimensionality of data may cause the “curfsdimensionality” problem T].
Therefore, attribute-based technologies deserve to lugestuleeply to find more effective and more
efficient methods, with which the total features of a datasetbe dramatically reduced, thereby more
sophisticated Al algorithms could become feasible on ldghensional datasets.

Figure 1. Categories of data reduction methods. The categories tinahethod belongs to
are in boldface.

instance-based methods
data reduction< feature transformation

attribute-based method< wrapper
feature selection<

filter

Refer to the third column of Figurg attribute-based data reduction methdg]44ll into two general
categories. One is feature transformation, and the othfatsire selection. They are distinct from
each other in whether new features are produced or not. fleea&nsformation methods like principal
component analysis (PCAPR] and factor analysis (FA) transform original features istmme new
features and factors respectively, which are probablycdiffito interpret for human being4d{]. In
contrast, the methodology adopted by feature selectiohadstis trying to search for the most valuable
feature subset heuristically (searcher) under certaingiieed feature subset evaluation criterion
(evaluator). Why is the searcher required? As we have pbiot, the number of features is often
huge, not to mention the number of possible feature subs®isjs impractical to impose the evaluator
on each possible feature subset to get the best®n&dr instance, if we have a datasetdfeatures,
the number of possible feature subsets will rezghwhich will become prohibitively large even with a
moderately increasing. So, cooperating with the evaluator, a heuristic searcheften required and
employed in feature selection tasks. Greedy hill climbing &est first search are two classical search
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methods adopted widelyL]]. Meanwhile, some sophisticated methods such as geneaticlsf 2] and
fuzzy reasoning searci 3] can also be employed.

According to what kind of evaluator has been adopted, afeatiection methodology can be further
categorized into a wrapper or a filter, which are distinctrfreach other in whether a specific Al
algorithm is required as the measure of relative importaricifferent feature subsets (the last column
of Figure 1). Specifically speaking, in a wrapper method, an Al algonitmust be predefined, and
the performance of this Al algorithm under a particular featsubset is seen as the measurement of
the relative importance of this feature subset. For examplide dataset is going to be mined by
C4.5 classification algorithmlfl], then the relative importance of a feature subset couldva&uated
according to the accuracy of C4.5 algorithm performed unbat feature subset. Every coin has
two sides: on one hand, wrappers can achieve good resulie ifeature-reduced dataset is going
to feed the same Al algorithm that has already been emplaydta evaluator. But on the other
hand, because of losing generality, wrappers are pronedg@édormance when the feature-reduced
dataset is going to feed any other Al algorithm that is déférfrom the one employed in the evaluator.
Moreover, wrapper-based methods are often too slow to gmpltarge scale applications, especially
in circumstances where sophisticated Al algorithms arelimd. In contrast to wrappers, filters are
independent of any specific Al algorithm by taking advantafjgsome general criteria to evaluate the
feature subsets. Since filters are more adaptive and effitiey are becoming more and more popular
in high-dimensional Al and data mining problems. In thisg@@ajo tackle the feature reduction problems,
we proposed a filter-based feature selection method, wiagldmbs to the boldface categories in Figlire

From another aspect of whether the label (class) informaiso considered, feature reduction
methodologies can also be classified into supervised andpengsed ones. As we see, the label
information may be difficult to access in many applicaticarg] there are more and more datasets given
without label information. Hence in this paper, we will centrate on the unsupervised methods. As we
can infer, because supervised methods take the auxilibgy laformation into consideration, they are
probably more suitable for classification tasks, while ypesuised methods are prone to be more suitable
for clustering tasks15]. Thus, most of the theoretical analysis, practical exaspand performance
evaluations in this paper are clustering-oriented.

Generally speaking, in this paper, we proposed a flexibladmork called S&H, which is capable of
ordering feature subsets according to their relative irigmme (sorter). To cooperate with the sorter, we
improved the traditional heuristic searching methodaegnto order-based ones, which can be called
ordinal searchers. The above two components—sorter anmthbsgarcher—compose our main structure
to handle the feature selection problem, which is distinmif the traditional “evaluator and searcher”
structure, as we concentrate on “orders” but not “valueshatTproperty makes our structure more
sensible and straightforward, because the underlyinggserpf feature selection is just to find out the
best feature pattern, but not to answer how superior thatregattern is quantitatively.

As stated above, our S&H sorter framework was initially insg by a simple intuitive principle,
namely, if a feature subset has more representativenasmuitd be more self-organized, and as a result
it should be more insensitive to artificially injected nos@nts. That is to say, our S&H sorter can be
divided into two main stages. The first stage is called “segdiand the second one is “harvest”. At the
seeding stage, we inject some artificial noise points ireaititaset, and in the harvest stage, we resort to
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a uniformly partitioning-based outlier detectd€] to identify them from the original dataset. From this
novel point of view, the S&H framework virtually turns theateire subset ordering problem into outlier
detection problem—the relative importance of feature stdbsan be assessed and ordered according
to how precisely the artificial noises (outliers) can be cketg under these feature subsets. One may
wonder, why we call S&H a framework? As one can infer, S&H i$ confined to specific kinds of
seeder and harvester. That is, other kinds of noise gengr@eeder) and outlier detection (harvester)
algorithms can also be adopted to construct a new S&H impiaien. For instance, instead of the
random injection methodology we adopted, people can algdmmome kind of deterministic grid point
injection methodology in the seeding stage. Analogouslthe harvest stage, a lot of other off-the-shelf
outlier detection methods can also be employed, such as L@rRahd iForest 18]. Although our
S&H framework is flexible to have plenty of variants, to be cate, only one S&H implementation
will be studied thoroughly in this paper, where the uniforrdistributing-based seeder and uniformly
partitioning-based harvester will be adopted.

Although derived from an intuitive principle, our methodgy is based on solid theoretical
foundations. The key points are listed as follows:

1. We modeled the feature-selected clustering problem intoigaraus optimization form
in mathematics.

2. We proposed the concept of coverability, which was provedbeoan intrinsic property of a
certain dataset.

3. We showed that solving the feature selection problem isleqfiading the specific feature pattern,
under which the dataset exhibits the smallest coverability

4. We found the correlation between coverability and the plodia with which the seeded points
can be detected correctly.

5. We eventually concluded that solving the feature selegirablem is equal to finding the specific
feature subset in which the seeded points can be extractetaxactly.

This paper is organized as follows: In Sectidnwe review some related work. In Secti@nwe
present our main principles involved. The practical intetation of the theories is given in Sectidn
with some important considerations in practice. In SecBpwe describe the implementation of our
methodology in detail, and provide the main algorithms iaym-code. The comparison experiments
on extensive datasets are analyzed in Se@&j@md finally, our conclusions are presented in Secfion

2. Related Work

This section briefly reviews the state-of-the-art feat@lecion algorithms, which can be categorized
according to a number of criteria as we have illustrated gufFg 1. Unless stated otherwise, we only
focus our attention on filter-based feature selection nustho
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A rather simple attribute ranking method is the informatgam [19] (IG) method. It is based on the
concept of entropy. Equatioi) and EquationZ) give the entropy 0] of the class before and after
observing the attribute, wherestands for an attribute andstands for a class.

H(C) == p(c)log, p(c), (1)
ceC
H(C|A) == p(a)> p(cla)log, p(cla). 2)
acA ceC

Thus, we get the information gain (IG) for attribute from Equation 8)
IG;, = H(C)— H(C|4;). (3)

Inspired by IG, people developed a lot of more sophisticatéatmation-based methods. Liu et al.
introduced the dynamic mutual information meth@d][ and Yanet al. introduced a correntropy-based
method 2] recently.

Relief [23,24] is a typical instance-based attribute ranking method. dtks by randomly sampling
an instance and characterize its nearest neighbours. Redamez has extended it for attribute subset
evaluation £5].

CFS p,26] was the first of the methods that evaluate subsets of at#igbrather than individual
attributes 19]. Its main hypothesis is that a good feature subset is thelmtecontains features highly
correlated with the class, yet uncorrelated with each offleis heuristic assigns high scores to subsets
containing attributes that are highly correlated with thess and have low inter-correlation with each
other. The following equation:

kTer
Vk+ (k=17

gives the merit of an attribute subset, whefgis the average feature-class correlation, afpdis the
average feature-feature inter-correlatiohlerits denotes the heuristic “merit” of a feature subset
containingk features. Compared with other methods we have mentionesl,ciboses fewer features,
is faster and produces smaller tre#S][

Consistency-based metho®¥ 28] look for combinations of attributes whose values divide tlata
into subsets containing a strong single class majority. allguihe search is biased in favor of small
feature subsets with high class consisterdd].|

All the above are supervised feature selection methods. p@oed with them, the unsupervised
methods do not need class labels. Next, we will review sonsepgrvised methods.

A common category of unsupervised feature selection melbgg is the one based on various
clustering technologies. For example, Dy and Brodley psepoa cluster-based metho@9],
which explores the feature selection problem through FSSEeature Subset Selection using
Expectation-Maximization (EM) clustering) and two di#et performance criteria for evaluating
candidate feature subsets: scatter separability and nuaxillkelihood. Hong et al. proposed a feature
selection algorithm for unsupervised clusteri®@][ which combines the clustering ensembles method
and the population-based incremental learning algoritfihe main idea of this algorithm is to search

Meritg =

(4)
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for a subset of all features such that the clustering algorirained on this feature subset can achieve the
most similar clustering solution to the one obtained by aearble learning algorithm. With the idea of
selecting those features such that the multi-cluster sire®f the data can be best preserved, Cai et al.
proposed their method recent¥]].

