
Sensors2013, 13, 292-333; doi:10.3390/s130100292
OPEN ACCESS

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Seeding and Harvest: A Framework for Unsupervised Feature
Selection Problems

Gang Chen⋆, Yuanli Cai and Juan Shi

School of Electronic and Information Engineering, Xi’an Jiaotong University, No.28,

Xianning West Road, Xi’an 710049, China; E-Mails: ylicai@mail.xjtu.edu.cn (Y.C.);

shijuan4258@gmail.com (J.S.)

* Author to whom correspondence should be addressed; E-Mail:james.gang.chen@gmail.com.

Received: 30 October 2012; in revised form: 11 December 2012/ Accepted: 24 December 2012 /

Published: 27 December 2012

Abstract: Feature selection, also known as attribute selection, is the technique of selecting

a subset of relevant features for building robust object models. It is becoming more and

more important for large-scale sensors applications with AI capabilities. The core idea of

this paper is derived from a straightforward and intuitive principle saying that, if a feature

subset (pattern) has more representativeness, it should bemore self-organized, and as a result

it should be more insensitive to artificially seeded noise points. In the light of this heuristic

finding, we established the whole set of theoretical principles, based on which we proposed

a two-stage framework to evaluate the relative importance of feature subsets, called seeding

and harvest (S&H for short). At the first stage, we inject a number of artificial noise points

into the original dataset; then at the second stage, we resort to an outlier detector to identify

them under various feature patterns. The more precisely theseeded points can be extracted

under a particular feature pattern, the more valuable and important the corresponding feature

pattern should be. Besides, we compared our method with several state-of-the-art feature

selection methods on a number of real-life datasets. The experiment results significantly

confirm that our method can accomplish feature reduction tasks with high accuracy as well

as low computing complexity.

Keywords: feature selection; seeding and harvest; noise injection

Sensors2013, 13 293

1. Introduction

There are more and more sensor applications requiring artificial intelligence (AI), machine learning

and data mining technologies to identify new, potential anduseful knowledge from datasets [1],

which are becoming larger and larger in real life along with the emergence of internet [2] and

bio-informatics [3]. Thus, data preprocessing is becoming increasingly crucial, especially the data

reduction process, by which the AI modules of sensors could produce their results within acceptable

computing time.

As illustrated in Figure1, there are mainly two categories of data reduction methodologies, which are

instance-based ones and attribute-based (feature-based)ones.

Instance-based data reduction methods like various sampling techniques have been studied

thoroughly [4,5], whose main purpose is to reduce total entities in a dataset. However, in many

applications such as decision support, pattern recognition and financial forecasts [6], we cannot solve

the whole problem only relying on instance reduction, because there are often hundreds, thousands, even

millions of attributes in real-life datasets, and most of them may be irrelevant or redundant. That is to

say, the bottleneck here lies in the number of features, instead of the number of instances. Meanwhile,

as we know, high dimensionality of data may cause the “curse of dimensionality” problem [7].

Therefore, attribute-based technologies deserve to be studied deeply to find more effective and more

efficient methods, with which the total features of a datasetcan be dramatically reduced, thereby more

sophisticated AI algorithms could become feasible on high-dimensional datasets.

Figure 1. Categories of data reduction methods. The categories that our method belongs to

are in boldface.

data reduction
instance-based methods

attribute-based methods
feature transformation

feature selection
wrapper

filter

Refer to the third column of Figure1, attribute-based data reduction methods [8] fall into two general

categories. One is feature transformation, and the other isfeature selection. They are distinct from

each other in whether new features are produced or not. Feature transformation methods like principal

component analysis (PCA) [9] and factor analysis (FA) transform original features intosome new

features and factors respectively, which are probably difficult to interpret for human beings [10]. In

contrast, the methodology adopted by feature selection methods is trying to search for the most valuable

feature subset heuristically (searcher) under certain predefined feature subset evaluation criterion

(evaluator). Why is the searcher required? As we have pointed out, the number of features is often

huge, not to mention the number of possible feature subsets,so it is impractical to impose the evaluator

on each possible feature subset to get the best one [5]. For instance, if we have a dataset ofd features,

the number of possible feature subsets will reach2d, which will become prohibitively large even with a

moderately increasingd. So, cooperating with the evaluator, a heuristic searcher is often required and

employed in feature selection tasks. Greedy hill climbing and best first search are two classical search

Sensors2013, 13 294

methods adopted widely [11]. Meanwhile, some sophisticated methods such as genetic search [12] and

fuzzy reasoning search [13] can also be employed.