There also exist other kinds of unsupervised methods. As mmevksome transformation-based
methods like PCA and FA are statistical unsupervised mathehkich have been discussed in Section
Besides them, a spectrum-based mett#ig [s proposed by Zhao and Liu. Moreover, Mitet al.
proposed an unsupervised feature selection method usatgréesimilarity B3]. In summary, the
unsupervised methods evaluate feature relevance by trabitip of keeping certain properties of
original data P1].

Generally speaking, the most significant difference betw#®s work and other unsupervised
methods resides in that, we are the first to resort to outktedaion technologies to study feature
selection problems. This purpose is achieved by means ofumgtamental theories, which will be
covered in the next section.

3. Main Principle

Before introducing our theories, we believe that we showthadnstrate the importance of feature
selection through a simple but concrete example.

Let us consider the simple clustering problem illustrateldigure2. In this problem, two independent
jointly Gaussian clusters are generated, and they arenclistom each other only in their horizontal
means (Figure(a)).

Figure 2. The effect of feature selection, where the only differene®veen the two clusters
lies in the fluctuation of their horizontal means.

(c) Feature-selected
(a) True result (b) Standardc-means k-means

Thus, we can conjecture that the most valuable informatsides in the horizontal dimension. To
clarify this point, we try to cluster this dataset using sfaml 2-means metho®4]. Figure 2(b) gives
the result when both features (dimensions) are considevbie Figure2(c) shows the result when
only the horizontal feature is employed. It is obvious froboee two figures that the accuracy can
be improved dramatically if somehow we can know that the zuomal feature is more valuable and
thereby apply clustering using that feature only. Through simple but explicit example, we see that
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feature selection is so important that it is indispensataflot of clustering applications, especially in
high-dimensional circumstances.

Because of the intuitive and heuristic natures of our metlagy, it would be much more
straightforward to explain through visible examples ottiam pure theories. Thus, in the following,
as a beginning, we will represent the core ideas of our metlbgg through the analysis on a simple
synthetic multidimensional dataset.

3.1. The Intuitions Derived from A Simple Example
Let us inspect the synthetic dataset shown in Figure

Figure 3. Scatter plots for the synthetic dataset consisting of 4batts:a, b, ¢, andd.

o o -‘ 9
o @ o c)0 o °
8. Wiy pCkpe &b,
X g e il

o oo®

o
\J
)
8P| |e

@
&

oo, o‘go ° ol |o ocoo o ° °
) ©
: st [Hgek

o

&Q%
oo

R

N

Og’cp%)o oogo@o‘moeo
5 880 S8 o g

cpO gO Og% (e} o

& o%og%g%gf d
oo ‘8%0 °

© oR®
<l © " %q O%Q’o °
0B 0%o°og,e 905%, <]
Pl B O®  o0® Qe

This figure gives the linked two-dimensional scatter pldtswr synthetic multidimensional dataset
consisting of 4 independent attributes labeted, ¢, andd, wherea andb are normally distributed
while ¢ andd are uniformly distributed. Two more things should be paindeit here. First, the linked
two-dimensional scatter plots are a display technique, bichvmultidimensional observations can be
represented in two dimensior&y. For example, Figur8 shows two-dimensional scatter plots for pairs
of these attributes organized a$ & 4 array. Second, our method does not rely on any prior assampti
of underlying distributions of attributes. We adopt themaland uniform distributions here to make this
example as evident as possible. Therefore, let us inspes tiipical attribute subsetsf«; b}, {b, ¢}
and{c, d} of this dataset, and we can easily find out that, in the sulgflattributea andb (the cell in
the cross of the second row and the first column of Fi@)réhere are two normally distributed clusters
in the top right corner and lower left corner, while in the glas of attribute subsdb, ¢} (the cell in
the cross of the third row and the second column of Figd)rand {c, d} (the cell in the cross of the
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fourth row and the third column of FiguB, there are two belt-shaped clusters and no significanterlus
respectively. To make it clearer, we extract the subplote@Bbove three attribute subsets and list them
in Figure4.

Figure 4. The significance (relative importance) order of attributesets— a, b}, {b, c}

and{c, d}.
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Now, let us inspect the fundamental problem of orderingdftbsee attribute subsetsa( b}, {b, c}
and{c, d}) according to their merits (relative importance). As oneyroanjecture that, the relative
importance of attribute subsets can be qualitatively asskby means of the entropy criterion. The
concept of entropy is involved in the information theory. ugbly speaking, entropy can be called
uncertainty, meaning that it is a measure of the randomrfassidom variables36]. That is, the more
uncertain (larger entropy) the dataset appears under #isptribute subset, the less important this
attribute subset should be. Meanwhile, from a glance of féi§u we can easily sort the patterns of
scatter plots in terms of their significance (Figdde Considering the fact that a significant pattern of
image always implies a small entropy, we infer that attebstibset «, b} is the most important one,
and{c, d} is the most unimportance one, while the relative importaride, c} lies between them. This
order is consistent with that illustrated in Figute

If we denote the merit of an attribute subseas Meritg, then from the above, we conclude that the
order of merits can be expressed as:

Meritgapy > Meritgy, o, > Merity.q. (5)

Next, we consider what will happen if we inject some artificiaise points into the dataset. Figlie
shows the consequence of noise injection, where 20 unijodatributed random points are seeded into
the original dataset.

First, let us inspect the plot of attribute subgetb} in Figure5(a). In this figure, we can find
very clear borders between the original points marked adesirand the seeded points marked as
crosses. Besides that, there are only three crosses papgutathe domain of the two original normally
distributed clusters. In summary, in the plot{af, b}, the original points and the seeded points are quite
distinct from each other.

Similarly, let us inspect Figurg(b). We can find much blurred borders between the originaitgoi
and the seeded points, and there are about 11 crosses jpogpuiahe domain of original points. So, in
the plot of{b, ¢}, the original points and the seeded points are not as wedratga as in Figurb(a).
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Finally, we inspect Figurg(c). In this figure, there is no border at all. All seeded p®are merged in
the “ocean” of original points. It is really difficult to disiguish the seeded points from original points,
without extra information provided. That is to say, the Istveignificance of seeded points appears in
attribute subsefc, d}, as Figures(c) illustrates.

Figure 5. The effect of seeding. Circles are original points and @esse the artificially
injected noise points.
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As can be seen, the above 3 subplots (Figi(ee-c)) are ordered in Figurg according to their
significance of seeded points. Noticing that this order isscgient with that in Figurd, we infer that
the significance of artificially injected noise points is pwsly correlated with the merit of attributes
subset. Mathematically, we denote the significance of sepdmts in attribute subsét asSiggs, then
we get:

Sigapy > Siggpey > Sig{c.d)- (6)

Noticing that Equationq) is consistent with Equatiorb), we induce:
Merits o< Stgs. (7)

In practice, if seeded points are more significant, then #reymore likely to be identified from
original points. That is to say, we can evaluate the relatiyeortance of different attribute subsets in
terms of how precisely the seeded points can be detected tihveke attribute subsets. This is indeed
what Theorenb (of Section3.5) will try to tell us. Hence, through this example, we havaddshe
flavour of Theoren® from a practical point of view.

With the above intuitions, as a starting point of the thaoattanalysis, we will present the modeling
of standard clustering problems in the next section.

3.2. Modeling of Standard Clustering

We consider a datasé? with n instances ang attributes (features). We can denote this dataset as
ann x p matrix D. Furthermore, to denote one attribute, we expressttheolumn ofD as vectord,.
Besides, thgth data point (observation) is denoted as veotowhich is thejth row of D.
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Now, let us consider the standard clustering problem. If eeotie the set of all possible clustering
patterns a€’', then a concrete clustering pattern can be expressed as veetherec € C'. First, we
give the concept of clustering evaluation function.

Definition 1. Clustering Evaluation Function. There is a functidf(D, c) of data matrixD and
clustering patterrc € C. Under F', a relation R can be defined as:

R={(cy,c2) | F(D,cy) > F(D,cq) andcy,cy € C}. (8)
If Va, b, c € C the followings hold simultaneously:
1. (a,a) € R (reflexivity);
2. If (a,b) € Rand(b,c) € R, then(a, c) € R (transitivity);
3. Either(a,b) € Ror (b,a) € R (totality),
then we call this functiod” a clustering evaluation function (CEF).

Essentially speaking, the relatidghdefined above can be interpreted in the sense of commonf'bette
than” relation. If a function?’ is defined, then the correspondifgs determined simultaneously. As a
result, all the possible clustering patterns can be evadliabhd compared with each other according to
the function values of.

Furthermore, based on the properties enumerated in Defidifiwe can define the best clustering
pattern set (BCPS) as follows:

Definition 2. Best Clustering Pattern Set. SBt(B C () can be called a best clustering pattern set
under CEFF, if ¥x € B andVc € C, (x,c) € R holds, whereR is defined in Equatiors).

There is an interesting result under above definition.
Theorem 1. Vx,y € B, whereB is the BCPS under Definitio?y we haveF' (D, x) = F(D,y).

Proof. Here, we will prove it by contradiction. First, we assumetthdD,x) # F(D,y). Without
losing generality, we can further assume that,

F(D,x) > F(D,y). 9)

From Definition2, we knowB C C. Becausex € B, we getx € C'. Again, from Definition2, we can
get(y,x) € R, thatis,
F(D,x) < F(D,y). (10)

Because Equatiori() contradicts Equatiorfj, we conclude,
F(D,x) = F(D,y).

O

Generally speaking, every clustering methodology hasvits distinct CEFF', and because of the
preceding discussions, the standard clustering problenbe@xpressed as an optimization problem.
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Definition 3. Standard Clustering Problem. The standard clustering fgobcan be defined to be an
optimization problem as
max {F(D,c)}, (11)

ceC

whereF’ (D, c) is a CEF.

Together with Definitior8, theoreml clarifies a simple truth, saying that all the clustering gais in
BCPS have equally maximized CEF value, which can be foundysblving the maximization problem
expressed in Equatiod ). That is to say, if and only if under cluster patterns in BCIP8 target dataset
D can be clustered most effectively, in terms of a specific GEF

To make the above theories more concrete, the startidarelans clustering will be investigated here.
Given a dataseD of observationgo,,0.,...,0,), where each observation ispadimensional real
vector,k-means clustering aims to partition thebservations inté sets(k < n) ¢ = (51,59, ..., Sk)

S0 as to minimize the within-cluster sum of squares (WCS3§]) [
k
min > > loj —pll* ¢ (12)

=1 OjESZ'

wherep; is the mean of points if;, andC'is the set of all possible clustering patterns. The minitnra
problem in Equation)2) can also be expressed as the following maximization proble

k
maxq = > o~ mll” b (13)
=1 OjESi
Thus, if we define a function as
k
kaeans = - Z Z ||0j - u’i||27 (14)
=1 0j€S¢

then the optimization problem stated in Equati®B)(is consistent with that in Equatiod ). Next, we
will prove that, the functiorf},,.....s defined in Equationld) is indeed a CEF fok-means clustering.

Theorem 2. Equation (L4) defines a CEF.
Proof. According to EquationX4), for arbitrarya, b, c € C', we have:
1. Becaus&cans (D, a) = Frmeans(D, a), we have(a, a) € R;

2. If (a,b) € R and(b,c) € R, then Fycans(D,a) > Frpmeans(D,b) and Fypeans(D,b) >
kaeans(Da C)’ as a reSUltkaeans<D7 a) 2 kaeans(D7 C); that iS(a, C) S R,

3. Because eithefycans(D,a) > Frmeans(D,b) OF Frpmeans(D,b) > Frmeans(D, a) holds, then
either(a,b) € Ror(b,a) € R holds.

Thus, we know Equatiorild) defines a CEF. O
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Theorem?2 tells us that,

k
F==>"3"lloj—mllP (15)

=1 0j€S¢
in k-means clustering. And thlemeans clustering problem conforms with the definition aislard
clustering problem (Definitio).

3.3. Modeling of Feature-Selected Clustering

In this subsection, we will investigate a special kind of C&tled feature-additive CEF.

Definition 4. Feature-additive CEF. If a CEFF' can be expressed as:

F(D,c) =Y fi(d;,c), (16)
=1

whered, is thelth column ofn x p data matrixD, then this CEFF is a feature-additive CEF, and the
function f;(d;, c) is thelth feature-oriented subCEF. Accordingly, clustering neihbased on this kind
of CEF can be called feature-additive clustering methods.

Hence, by substituting Equatio@) into Equation {1), we can express a feature-additive standard
clustering problem as the following optimization problem:

Tea(/}‘( {Z fl(dl, C)} . (17)
=1

Again, we resort td-means clustering to make it more concrete.
Theorem 3. K-means clustering is feature-additive.

Proof. From Equation15), we get:

k
P =303 oy il

=1 OjESZ'

k P
= =2 > D (o —pa) (18)

i=1 0;€5; I=1
p k
= > =2 > la—m)*|. (19)
=1 i=1 0;€S5;

Theo,; andy; in Equation (8) are thelth components of vectar; and ., respectively. With respect to
Equation 19), if we define,

:
fi==>_)" (05— pa)*, (20)

i=1 0‘7'651'

then from EquationX9), we have,

F=> f (21)
=1
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Noticingo;; = d;;, we can get,

k
fi=— Z Z (dij — pa)*. (22)

=1 0j€S¢
In Equation 22), f; is a function of feature vectad; and clustering pattern vecter According to
Definition 4 and EquationZ1), we conclude that-means clustering is feature-additive, and its feature-
oriented subCEF is defined in Equati@#). ]

The introduction of feature-additive clustering is valleakin the sense that the feature selection
problem can be elegantly expressed as an optimizationgrobl

Definition 5. Feature-selected Clustering Problem. There is a featulédave CEFF', and its feature-
oriented subCEF for featuris f;. Thereby all the f; form a vector functiofi = (fi, f», ..., f,). Then
a feature-selected clustering problem becomes an optiraizproblem defined as:

w,c

p
max > wifi(dic)
=1

. (23)
subjectto w; € {0,1},1 <1 <p,
ceC.
Or, in the vectorial form as:

max w-f(D,c)

subjectto w € {(wy,wa,...,wy) |w, €{0,1},1 <1 <p}, (24)
ceC.

In Equation23, whenw = (1,1,...,1), we see that the feature-selected clustering problem can be

transformed into a standard clustering problem defined wmakgn (L7). That is to say, the standard
clustering problem is just a special case of feature-sateclustering problem, where all the features
are selected. To be concrete, according to what Definfismggests, we can generalize the standard
means into a feature-selected one. Recalling the exampigume2, where we have given the clustering
results of standard and feature-selectecheans respectively, we see that feature selection progess
essential td-means clustering, even in the case dealing with such a sidgiaset.

One may wonder how the optimization problem in Equa8rcan be solved. In Equatiazs, if a
clustering patterr is given, thenf;(d,, ¢) will be determined simultaneously, as a result, the problem
in Equation23 can be treated as a standard binary integer programming gBdBlem, which has been
studied thoroughly in mathematics. For instance, the Badd#ive algorithm37] is a sort of specialized
branch and bound algorithm for solving standard BIPs. Sirtyi if a feature patterw is given, the
problem in Equatior23 can then be treated as a standard clustering problem, bydeoing only the
features selected hy. From the above discussions, we can employ a rolling maneénadology 84]
to handle the whole optimization problem. That is, first watsvith a particular feature pattea such
asw = (1,1,...,1), and then under this given feature pattern, an optimizesteting pattere can be
obtained accordingly, by a standard clustering proced8tédsequently, we fix this, and do a Balas
BIP optimization to get a new. With this neww, the above procedures could be performed iteratively
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until w andc converge. Although this kind of rolling optimization seefesasible in theory, it cannot
guarantee to give the global maximum, and often gives jugtal Imaximum. Meanwhile, considering
the enormous complexity of this method, we are still moadadio develop more effective and efficient
algorithms to tackle the feature-selected clustering lerab

3.4. Coverability and Its Properties

As discussed previously;-means clustering has some valuable properties, such asdthgvity
of feature-oriented subCEFs, which gives us the optinomaperspective to tackle feature selection
problems (Equatior23). In this subsection, we will introduce the concept of cadglity, which can
provide us another novel perspective for feature selection

As we know, a clustering pattern can be expressed as a vett@oiot sets, denoted as
c = (51,95,...,5k), whereS; represents theth cluster, which is a set consisting of th&:) data
points belonging to this cluster.

Now, let us inspect clustef;. In this cluster, there aréV(i) data points indexed by the set
I; = {i1, 42, ... inG }, SatisfyingS; = {0;,, 0, ... aOz‘N@)}- The mean (arithmetical average) of these
points is denoted gg,. That is:

Z]Y:(i) O,
;= W (25)
Then, the mean-squared error (MSE) for clustgis:
NO o, — |2
vse, = 2t llo, = wil 06

N (i)
If we treat\/MSE; as a kind of radius, then we have:

Definition 6. Effective Radius and Effective Circle. Regarding clustemwe call a radiusy; satisfying
p? = MSE or p; = +/MSE the effective radius of clustet;. Accordingly, the circle centered at; with
radius p; is the effective circle of cluste;.

As we know,/MSE; can be regarded as the standard deviation of samples irichjstAppealing
to Definition6, the effective radiug; measures how widely the instancesSinare spread. Accordingly
the effective circle vaguely confines the space of influedfaduster S;. To be concrete, the two bold
circles in Figures illustrate effective circles visibly.

With above definitions, we can give the rigorous definitioma¥erability now.

Definition 7. Coverability. = The coverability for a dataset is the infimumh the sum of
N (i)-weightedp?, wherep; is the effective radius ;. That is

k
_ N2
Q:—igg{izlj\f(z) pl}. (27)
The following theorem can help us to interpret the essencewdrability more deeply.

Theorem 4. The coverability of a dataset is equal to the infimum of WCSS.
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Proof. Because? = MSE;, we have

c - o es)

7

. 2 Moy, — P
- 522{ AN

)

hE

IIMw

2

i)
llos, — il * ¢ . (28)

1

= inf
ceC

-

7

1y

O

Because the infimum of WCSS for a specific dataset is definliepiiem4 essentially tells us that
the coverability is an intrinsic property for a dataset amtkjpendent of any concrete clustering method.
Reviewing Theorem, one may ask that, isn't WCSS good enough? And why did we btthetroduce
the concept of coverability? Roughly speaking, what Theodepresented is just one perspective to
interpret the concept of coverability. And the essence wécability can only be exposed from another
point of view, where coverability is interpreted as the ipdf a dataset to cover seeded points and make
them difficult to identify. We will explain this in detail bev.