According to what kind of evaluator has been adopted, a feature selection methodology can be further

categorized into a wrapper or a filter, which are distinct from each other in whether a specific AI

algorithm is required as the measure of relative importanceof different feature subsets (the last column

of Figure 1). Specifically speaking, in a wrapper method, an AI algorithm must be predefined, and

the performance of this AI algorithm under a particular feature subset is seen as the measurement of

the relative importance of this feature subset. For example, if the dataset is going to be mined by

C4.5 classification algorithm [14], then the relative importance of a feature subset could be evaluated

according to the accuracy of C4.5 algorithm performed underthat feature subset. Every coin has

two sides: on one hand, wrappers can achieve good results if the feature-reduced dataset is going

to feed the same AI algorithm that has already been employed in the evaluator. But on the other

hand, because of losing generality, wrappers are prone to bad performance when the feature-reduced

dataset is going to feed any other AI algorithm that is different from the one employed in the evaluator.

Moreover, wrapper-based methods are often too slow to employ in large scale applications, especially

in circumstances where sophisticated AI algorithms are involved. In contrast to wrappers, filters are

independent of any specific AI algorithm by taking advantageof some general criteria to evaluate the

feature subsets. Since filters are more adaptive and efficient, they are becoming more and more popular

in high-dimensional AI and data mining problems. In this paper, to tackle the feature reduction problems,

we proposed a filter-based feature selection method, which belongs to the boldface categories in Figure1.

From another aspect of whether the label (class) information is considered, feature reduction

methodologies can also be classified into supervised and unsupervised ones. As we see, the label

information may be difficult to access in many applications,and there are more and more datasets given

without label information. Hence in this paper, we will concentrate on the unsupervised methods. As we

can infer, because supervised methods take the auxiliary label information into consideration, they are

probably more suitable for classification tasks, while unsupervised methods are prone to be more suitable

for clustering tasks [15]. Thus, most of the theoretical analysis, practical examples, and performance

evaluations in this paper are clustering-oriented.

Generally speaking, in this paper, we proposed a flexible framework called S&H, which is capable of

ordering feature subsets according to their relative importance (sorter). To cooperate with the sorter, we

improved the traditional heuristic searching methodologies into order-based ones, which can be called

ordinal searchers. The above two components—sorter and ordinal searcher—compose our main structure

to handle the feature selection problem, which is distinct from the traditional “evaluator and searcher”

structure, as we concentrate on “orders” but not “values”. That property makes our structure more

sensible and straightforward, because the underlying purpose of feature selection is just to find out the

best feature pattern, but not to answer how superior that feature pattern is quantitatively.

As stated above, our S&H sorter framework was initially inspired by a simple intuitive principle,

namely, if a feature subset has more representativeness, itshould be more self-organized, and as a result

it should be more insensitive to artificially injected noisepoints. That is to say, our S&H sorter can be

divided into two main stages. The first stage is called “seeding”, and the second one is “harvest”. At the

seeding stage, we inject some artificial noise points into the dataset, and in the harvest stage, we resort to

Sensors2013, 13 295

a uniformly partitioning-based outlier detector [16] to identify them from the original dataset. From this

novel point of view, the S&H framework virtually turns the feature subset ordering problem into outlier

detection problem—the relative importance of feature subsets can be assessed and ordered according

to how precisely the artificial noises (outliers) can be detected under these feature subsets. One may

wonder, why we call S&H a framework? As one can infer, S&H is not confined to specific kinds of

seeder and harvester. That is, other kinds of noise generating (seeder) and outlier detection (harvester)

algorithms can also be adopted to construct a new S&H implementation. For instance, instead of the

random injection methodology we adopted, people can also employ some kind of deterministic grid point

injection methodology in the seeding stage. Analogously, in the harvest stage, a lot of other off-the-shelf

outlier detection methods can also be employed, such as LOF [17] and iForest [18]. Although our

S&H framework is flexible to have plenty of variants, to be concrete, only one S&H implementation

will be studied thoroughly in this paper, where the uniformly distributing-based seeder and uniformly

partitioning-based harvester will be adopted.