What are seeded points? Look at FigGragain, some artificial noise points (the crosses in Figlre
are injected into the original dataset. We call these adilficoise points seeded points or just seeds
for short.

Figure 6. An example. Bold circles are effective circles for the twasters respectively.
Those little circles are original data points, and crossessaeded points with uniform
distribution law. This dataset has been optimally clusteead the points belonging to the
left-bottom cluster have been marked by solid circles.

To determine the quantity of seeds, we denote the numberediesepoints agv,. Hence, we can
define the signal-to-noise ratio to be

n
NR= — 2
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where the total number of instances in original dataset ot asn as before. In the example of
Figure6, we adopt SNR= 10. Besides that, we should also note that, the seeded poatséormly
distributed into the data space spanned by the original paiats. We will discuss the SNR and
distribution law again in Sectio.6.

Now, let us try to interpret the termAX:) - p? of Equation 27), when the infimum has been achieved.
From Figure6, we can see that if a seeded point is totally covered by aerlustvill be very difficult
to be identified from the original points, thus we can call faded seed. In contrast, if a seeded point
departs from any cluster far enough, then it is distinct aardlze extracted easily, so we call it a distinct
seed. For a specific clustgf, recalling that the area’ (we do not care about the constartiere) of the
corresponding effective circle is a measurement of thegarighis cluster, we can infer that, the bigger
the effective circle is, the better the coverability will,lzes a result more seeds will be faded. Besides,
the number of points irb; (/N(7)) is another important factor that is tightly relevant to embility.
Assuming that two clusters with the same size of effectiveles are given, we can easily infer that the
cluster with more data points is prone to higher densitychdhis more capable of covering seeded
points, and eventually will be superior in coverability.rdbgh the above discussions, Equatigii) (as
a whole can be interpreted as the overall seed-coveringyadilall the clusters in a dataset, when the
WCSS has been minimized.

Next, let us consider the probabiliy, with which the seeded points can be distinguished from the
original data points correctly. From the above analysig @bvious thatP is closely related with the
coverability of a dataset. If the coverability is largegtha seeded point is more likely to be covered by a
cluster less likely to be detected by an outlier detectousie can infer thaP is inversely proportional
to the coverability of a dataset.

From the above, we can summarize and make our fundamentatltegis as follows.

Hypothesis 1.The probability”, with which the uniformly seeded noise points can be detecteectly,
is negatively correlated with the coverabilityof a dataset.

As we have pointed out, coverability is an intrinsic propeidr a dataset, hence Hypothedis
essentially tells us thaP is also an intrinsic property for a dataset. We can explain ithis way
that if a dataset is given, then how possibly the seededsoart be detected is determined accordingly.
Furthermore, if we treat the uniformly injected seeded {so@is outliers against the original dataset, then
we can adopt a particular outlier detector to eval(Rat8ecauséP is determined on a concrete dataset if
the outlier detector is given, the validity of Hypothesisnly depends on the characteristic of the outlier
detector we adopted. That leads to the definition of idedierdetector as follows.

Definition 8. Ideal Outlier Detector. An outlier detector is an ideal aatl detector if and only if
Hypothesidl holds when this outlier detector is adopted.

Essentially speaking, the requirement that Hypoth&smposes on an outlier detector is that the
correct detection probability should be negatively cated with the space covered by the original
points. This requirement is so loose that Hypothdsseems to be a characteristic feature of outlier
detectors in general. In this paper, whenever we talk aboatidier detector, we exclusively refer to the
ideal outlier detector, where Hypotheg&ikolds. In practice, the validity of Hypothesisan be verified
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phenomenologically by experiments or mechanisticallyHgoties. Through plenty of experiments and
theoretical investigations, we have found that most exgsbutlier detectors can be treated as ideal outlier
detectors to some extent. It again confirms that Definoeveals a sort of general property for outlier
detectors. In this paper, we will give a detailed descriptod the uniformly partitioning-based outlier
detector in Sectiod.1 Furthermore, in Sectiof.2we will prove that it conforms to Hypothesis

3.5. Feature-Projected Coverability and Its Properties

From now on, we will take the feature selection effect intosideration, which is indicated by the
vectorw as before. With feature selection, an observatioren be projected into a feature-selected
vectoroy,, defined as

O =w -0, (30)

where only the components corresponding to the “1” elemehts are relevant and survived from
feature selection. According to EquatioB0j, we have the following results in the feature-selected
situation, by improving Equatior2p) and EquationZ6).

For clustersS;, the mean of this cluster in the feature-selected circumesta is denoted ag,, ;.
That is

S Mo,
R e St i 31
P N(Z) ( )
Then, the feature-selected mean-squared error (MS&r clusters; is
NO o . — 112
MSE‘wﬂ‘ _ Z]:l || |w,i; IJ’|w,z|| . (32)

N(z)
Analogously to Definitiors, we can define

Plwi =V MSE,;. (33)

Thus, similar to Definitiory, the coverability for a feature-selected dataset can baetbhs

k
— N2
With the above discussions, we can define the optimal fegiattern as follows.

Definition 9. Optimal Feature Pattern. We call a feature pattesp the optimal feature pattern if
w, = argmin {(’:|w} , (35)

wherew € {(w1,ws,...,wp) |w, € {0,1},1 <1 <p}.

Again, we would like to explain DefinitioBin a concrete manner by investigatikigneans clustering.
The following theorem will reveal the underlying relatitms between optimal feature pattern and the
optimization problem defined in Equati@3.

Theorem 5. In feature-selecteél-means clustering, the maximum of Equat&3tan be achieved if and
only if the features are selected according to the optimatiiee patternw, defined in Definitior®.
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Proof. From Equation30), Equation 82), Equation 83), and Equation34), we get

k
¢ = égg{;N(z)-Msaw,i}
k N(i)

3 2
= 9D D llows, = pwl

i=1 j=1
k

— 1 . . . . 2
= mf 9> > llw-oj—w . (36)

=1 0j€S¢

Next, from EquationZ0) and EquationZ3), we get

Zwlfl(dlac) = —ZZ Z wl(Ojl - Mu)z

I=1 i=1 0;€S;

k P
= —Z Z Zwl(Ojl — par)?

i=1 OjESi =1

k P
= —Z Z Z (wi0j1 — Wl,uil)Z (37)

i=1 0;€S; I=1

k
= 3 S w0y w el (38)

=1 OjESi
The reason for Equatior3?) is w, = w?, becausey;, € {0, 1}.
By comparing Equatior38) with Equation 86), we know thad "}, w; f;(d;, ¢) will be maximized if
and only if¢,, is minimized. Hence the theorem is verified. O

Essentially speaking, Theorénreveals an important fact that, the feature selection taisk-means
clustering can be accomplished by finding the feature patiader which the smallest coverability is
achieved. Furthermore, one may wonder whether we could fisgnaler methodology to evaluate
coverability instead of solving the optimization problemEquation 85). Fortunately, Hypothesi%
offers us a great source of inspiration. From Hypothésize know that the coverability of a dataset
is coupled with the probability? with which the seeded points can be detected correctly. |&ilyi
in the feature-selected situation, we may also expect thuateathe coverability,,, by assessing the
probability with which the seeded points can be correctignitfied from the dataset under feature
patternw. With this novel methodology, we could easily compare thescabilities under various feature
patterns to get the best one, which is potentially an answiret feature selection problem.

To make above discussions rigorous, first of all, we give altamy of Hypothesidl.

Corollary 1. The probabilityP,., with which the uniformly seeded noise points can be coyefstected
under a particular feature patter@ is negatively correlated with the coverability,, under this feature
patternw.

Corollarylis straightforward. If we treat the feature-selected dasalas a new database, then in this
new database?|,, can be viewed as a ne® and<,, can be viewed as a nett Via Hypothesisl, we
can easily verify what Corollarg stated. By Corollaryl, we get the fundamental theorem below.
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Theorem 6. The maximum dP|,, can be achieved if and only if the features are selected aatgto
the optimal feature patterw, defined in Definitior®. Or equivalently,

w, = argmax {P‘w} : (39)

Proof. Because of Equatior8p) and Corollaryl, the statement of this theorem holds obviously. [

Theorem6 tells us that we can accomplish feature selection tasks lynfinthe particular feature
pattern under which the seeded points can be extracted masalgdy. This methodology is simpler
and more feasible than solving the optimization problemgud&ion23. To clarify the validity of this
methodology, first let us consider themeans clustering. According to Theoré&mnwe know that, for
k-means clustering, the optimal feature pattern that The@provides us is actually the solution to the
optimization problem expressed in Equat@® Then, how about a common situation? As we know,
coverability is virtually the minimized WCSS of a dataset Bheorem6 actually gives us a practical
methodology to find the feature pattern under which WCSS eanihimized. This interpretation reveals
that, essentially, Theorem is consistent with existing feature selection criterd®|[in the sense of
minimizing WCSS. Hence, Theoreéis sensible in a common sense.

3.6. Remaining Problems

There are still some remaining problems, which need to beudged in detalil.

How can we determine a suitable SNR?As stated previously, SNR= 10 has been adopted in the
example illustrated in Figuré. To explain this, we should note that the quantity of seedeatp
cannot be too large. Otherwise, the seeded points will dvein the whole data space, and then
the distinguishability of feature patterns will suffer. Btevhile, there should not be too few seeded
points either. Otherwise, the granularity becomes so eddat it will dramatically degrade the
precision of feature subset evaluation. Finally, throudataf experiments, we found thag),,
in Equation 89) is substantially insensitive to SNR when SNR is set moegraand we see that
SNR = 10 is a good choice in practice.

Why did we adopt the uniform distribution for seeding? As stated previously, coverability can be
viewed as the ability for a dataset to occupy the data spastiich the seeded points are spread.
The number of the seeded points that have been affected byrigieal dataset can be used
to assess the space occupation of the original dataset dmy whe seeded points are spread
uniformly. Thus, uniform distribution is the only sensilaleoice.

4. Practical Considerations

In this section, we are mainly planning to explain two impattcomponents of our framework in
detail, namely the harvester and the searcher. Next, lelksbout our uniformly partitioning-based
harvester as a beginning.
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4.1. Uniformly Partitioning-Based Harvest Method

As stated above, if we treat the seeded points as outliergyimal data points, the harvest procedure is
essentially an outlier detection process. There are a lstiabé-of-the-art methods that can be employed.
In this paper, a recent uniformly partitioning-based mdtivalled ordinal isolation16] is adopted
because it has some substantial advantages as follows:

e Itis simple and fast, witlD)(n) complexity.

e It is scalable, because it arranges its main computatioagiiee, whose branches can be pruned
out during the proceeding of the whole algorithm.

More details for this algorithm can be found in the literat{i6)].

In this paper, although we adjusted the ordinal isolatigoathm somehow to be more suitable for
our harvest tasks, we do not want to repeat the main prireigfi@rdinal isolation here, which can be
found thoroughly in the literature. However, we will try toggent the detailed processing procedures of
the harvester in a more practical way. That is, we will coesttie simple example given in Secti8ri
again, and show the detailed processing procedures ofstartewards this simple problem.

Figure 7, Figure8 and Figure9 illustrate the recursively and uniformly partitioning pesses on
attribute subset$a, b}, {b, ¢} and{c, d} respectively. The first subplots of each above figures shew th
initial 2 x 2 uniformly partitioning, which split each attribute unifaty into two equal halves. Then, we
get the remaining subplots by carrying out the same unifoantitppning operation recursively, which
generates théx 4, 8 x 8 and16 x 16 partitioning schemes sequentially. In each figure, theesgpdints
are marked as crosses, and original points are marked ésscilica seeded point is isolated, we denote
it as a dark cross. Similarly, we mark isolated original peims dark disks.

We denote the operation of counting the number of isolatedes# points (dark crosses) S5, 1),
whereS is the attribute subset ardepresents &' x 2! partitioning. Similarly, we denote the operation
of getting the number of isolated original points (dark d)sksO(S, ). Then from Figure7, we can
count the numbers of isolated points, and get:

S({a,b},1) =0 0({a,b},1)=0

S({av b}72) = @({a> b}72) -

Sath.3) =12 Y O({a.0).3) = (40)
S({a,b},4) =15 O({a,b},4) =12

If we defineMerits; (whereS andl/ have the same meanings as thosg(ifi, /)) as the following:

S(S,1)

Meritg; = (S, 1)

,S(S,1) > 0 and O(S,1) > 0, (41)
then we get the following equations:

{ Meritiqpy.s = 12/5 = 2.40 42)

Meritgp 4 =15/12=1.25"

by appealing to Equatiori{).
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Figure 7. Recursively and uniformly partitioning on attribute subge b}.

(a) 2 x 2 partitioning (b) 4 x 4 partitioning
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S({b,c},1) =0 O{b,c},1)=0
S({b.e}2)=0 ] O({bc},2)=0 (43)
S({b,c},3) = O{b,c},3)=9
S({b,c}.4) = O({b, c},4) =43
Appealing to Equatior4l), we get:
M@Tit{b7c}73 = 8/9 ~ 0.89 (44)
Meritg 4 =9/43~ 021
Finally, from Figure9, we get:
S({e,d}, 1) =0 0O({ec,d},1)=0
Se.dy,2)=0 ) O({c.d},2)=0 (45)
S({ec,d},3) =1 0({c,d},3) =
S({e,d},4) = 10 O({e,d},4) = 85
Appealing to Equatior4l), we get:
Memt{c,d}g = 1/5 =0.20 (46)
Merit.q4 = 10/85 ~ 0.12
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Figure 8. Recursively and uniformly partitioning on attribute subfe c}.

(a) 2 x 2 partitioning (b) 4 x 4 partitioning
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Thus, from Equation42), Equation 44) and Equation46), we get:

{ Me'r’it{a,b}@ > Mem't{b,c},g > Me'r’it{c,d}@ (47)

Merit,py 4 > Meritg 4 > Meriti.qy4

Note that the order given in Equati@lY is consistent with that given in EquatioB)(and Figured.
So we can induce that/eritgs; can be treated as a merit order indicator for attribute dapbg which
the order but not exact values of the merits of differenttaite subsets can be preserved, as Equd{fon
and Equation%) exhibit. In the next subsection, we will address why thiganmly partitioning-based
methodology conforms to Hypothedis

4.2. The ldeality of Uniformly Partitioning-Based OutliBetector

As what Definition8 reveals, the uniformly partitioning-based outlier detectan be classified as the
ideal outlier detector if and only ¥ D, whereD is a dataset, the possibili&y with which the uniformly
seeded noise points can be detected correctly is negativalglated with the coverability of a dataset.
In this section, we will explain the ideality of the uniforynpartitioning-based outlier detector in a more
rational and rigorous way.

First, let us assume a situation illustrated in Fighde
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Figure 9. Recursively and uniformly partitioning on attribute subb&e d}.

(a) 2 x 2 partitioning (b) 4 x 4 partitioning
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In this situation, we only consider the seeded points, wareluniformly distributed in the data space.
We carry out a recursively and uniformly partitioning prdaee. When we reach tl3 x 32 partitioning
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stage, we notice from FiguE that all the seeded points have been isolated. Then in thetsin, the
ratio of correctly detected seeds can be rationally intetoebe 100%.

Then, we consider what will happen when the original datatsare populated into this data space.
We illustrate this situation in Figurgl, where the original points are assume to be normally disteith
and indicated by solid discs. First, we investigate the chsme particular seeded point. It is obvious
that when an original point locates in a cell in which a seepl@dt has already been located, then the
distinctness of this seeded point is affected by this oalgoint as illustrated by Figur&l.

Second, when we consider the original data points as a wina@ecan see that in the middle of
Figurellthe seeded points have been covered by the original poihishwonsequently makes them
less probable to be detected correctly. Thus, the ratioroéctly detected seeds can be rationally inferred
to be much less than 100%. That is to say, the existence ahatigoints reduces the ratio of correctly
detected seeded points.

Figure 11. The situation when original points (solid ones) have begttad.

Now, let us consider how the original points act on the cdrdetection ratio.

First, we consider the position of the original points as alMh That is to say, we consider the
effect of a common position transposition for all the orgipoints. In this situation, we can imagine
that, because the seeded points are distributed unifotin@state of interfering is also uniformly spread
in the data space. That is to say, the transposition of @iglata points cannot significantly alter the
correct detection ratio.

Second, we consider how the size of the original data poffesta the correct detection ratio when
the concentration sustains at a fixed level. As FidLtdlustrates, the ratio of affected seeded points
are positively correlated with the size of original datariei Because the concentration is fixed, we
can infer that the ratio of affected points will increasehnpsitively ascending size of original points.
But the intensity of this kind of affectation will not changecause of the constant concentration. As a
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whole, the correct detection ratio is negatively correlatéth the size of original data points when the
concentration is fixed.

Last, we should consider how the concentration of the agigiata points affects the correct detection
ratio when its size sustains at a fixed level. In this situgtibis straightforwardly to see that when the
ratio of affected points is fixed, if the concentration isremsed, then it will be more likely that the
original points can be isolated, which results in the dedeaf the original points rather than the seeded
points and thus reduces the ratio of correct detection. S$@& wahole, the correct detection ratio is
negatively correlated with the concentration of originaladpoints when its size is fixed.

Until now, we have been armed enough to investigate how tlerability of original points is
correlated with its size and concentration. As we have dised, the coverability of a dataset depict
its space-covering ability. And, as we proved in Theorkrthe coverability of a dataset is equal to the
infimum of WCSS. We can conclude that the coverability of imadypoints is positively correlated with
its concentration and size.

Generally speaking, from the above discussions, we canluwd&dchat the coverability of original
points is negatively correlated with the possibility (cdtiof correct detection. That is to say, the
uniformly partitioning-based outlier detector we adopigéhdeed one particular type of ideal outlier
detectors.

In the next subsection, we will address why the “order” isesigy to the “value” and explain the main
principles of ordinal searching methodologies.

4.3. Ordinal Searching Principle

Most traditional heuristic searching methodologies aleesdbased, where the searching directions
are determined according to the merit values of attributessis. The cooperating pattern between
heuristic searchers and attribute subset evaluatorsisirdited in Figurd 2.

Figure 12. Schema of traditional value-based feature selection.