Although derived from an intuitive principle, our methodology is based on solid theoretical

foundations. The key points are listed as follows:

1. We modeled the feature-selected clustering problem into a rigorous optimization form

in mathematics.

2. We proposed the concept of coverability, which was proved tobe an intrinsic property of a

certain dataset.

3. We showed that solving the feature selection problem is equal to finding the specific feature pattern,

under which the dataset exhibits the smallest coverability.

4. We found the correlation between coverability and the probability with which the seeded points

can be detected correctly.

5. We eventually concluded that solving the feature selectionproblem is equal to finding the specific

feature subset in which the seeded points can be extracted most exactly.

This paper is organized as follows: In Section2, we review some related work. In Section3, we

present our main principles involved. The practical interpretation of the theories is given in Section4,

with some important considerations in practice. In Section5, we describe the implementation of our

methodology in detail, and provide the main algorithms in pseudo-code. The comparison experiments

on extensive datasets are analyzed in Section6; and finally, our conclusions are presented in Section7.

2. Related Work

This section briefly reviews the state-of-the-art feature selection algorithms, which can be categorized

according to a number of criteria as we have illustrated in Figure1. Unless stated otherwise, we only

focus our attention on filter-based feature selection methods.

Sensors2013, 13 296

A rather simple attribute ranking method is the informationgain [19] (IG) method. It is based on the

concept of entropy. Equation (1) and Equation (2) give the entropy [20] of the class before and after

observing the attribute, wherea stands for an attribute andc stands for a class.

H(C) = −
∑

c∈C

p(c) log2 p(c), (1)

H(C|A) = −
∑

a∈A

p(a)
∑

c∈C

p(c|a) log2 p(c|a). (2)

Thus, we get the information gain (IG) for attributeAi from Equation (3)

IGi = H(C)−H(C|Ai). (3)

Inspired by IG, people developed a lot of more sophisticatedinformation-based methods. Liu et al.

introduced the dynamic mutual information method [21], and Yanet al. introduced a correntropy-based

method [22] recently.

Relief [23,24] is a typical instance-based attribute ranking method. It works by randomly sampling

an instance and characterize its nearest neighbours. Recently, Janez has extended it for attribute subset

evaluation [25].

CFS [5,26] was the first of the methods that evaluate subsets of attributes rather than individual

attributes [19]. Its main hypothesis is that a good feature subset is the onethat contains features highly

correlated with the class, yet uncorrelated with each other. This heuristic assigns high scores to subsets

containing attributes that are highly correlated with the class and have low inter-correlation with each

other. The following equation:

MeritS =
krcf

√

k + k(k − 1)rff
, (4)

gives the merit of an attribute subset, wherercf is the average feature-class correlation, andrff is the

average feature-feature inter-correlation.MeritS denotes the heuristic “merit” of a feature subsetS

containingk features. Compared with other methods we have mentioned, CFS chooses fewer features,

is faster and produces smaller trees [19].

Consistency-based methods [27,28] look for combinations of attributes whose values divide the data

into subsets containing a strong single class majority. Usually the search is biased in favor of small

feature subsets with high class consistency [19].

All the above are supervised feature selection methods. Compared with them, the unsupervised

methods do not need class labels. Next, we will review some unsupervised methods.

A common category of unsupervised feature selection methodology is the one based on various

clustering technologies. For example, Dy and Brodley proposed a cluster-based method [29],

which explores the feature selection problem through FSSEM(Feature Subset Selection using

Expectation-Maximization (EM) clustering) and two different performance criteria for evaluating

candidate feature subsets: scatter separability and maximum likelihood. Hong et al. proposed a feature

selection algorithm for unsupervised clustering [30], which combines the clustering ensembles method

and the population-based incremental learning algorithm.The main idea of this algorithm is to search

Sensors2013, 13 297

for a subset of all features such that the clustering algorithm trained on this feature subset can achieve the

most similar clustering solution to the one obtained by an ensemble learning algorithm. With the idea of

selecting those features such that the multi-cluster structure of the data can be best preserved, Cai et al.

proposed their method recently [31].

There also exist other kinds of unsupervised methods. As we know, some transformation-based

methods like PCA and FA are statistical unsupervised methods, which have been discussed in Section1.

Besides them, a spectrum-based method [32] is proposed by Zhao and Liu. Moreover, Mitraet al.

proposed an unsupervised feature selection method using feature similarity [33]. In summary, the

unsupervised methods evaluate feature relevance by the capability of keeping certain properties of

original data [21].