[ Heuristic searcher }

attribute subset merit vall

EAttribute subset evaluator]

From Figurel?, it is obvious that in traditional value-based searchérs;g are a lot of merit values
that need to be evaluated in each step of searching. To beetentet us consider the greedy hill
climbing method, which is a simple but common kind of searcheone step of greedy hill climbing,
the attribute with the highest merit gain is added into thehatte subset, which will be treated as the
searching result when the merit value cannot be furtherradthby adding any individual attribute.
Hence, the essential operation in one step is evaluatinguesee of attribute subsets and fetching the
one with the best merit. As we know, in high-dimensionalwmstances, considering the potential huge
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number of merit values to evaluate, we see that this valgecdmanner is really time-consuming. Then,
one may ask, if what we want to find out is just the best one, whyd bother to evaluate all the
merit values? Can we abandon the concern with concrete waduies, and just produce a descendingly
ordered sequence of attribute subset somehow, and thethgidkst one? Is the order more feasible
than the value? Is the ordinal searching methodology lxetter

The above questions are straightforward to answer. Letkesaa example. If Tom ig.75m tall,
and Jack isl.88m tall, then the conclusion “Jack is taller than Tom” will be chueasier to get than
the conclusion “Jack i8.13m taller than Tom”. This argument is elaborated by the two watbwn
principles B§] in ordinal optimization theory:

1. “Order” is much more robust against noise and easier thatug&/a
2. Do not insist on getting the “Best” but be willing to settle the “Good Enough”.

So, in this paper, we improve the traditional value-baseatcde methods into order-based ones.
Accordingly, the value-based pattern in FigliZturns into the ordinal pattern illustrated in Figuk®
This is a novel searching methodology in avoiding the evana of merit values, by means of merit
order indicators such af erits,; defined ascendingly to sort the input sequence of attrilukisets. This
methodology can not only save a lot of computing time but ptealuce more robust results.

Figure 13. Schema of novel order-based feature selection.

[ Ordinal searcher j

sequence of

! ordered sequenc
attribute subset q

[ Attribute subset sorter ]

The last question is: how we can get the order of attributeststby means of our seeding and harvest
framework? Appealing to Equatiof7, whose order is consistent with that given in Equatishand
Figure 4, we see that the attribute subsets have been perfectlyeorderevell, where the numbers
of isolated seeded points and isolated original points ohestribute subset are all non-zero for the
first time. For instance, the order can be determined by Ewu#b) when! = 3, and this order
will sustain whenl > 3, so this property can be used to reduce computing compléyitgruning
off the computations beyond levelwhereVvs, S(S,7) > 0 andO(S,1) > 0 hold. We will give all the
implementation details in the next section.

5. Implementation

From previous discussions, we see that our seeding andstdramework is capable of sorting the
input attribute subsets in terms of their relative impot&anThis order is used by order-based searcher
to determine the direction for the next searching step. Tamstructure of their cooperation has been
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illustrated in Figurel3. In this section, we will exhibit the implementation desadf all the relevant
algorithms. First, let us talk about the order-based s@agcgorithms.

5.1. Ordinal Searcher

In Al, heuristic search is a metaheuristic method for s@vaomputationally hard optimization
problems. Heuristic search can be used on problems that edorimulated as finding a solution
maximizing a criterion among a number of candidate solstidtheuristic search algorithms move from
solution to solution in the space of candidate solutions @karch space) by applying local changes,
until a solution deemed optimal is found or a time bound hapssd 89).

There are a lot of state-of-the-art heuristic searchingralygns that can be adopted in the feature
selection applications. In this subsection, we will showhbe simple greedy hill climbing searching
algorithm can be transformed into a corresponding ordsetb@ane.

First, Algorithm1 gives the traditional value-based greedy hill climbingrebang method.

Algorithm 1 greedy_hill_climbing_search

1. s <« start state.
Expands by making each possible local change.
Evaluate each childof s.
s’ < t with the highest\/ erit(t)
if Merit(s') > Merit(s) then

s« s, goto2

end if
return s

In this algorithm, we evaluate all the possible directiomsthe next step and pick the direction with
the highest merit gain. Obviously, itis value-based, beealdepends on merit values and comparisons.

Then, we transform Algorithmi into an order-based searching algorithm, which is elaledrat
Algorithm 2.

Algorithm 2 ordinal_greedy_hill _climbing_search

1: s < start state.
Expands by making each possible local change.
Make alist consists of and each child of s.
ordered_list < attribute_subset_sorter(list)
h < head_of (ordered_list)
if h # sthen

s < h,goto2

end if
return s

In this algorithm, thehead_of() operator is used for extracting the head node of a list, and
attribute_subset_sorter(list) represents a procedure that sorts the input sequence ibtitdtsubsets
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list into the output sequencerdered_list according to the relative importance of these attribute
subsets. Hence, from this point of view, our seeding anddstfvamework can be seen as a concrete
implementation of theuttribute_subset_sorter(list) procedure. The implementation details of S&H
will be addressed in the next subsection.

The purpose of Algorithn® is self-explanatory. Note that a state in Algoritt#rs virtually an
attribute subset. Essentially speaking, line 4 of Alganth takes advantage of a so-called attribute
subset sorter to order the sequence comprising the cutegatand all the possible child states derived
from this state into an ordered sequence of attribute sslbdeince the head of this sequence can then be
treated as the next state, which is supposed to presentghedtimerit gain in practice. As we expect,
the above procedure can be applied iteratively until theetiirstate cannot be improved further. Then
the corresponding attribute subset is the result of an atd@#&ature selection task.

As we know, there are plenty of heuristic searching algorghsuch as best first search and genetic
search. They can be transformed into ordinal-based onésganssly. In this paper, we adopt the method
shown in Algorithm?2 as our ordinal searcher (Figut8).

5.2. Seeding and Harvest Sorter Framework

In this subsection, we will elaborate how to sort a sequericgtabute subsets by means of our
seeding and harvest framework. As discussed previoustyethre three main components in our
algorithm. They are the seeding component, the harvest aoem, and the searcher component.
Figurel4illustrates their relationship.

Figure 14. Relationship among the main components (shaded blocks).

Ordinal searcheﬂ
A

Seeder input list ordered list

Y

Seeded Dataset —»(M

In Figure 14, the seeding component injects artificial noise points ih original dataset and
produces the seeded dataset, which is shared among the 8wentp as a global variable. The seeding
component is very simple, because it is essentially a randember generator, which can produce
multidimensional uniformly distributed random vectors.

The searcher component has been studied thoroughly in i&lgo2. The harvest component is
virtually an implementation of thettribute_subset_sorter(list) procedure of Algorithn®. It makes
use of the seeded dataset and the input list to produce anedrdetput list, which is fed back into
the searcher component again to determine the state of tegxt ¥/hen the searching process cannot
proceed further, the whole algorithm can stop and give tisediéribute subset. Next, we will talk about
the detailed algorithm of the harvest component.
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Algorithm 3 elaborates the detailed implementation of the harvest ooet. Meanwhile, to make
Algorithm 3 easier to follow, we draw a really “big” graphical guidanceltustrate the main structure
of Algorithm 3in Figure15.

Algorithm 3 harvest(list)
Input: list - the list of attribute subsets to sort
Output: ordered_list - the output ordered list
initialize two arraysicrosses andndisks whose sizes are bothist|.
clear all the elements ofcrosses andndisks as0
repeat

for all subset € list do

harvest_in_subset(subset)

end for

until all elements imcrosses andndisks are non-zero

ordered_list < order_by(list, ncrosses, ndisks)
return ordered_list

Algorithm 3 is implemented in a “level by level” manner as illustratedFigure 15, where the
dataset is iteratively partitioned. Thervest_in_subset(subset) procedure is capable of pushing the
uniformly partitioning process one level forward with respto a particular attribute subset provided
as the argumentubset of this procedure. To be concrete, the arrows marked “haimesa,b}” in
Figurel5are essentially procedure callstafrvest_in_subset({a, b}). Moreoverncrosses andndisks
are two arrays of counters for bold crosses and dark diskgctigely, one cell for each attribute subset.
The meanings of “bold crosses” and “dark disks” are conststeth those in Figureg-9. If a new
value is produced in one level, then the corresponding evgftould be updatedé€., the old value is
overwritten), as operator—$” denotes in Figurel5. Besides, therder_by procedure is confined in a
dotted frame as illustrated at the bottom of Figlife It produces the output list-dered_list according
to the contents of-elative_merits, which could be assessed in termsrefosses and ndisks. As
stated previously, theelative_merits here is essentially a merit order indicator but not the trggiim
value. To fillncrosses andndisks, the “repeat” marked procedures of Figurg which correspond to
the “repeat” statement block of AlgorithB) proceed level by level, until all the cells ircrosses and
ndisks are non-zero. Finally, to cooperate with above iteratiaridgels, in each level, there is still an
iteration block marked as “for all” in Figur&5, which fills contents inta.crosses andndisks for all the
attribute subsets.

Maybe there remains a dummy question. Why do we bother to @iwdole ordered list as the
output—can we just give the best attribute subset insteadzo@rse, in the greedy hill climbing
search, the answer is positive, because the ordered lisb&ieventually used to find out the best
attribute subset. However, in terms of other more soplaittt searching methodologies where more
information is demanded (not just the best attribute syibsetecide the searching direction, the answer
is obviously negative. The above reasoning motivates usnfgement the harvest algorithm in the
manner of AlgorithnB to potentially attain more flexibility.