Generally speaking, the most significant difference between this work and other unsupervised

methods resides in that, we are the first to resort to outlier detection technologies to study feature

selection problems. This purpose is achieved by means of ourfundamental theories, which will be

covered in the next section.

3. Main Principle

Before introducing our theories, we believe that we should demonstrate the importance of feature

selection through a simple but concrete example.

Let us consider the simple clustering problem illustrated in Figure2. In this problem, two independent

jointly Gaussian clusters are generated, and they are distinct from each other only in their horizontal

means (Figure2(a)).

Figure 2. The effect of feature selection, where the only difference between the two clusters

lies in the fluctuation of their horizontal means.

(a) True result (b) Standardk-means

(c) Feature-selected

k-means

Thus, we can conjecture that the most valuable information resides in the horizontal dimension. To

clarify this point, we try to cluster this dataset using standard 2-means method [34]. Figure2(b) gives

the result when both features (dimensions) are considered,while Figure2(c) shows the result when

only the horizontal feature is employed. It is obvious from above two figures that the accuracy can

be improved dramatically if somehow we can know that the horizontal feature is more valuable and

thereby apply clustering using that feature only. Through this simple but explicit example, we see that

Sensors2013, 13 298

feature selection is so important that it is indispensable for a lot of clustering applications, especially in

high-dimensional circumstances.

Because of the intuitive and heuristic natures of our methodology, it would be much more

straightforward to explain through visible examples otherthan pure theories. Thus, in the following,

as a beginning, we will represent the core ideas of our methodology through the analysis on a simple

synthetic multidimensional dataset.

3.1. The Intuitions Derived from A Simple Example

Let us inspect the synthetic dataset shown in Figure3.

Figure 3. Scatter plots for the synthetic dataset consisting of 4 attributes:a, b, c, andd.

This figure gives the linked two-dimensional scatter plots of our synthetic multidimensional dataset

consisting of 4 independent attributes labeleda, b, c, andd, wherea and b are normally distributed

while c andd are uniformly distributed. Two more things should be pointed out here. First, the linked

two-dimensional scatter plots are a display technique, by which multidimensional observations can be

represented in two dimensions [35]. For example, Figure3 shows two-dimensional scatter plots for pairs

of these attributes organized as a4× 4 array. Second, our method does not rely on any prior assumption

of underlying distributions of attributes. We adopt the normal and uniform distributions here to make this

example as evident as possible. Therefore, let us inspect three typical attribute subsets—{a, b}, {b, c}
and{c, d} of this dataset, and we can easily find out that, in the subplotof attributea andb (the cell in

the cross of the second row and the first column of Figure3), there are two normally distributed clusters

in the top right corner and lower left corner, while in the subplots of attribute subset{b, c} (the cell in

the cross of the third row and the second column of Figure3) and{c, d} (the cell in the cross of the

Sensors2013, 13 299

fourth row and the third column of Figure3), there are two belt-shaped clusters and no significant cluster

respectively. To make it clearer, we extract the subplots ofthe above three attribute subsets and list them

in Figure4.

Figure 4. The significance (relative importance) order of attribute subsets—{a, b}, {b, c}
and{c, d}.

> >

Now, let us inspect the fundamental problem of ordering these three attribute subsets ({a, b}, {b, c}
and{c, d}) according to their merits (relative importance). As one may conjecture that, the relative

importance of attribute subsets can be qualitatively assessed by means of the entropy criterion. The

concept of entropy is involved in the information theory. Roughly speaking, entropy can be called

uncertainty, meaning that it is a measure of the randomness of random variables [36]. That is, the more

uncertain (larger entropy) the dataset appears under a specific attribute subset, the less important this

attribute subset should be. Meanwhile, from a glance of Figure 3, we can easily sort the patterns of

scatter plots in terms of their significance (Figure4). Considering the fact that a significant pattern of

image always implies a small entropy, we infer that attribute subset{a, b} is the most important one,

and{c, d} is the most unimportance one, while the relative importanceof {b, c} lies between them. This

order is consistent with that illustrated in Figure4.

If we denote the merit of an attribute subsetS asMeritS , then from the above, we conclude that the

order of merits can be expressed as:

Merit{a,b} > Merit{b,c} > Merit{c,d}. (5)

Next, we consider what will happen if we inject some artificial noise points into the dataset. Figure5

shows the consequence of noise injection, where 20 uniformly distributed random points are seeded into

the original dataset.