In the next subsection, we will analyze the complexity of mathod.
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Figure 15. The “big” structure of harvest algorithms, where>" means “the variable is
overwritten by ...".
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5.3. Complexity

From Algorithm3 we see that the whole process can stop when all the celle-tsses andndisks
are non-zero, which can be called the pre-pruning crite(feRC). When PPC is satisfied, then the
algorithm can be stopped. This property saves a lot of CRid-tiThrough a lot of experiments, we
found that the whole algorithm can complete witlinevels of partitioning, which is always a small
constant in most circumstances, just like the example showigurel5. This is an important fact, and
we will take advantage of it later.

In Figure 15, there are 4 partitions for each attribute subset in levellis number becomes 16 in
level 2. Thus, in level, there arel' partitions for each attribute subset. Therefore, the uppend of
the number of partitions for an attribute subset in eachl lsv&*. Note thatl is a constant, s& = 4¢
IS a constant too.

Now, let us talk about the number of attribute subsets. Herelenote the dimension of the original
dataset ag. Appealing to Algorithn®, if starting from the empty initial state, we know that the given
to harvest procedureiftribute_subset_sorter(list)) hasd elements at the first time. In the following
steps, the size dist is reduced tal — 1, d — 2, d — 3 .... Thus, the upper bound @ist|, which is the
input size of the harvest componentdis
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In each level of Algorithn3, a total scan of original dataset can achieve the partimgmnission,
whose complexity i$)(Pnd), wheren is the size of dataset. So the total complexity of attributesst
sorting process i$)(LPnd). BecauseL and P are two constants, the complexity beconie@.d).
Because dimensiod is much stickier than size, the complexity become®(n) virtually, when the
complexity we studied is dominated by the size of dataset.

6. Performance Study

In this section, we will carry out a series of experiments anty of real-life datasets from the UCI
Machine Learning Repositoryl{)] to evaluate several aspects of performance of our methoghaced
with other existing methods. First, we introduce the platfeve employed.

6.1. Platform

All experiments were conducted on an Intel Core 2 PC, with /80 GHz cores, 1 GB main
memory. Notice that each experiment runs as a single thvdadh can only be processed by one core.
Our method is implemented in Java with Eclipse IDE. Our eixpental platform is Weka (Waikato
environment for knowledge analysig)l], which is an excellent tool in data mining and brings togeth
many machine learning algorithms under a common framewBesides that, Weka is an open source
software issued under the GNU General Public License, andftitial website of the Weka project can
be accessed at http://www.cs.waikato.ac.nz/ml/wekate Nt the version we adopted in the following
experiments is the latest version from Weka’s svn systeniciwtan be checked out from the source
code repository withsvn co https://svn.scms.waikato.ac.nz/svn/weka/wnekd

To integrate our method into Weka, first we add two main maluieo the original Weka package
“weka.attributeSelection”. One is “OrdinalGreedyStepsii which implements Algorithn2, and the
other is “SeedingAndHarvestSubsetSorter”, which impletsélgorithm3. These two modules change
the traditionalsubset — evaluate attribute selection framework in Weka into a newbset _list —
ordered_list one, for which we added the “SubsetSorter” interface intck&Ve Through the above
modifications, the Weka Explore#]] can finally use our method to carry out some simple experimen
For the simple dataset illustrated in Figieappealing to Figur&6, Weka gives the same resytt, b}
as that given in Sectio8, using our subset sorter and ordinal searcher.

However, this is just a beginning. In order to examine how wet method performs on given huge
datasets, we must rely on the Weka Experimenter, which cailoohparisons among different methods
under varies conditions automaticalll]. To integrate our method into Weka Experimenter, we did
the following modifications to Weka. First, we added the fiiiteSelectedClusterer” module into the
“weka.clusterers” package, so that we can evaluate theibonbn of attribute selection to clusterer
algorithms, appealing to Figude.

The attribute-selected wrapper for classifiers has beefemmgnted by Weka already, so we can use
it directly. Second, for clusterers, we want to measure tjuaed errors to compare their performance.
Therefore, we implemented “AdditionalMeasureProducetéiface for a lot of corresponding modules.
Because the details are tedious, we omit them here. In thesnbgection, we will introduce the datasets
we used in experiments.
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Figure 16. Weka Explorer using our method.
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Figure 17. Weka Experimenter using our method.
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6.2. Benchmark Datasets

To rank performance evidently, we adopted 10 benchmarksdetdrom UCI Machine Learning
Repository #0]. Their basic information is shown in Table

Table 1. The description of 10 datasets in our experiments

No. Datasets Instances Features Classes

1 ecoli 336 5 8

2 wdbc 569 30 2
3 segmentation 2310 15 7
4 isolet 6238 617 26
5 magic 19020 10 2
6 segment 2310 17 7
7 sensor 5456 23 4
8 sonar 208 60 2
9 waveform 5000 40 3
10 yeast 1484 8 10

We should notice that, although our method does not needadey (class) information since it is an
unsupervised method, all the datasets we adopted contahifdormation, because we will compare
our method with several supervised feature selection ndsthke CFS §] and IG (information gain),
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which need classification information to evaluate meritedtfires or feature subsets. The number of
classes of each dataset is listed in the last column of Table

6.3. Experimental Methodology

To evaluate the performance of our method, at the beginmeg;ompare it with 4 classical feature
reduction methods, which are CF9,[information gain (IG), principal component analysis (9]
and relief p3,24]. Except PCA, the other three methods are all supervised.oRCA is the only
feature transformation method that transforms originatuees into new ones. We should also note
that, except CFS and our method, all the other three methedatt@ibute evaluation methods, which
need the attribute ranker threshold to determine how marnipates should be retained. Second, as our
methodology is unsupervised, we will also carry out extrpeginents to compare the performance
of our method with plenty of state-of-the-art unsupervigedture selection methods, which have
been reviewed briefly in SectioA. They are the FSSEM method frol29, the CEPI method
from [30], the MCS method from31], the SPECTRAL method fron8p] and the SIMILARITY method
from [33]. These target methods are typical and comprehensive féorpgance comparisons. In our
experiments, we set as threshold the value that can makeestepbrformance (least squared mean
or log-likelihood) for those feature selection methods achespecific dataset. That means, we will
compare the performance of our method with the best perfocsather methods can achieve.

How to compare the performance of feature reduction methods we have clarified, the main
purpose of our methodology is to try to tackle the featuleeted clustering problem described in
Definition 5. Hence, we employ a methodology comparing the squaredsearut log-likelihoods of
clusterers after feature reductions. The more signifigamtleature reduction method can reduce the
squared errors or increase log-likelihoods of a clusteher better performance this method achieves.
Brief descriptions about these clusterers are given agvsl

e Standardc-means 41] is a simple centroid-based technique. It randomly seledsister means
or centers. For each of the remaining objects, an objectsigi@sd to the cluster to which it is
the most similar, based on the distance between the objddharcluster mean. It then computes
the new mean for each cluster. This process iterates uatirikerion function converges. In our
experiments we simply let Weka decideutomatically and adopt Euclidean distance.

e Hierarchical methodg|fl] work by grouping data objects into a tree of clusters. Thaaylee further
classified as either agglomerative or divisive, dependimgloether the hierarchical decomposition
is formed in a bottom-up (merging) or top-down (splittingshion. In our experiments, we
adopt bottom-up fashion, Euclidean distance definitionJ Bt Weka decide the number of
clusters automatically.

e Simple EM (expectation maximization) method4l] assign to each instance a probability
distribution that indicates the probability of it belongito each of the clusters. EM can decide
how many clusters to create by cross validation, or one meagifypa priori how many clusters to
generate. Hence, there is no need to concern about the noftdasters parameter.
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6.4. Results and Discussions

First, we present the performance comparisons with clalssieature reduction methods
mentioned above.

Table 2 exhibits the experimental results of standar@neans clusterer (SimpleKMeans module
in Weka). In this table, S&H denotes our seeding and harvethod, RLF denotes relief method,
UnSelect denotes the corresponding clusterer withouteettyfe selection, and other column names are
self-explanatory. Furthermore, each cell in TaBldenotes the squared error of SimpleKMeans after
carrying out a specific feature selection method (columne)am a dataset (row name). The table also
shows how often each method performs significantly bettendted as a) than performing no feature
selection (column 2). Throughout this paper, we speak aflt®®eing significantly different if the
difference is statistically significant at the 0.05 levat@cling to a paired two-sidedest.

From Table2, we see that all feature selection methods can significanftyove the performance of
SimpleKMeans, but only our method exhibits remarkable mapments on each dataset. Furthermore,
if we inspect the rows of Tablg, we see that our method is always the one with the least sdjuare
error, except just two datasets, namely “magic” and “sénsar clarify that fact, we make our method
the comparison target and summarize the results in Tabfeom which we know that our method
is significantly superior (denoted a3 to other methods in most circumstances. There is only one
degradation (denoted a3 and a few draws (blank cells). Thus, from experimental ltesn Tables2
and 3, we conclude that our method can not only significantly imprthe accuracy of SimpleKMeans
but also exhibit dramatic superior performance to all theepfour classical feature reduction methods
that we compare with.

Second, we would like to present the performance compagismolving the five abovementioned
unsupervised feature selection methods.

With the same datasets and experimental procedures of 3alikeget Tablel.

From Table4, we can see that our method shows superior performance than ensupervised
methods in most circumstances (32 times), and shows shatezgual performances 13 times, while
in the last 5 circumstances our method is worse than thettargéhods. Overall, from Tablé, it is
enough evident to conclude that the performance of our ndathgenerally better than the unsupervised
feature selection methods that we compare with.