First, let us inspect the plot of attribute subset{a, b} in Figure 5(a). In this figure, we can find

very clear borders between the original points marked as circles and the seeded points marked as

crosses. Besides that, there are only three crosses populating in the domain of the two original normally

distributed clusters. In summary, in the plot of{a, b}, the original points and the seeded points are quite

distinct from each other.

Similarly, let us inspect Figure5(b). We can find much blurred borders between the original points

and the seeded points, and there are about 11 crosses populating in the domain of original points. So, in

the plot of{b, c}, the original points and the seeded points are not as well separated as in Figure5(a).

Sensors2013, 13 300

Finally, we inspect Figure5(c). In this figure, there is no border at all. All seeded points are merged in

the “ocean” of original points. It is really difficult to distinguish the seeded points from original points,

without extra information provided. That is to say, the lowest significance of seeded points appears in

attribute subset{c, d}, as Figure5(c) illustrates.

Figure 5. The effect of seeding. Circles are original points and crosses are the artificially

injected noise points.

(a) Seeded plot of

{a, b}
(b) Seeded plot of

{b, c}
(c) Seeded plot of

{c, d}

As can be seen, the above 3 subplots (Figure4(a–c)) are ordered in Figure5, according to their

significance of seeded points. Noticing that this order is consistent with that in Figure4, we infer that

the significance of artificially injected noise points is positively correlated with the merit of attributes

subset. Mathematically, we denote the significance of seeded points in attribute subsetS asSigS, then

we get:

Sig{a,b} > Sig{b,c} > Sig{c,d}. (6)

Noticing that Equation (6) is consistent with Equation (5), we induce:

MeritS ∝ SigS. (7)

In practice, if seeded points are more significant, then theyare more likely to be identified from

original points. That is to say, we can evaluate the relativeimportance of different attribute subsets in

terms of how precisely the seeded points can be detected under these attribute subsets. This is indeed

what Theorem6 (of Section3.5) will try to tell us. Hence, through this example, we have tasted the

flavour of Theorem6 from a practical point of view.

With the above intuitions, as a starting point of the theoretical analysis, we will present the modeling

of standard clustering problems in the next section.

3.2. Modeling of Standard Clustering

We consider a datasetD with n instances andp attributes (features). We can denote this dataset as

ann × p matrixD. Furthermore, to denote one attribute, we express thelth column ofD as vectordl.

Besides, thejth data point (observation) is denoted as vectoroj , which is thejth row ofD.

Sensors2013, 13 301

Now, let us consider the standard clustering problem. If we denote the set of all possible clustering

patterns asC, then a concrete clustering pattern can be expressed as vector c, wherec ∈ C. First, we

give the concept of clustering evaluation function.

Definition 1. Clustering Evaluation Function. There is a functionF (D, c) of data matrixD and

clustering patternc ∈ C. UnderF , a relationR can be defined as:

R = {(c1, c2) | F (D, c1) ≥ F (D, c2) andc1, c2 ∈ C} . (8)

If ∀a,b, c ∈ C the followings hold simultaneously:

1. (a, a) ∈ R (reflexivity);

2. If (a,b) ∈ R and(b, c) ∈ R, then(a, c) ∈ R (transitivity);

3. Either (a,b) ∈ R or (b, a) ∈ R (totality),

then we call this functionF a clustering evaluation function (CEF).

Essentially speaking, the relationR defined above can be interpreted in the sense of common “better

than” relation. If a functionF is defined, then the correspondingR is determined simultaneously. As a

result, all the possible clustering patterns can be evaluated and compared with each other according to

the function values ofF .

Furthermore, based on the properties enumerated in Definition 1, we can define the best clustering

pattern set (BCPS) as follows:

Definition 2. Best Clustering Pattern Set. SetB (B ⊂ C) can be called a best clustering pattern set

under CEFF , if ∀x ∈ B and∀c ∈ C, (x, c) ∈ R holds, whereR is defined in Equation (8).

There is an interesting result under above definition.

Theorem 1. ∀x,y ∈ B, whereB is the BCPS under Definition2, we haveF (D,x) = F (D,y).