Next, let us inspect how fast our method can achieve. In Taplee make our method (S&H) the
comparison target. If some method takes significant lonigee than ours does, we will mark &™
beside it. As we have known, the total run time consists diufeareduction time and clustering time.
We are interested in feature reduction. Therefore, featdaction time is put in front of total time in
Table5.
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Table 2. Squared errors for feature selected SimpleKMeans (therféhesbetter).

Dataset UnSelect (target) CFs IG PCA RLF S&H
ecoli 142.15 142.15 142.15 139.71 142.15 12417
yeast 735.58 734.83 705.61 671.66 705.61 588.64
sonar 476.80 116.96 30.09e 26.78e 36.00e 20.59¢
wdbc 212.10 76.68 34.05e 29.31e 38.92¢ 4.34e
segmentation 2343.31 2111.45 1819.35¢ 1733.75e¢ 1871.64e¢ 1577.10e
segment 2415.10 2118.66 1790.06e 1653.1% 1800.6% 1509.59%
waveform 5109.59 2895.6d 1920.2% 1951.29 1986.36e 1571.62e
sensor 10297.99 3470.86 3015.37¢ 1636.99¢ 3634.48¢ 1815.81e
magic 5552.81 1535.06 1662.54e 3014.03¢ 2255.46e 3486.68e
isolet 144413.40 52669.72 6060.16e 5654.71e 6449.82¢ 5421.02

o statistically significant improvement

Table 3. Comparisons of our method with classical feature reduatethods by squared
errors of SimpleKMeans clusterer.

Datasets Target Methods
CFS IG PCA RLF
ecoli ° ° ° °
sonar °
wdbc ° ° ° °
yeast ° ° ° °
segmentation e ° ° °
segment . ° . .
sensor ° . .
waveform . o ° °
magic o
isolet ° . .

e, o statistically significant improvement or degradation

Table 4. Comparisons of our method with state-of-the-art unsugetvifeature selection
methods by squared errors of SimpleKMeans clusterer.

Target Methods
Datasets
FSSEM CEPI MCS SPECTRAL SIMILARITY
ecoli ° ° ° ° °
sonar . °
wdbc ° ° ° o °
yeast ° . °
segmentation ° o ° ° °
segment ° ° ° ° .
sensor . °
waveform ° ° o . )
magic o °
isolet ° ° °

e, o statistically significant improvement or degradation
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Table 5. Run time comparisons (the less, the better).

Datasets Feature Reduction Time (ms) Total Time (ms)
S&H CFS IG PCA RLF S&H CFS IG PCA RLF

ecoli 1.79 1.86 1.61 1.60 45.19 4.67 8.800 8.500 9.88 53.760
wdbc 8.45 2495 17.560 15.660 507.980 11.23 38.3® 25.820 24.760 516.19
sonar 10.13 25.88 10.12 25.04 145.690 11.67 34.98 12.81 29.90 148.230
yeast 10.62 7.50 6.68 8.80 928.96 16.28 47.58 41.990 45.050 962.060
segmentation 21.88 61.06 57.860 21.65 4219.2% 46.72 150.10 143.970 133.800 4292.170
segment 25.68 65.66 57.810 25.22 4609.78 33.87 156.54 125.210 105.820 4678.810
sensor 100.02 224.30 205.020 98.17 34498.79 152.80 403.86 336.860 342.870 34624.760
waveform 118.89 196.46 128.53 223.6% 49446.5% 150.47 619.43 234.680 412.530 49597.85%
magic 230.87 516.89 454.700 248.80 191700.68 711.69 754.85 755.00 872.79 19203483
isolet 10206.08 94062.04 13641.42% 78800.67%0 1126765.8% 10237.04 101905.68 13830.86>0 86849.56> 1126904.4%

Our S&H is the comparison targetmeans statistically significant degradation compared &&H

First, let us talk about the feature reduction time. Froml#iepart of Table5, we see that, our
method can achieve significant improvements (degradabbsher methods) in most circumstances
(27 times), and get just 13 draws. Furthermore, no signifitaprovements have been made by other
methods (degradations in our method), which would be indcthy “e” in Table 5. In addition to that, it
is explicit that the relief method is time-consuming. Totausresolvability, we give a figure of feature
reduction time without relief in Figur&8.

In this Figure, we illustrate feature reduction time in twaales, where the sequence numbers of
datasets coincide with that listed in Taldle Figure17ashows the comparison plot corresponding to
dataset 1-9. We see that our method is more stable than odhergs curve is almost always the lowest
one. This property becomes more significant when the sizeiamehsion of experiment dataset become
larger. Figurel7h, which contains dataset 8-10, demonstrates this poirntgléaom all above, we can
conclude that our method is generally faster and more sthble other methods with which we make
comparisons, and more suitable for high-dimensional ary lscale datasets.

When we inspect the total time section of Tableve can confirm that our method is significantly
faster than others. Except the 5 draws, our method alwayssshignificant improvements compared
with other methods. Because our method can select featotesnfy more efficiently but also more
effectively, it is prone to producing less selected featuoefeed the clusterers, and as a result leading to
less total run time. Figur&9 illustrates this conclusion evidently. In this figure, tleggsence order of
datasets is different with that in Talle because the datasets in Tablare listed in the order of feature
reduction time.

Next, we give the log-likelihood comparisons of featurdereed hierarchical clusterer in Talde
As we know, the larger the log-likelihood quantity is, thetbethe model fits the datal]]. Hence,
we use @” in this table to denote statistically significant degradiatcompared with our method. We
should notice that increasing the number of clusters ndynratreases the likelihood, but may overfit.
Therefore, to be fair, in the following experiments, we et tankers of feature selectors retain the same
number of attributes. Also note that four datasets are rechérom the comparisons because their sizes
or dimensions are too big to be populated into a typical cdempRAM to give any experiment result.
In the future, we plan to develop a distributed version of @igorithm to do more experiments on this
kind of large-scale datasets. From the self-explanat@yltein Table6 we can confirm the superior
performance of our method again.
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Figure 18. Feature reduction time comparisons.
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Figure 19. Total time comparisons. In this figure, dataset sequencebatsrdenote ecoli,
wdbc, sonar, yeast, segment, segmentation, waveforrgisenagic, isolet sequentially.
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Table 6. Log-likelihood comparisons of feature-reduced hierarahclusterer.

Dataset S&H CFS IG PCA RLF

segmentation -47.18 -59.81 -59.29¢ -59.27¢ —59.29e
segment —-42.65 -55.31 -55.0le -55.0le¢ -55.01e
ecoli 2.58 0.13 0.15e 0.20e 0.15e¢
wdbc 6.83 5.18 5.18e 5.18e 5.18e
yeast 8.08 6.64 6.64¢ 6.57e 6.64¢
sonar 64.94 64.068 64.0le 64.0le 64.01le

o statistically significant degradation compared with outhod

Table 7 gives the similar comparisons of log-likelihood for featweduced Simple EM clusterer.
Experiment results in this table confirm the conclusionsvadrfrom Table6 once again.

Table 7. Log-likelihood comparisons of feature-reduced simple Hiterer.

Dataset S&H CFS IG PCA RLF
segmentation -55.99 -59.66 -59.26 -55.84 -59.29
segment -52.17 -55.45 -55.08 -51.43 -55.32
ecoli 2.24 1.3% 1.55e 155 1.56¢
yeast 7.35 6.89 6.89 6.89 6.89
wdbc 8.15 518 5.02e 6.30e 5.15e
sonar 68.31 65.2¢ 65.17¢ 67.35 65.1%

o statistically significant degradation compared with outhmd

Lastly, note that although the results in Tabs&nd 7 look simple and clear, it took us really
long computing time to get them, because of the inefficiemay large memory requirement of these
two target back-end methods (hierarchical clusterer amghlei EM clusterer), together with the huge
quantities of the experiment datasets adopted in thesedhlest Although we have not given the
run time comparisons of experiments illustrated in thesetbles because of the limitation of space,
our method runs much faster than other methods. Besideskgha the high efficiency in design and
implementation, our method can even give the experimenitseewhen dealing with extremely large
datasets, while nothing could be given by some other targ¢hoas, because of either the CPU-power
or main memory limitations. Furthermore, because it is neffiective and can give less selected features,
the back-end methods can run much faster and have much lmargtions on main memory, thus the
total speed and feasibility can be improved a lot by our mgtho

7. Conclusion

In this paper, we proposed a novel two-stage framework &iufe reduction/selection. The first stage
is random seeding and the second stage is uniformly pautigebased harvest. Our new framework
improved the traditional value-based evaluation and $&agcschema into an order-based one, which
is much more effective, more efficient, and more robust. Videadseries of experiments to compare
our method with other state-of-the-art feature reducticgthods on several real-life datasets. The
experiment results confirm that our method is superior tditicmal methods not only in accuracy but

also in speed.
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Essentially speaking, our method transforms the featuhecteon problem into the outlier detection
problem. Because there are a lot of state-of-the-art outééection methods, our framework can have
plenty of variants. In this paper we only explored the umiflyr partitioning-based method. This new
framework is flexible for the facile integration of other bert detection methods, which we will study
in the future. Moreover, we can also adopt other seeding odelbgies. In practice, because of the
characteristics of outlier detection problems, our framwcan achieve high tolerance of outliers in
target datasets, which is an extraordinary feature of @méwork.

Because of the simple and clear structure and level-basptementation of our method, it can
be parallelized easily, and we will implement and study theafel version of our S&H algorithm in
the future.
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