Proof. Here, we will prove it by contradiction. First, we assume that F (D,x) 6= F (D,y). Without

losing generality, we can further assume that,

F (D,x) > F (D,y). (9)

From Definition2, we knowB ⊂ C. Becausex ∈ B, we getx ∈ C. Again, from Definition2, we can

get(y,x) ∈ R, that is,

F (D,x) ≤ F (D,y). (10)

Because Equation (10) contradicts Equation (9), we conclude,

F (D,x) = F (D,y).

Generally speaking, every clustering methodology has its own distinct CEFF , and because of the

preceding discussions, the standard clustering problem can be expressed as an optimization problem.

Sensors2013, 13 302

Definition 3. Standard Clustering Problem. The standard clustering problem can be defined to be an

optimization problem as

max
c∈C
{F (D, c)} , (11)

whereF (D, c) is a CEF.

Together with Definition3, theorem1 clarifies a simple truth, saying that all the clustering patterns in

BCPS have equally maximized CEF value, which can be found outby solving the maximization problem

expressed in Equation (11). That is to say, if and only if under cluster patterns in BCPS, the target dataset

D can be clustered most effectively, in terms of a specific CEFF .

To make the above theories more concrete, the standardk-means clustering will be investigated here.

Given a datasetD of observations(o1, o2, . . . , on), where each observation is ap-dimensional real

vector,k-means clustering aims to partition then observations intok sets(k ≤ n) c = (S1, S2, . . . , Sk)

so as to minimize the within-cluster sum of squares (WCSS) [34]:

min
c∈C







k
∑

i=1

∑

oj∈Si

||oj − µi||2






, (12)

whereµi is the mean of points inSi, andC is the set of all possible clustering patterns. The minimization

problem in Equation (12) can also be expressed as the following maximization problem:

max
c∈C







−
k

∑

i=1

∑

oj∈Si

||oj − µi||2






. (13)

Thus, if we define a function as

Fkmeans = −
k

∑

i=1

∑

oj∈Si

||oj − µi||2, (14)

then the optimization problem stated in Equation (13) is consistent with that in Equation (11). Next, we

will prove that, the functionFkmeans defined in Equation (14) is indeed a CEF fork-means clustering.

Theorem 2. Equation (14) defines a CEF.

Proof. According to Equation (14), for arbitrarya,b, c ∈ C, we have:

1. BecauseFkmeans(D, a) = Fkmeans(D, a), we have(a, a) ∈ R;

2. If (a,b) ∈ R and (b, c) ∈ R, thenFkmeans(D, a) ≥ Fkmeans(D,b) andFkmeans(D,b) ≥
Fkmeans(D, c), as a result,Fkmeans(D, a) ≥ Fkmeans(D, c), that is(a, c) ∈ R;

3. Because eitherFkmeans(D, a) ≥ Fkmeans(D,b) or Fkmeans(D,b) ≥ Fkmeans(D, a) holds, then

either(a,b) ∈ R or (b, a) ∈ R holds.

Thus, we know Equation (14) defines a CEF.

Sensors2013, 13 303

Theorem2 tells us that,

F = −
k

∑

i=1

∑

oj∈Si

||oj − µi||2, (15)

in k-means clustering. And thek-means clustering problem conforms with the definition of standard

clustering problem (Definition3).

3.3. Modeling of Feature-Selected Clustering

In this subsection, we will investigate a special kind of CEF, called feature-additive CEF.

Definition 4. Feature-additive CEF. If a CEFF can be expressed as:

F (D, c) =

p
∑

l=1

fl(dl, c), (16)

wheredl is thelth column ofn × p data matrixD, then this CEFF is a feature-additive CEF, and the

functionfl(dl, c) is thelth feature-oriented subCEF. Accordingly, clustering methods based on this kind

of CEF can be called feature-additive clustering methods.

Hence, by substituting Equation (16) into Equation (11), we can express a feature-additive standard

clustering problem as the following optimization problem:

max
c∈C

{

p
∑

l=1

fl(dl, c)

}

. (17)

Again, we resort tok-means clustering to make it more concrete.

Theorem 3. K-means clustering is feature-additive.

Proof. From Equation (15), we get:

F = −
k

∑

i=1

∑

oj∈Si

||oj − µi||2

= −
k

∑

i=1

∑

oj∈Si

p
∑

l=1

(ojl − µil)
2 (18)

=

p
∑

l=1



−
k

∑

i=1

∑

oj∈Si

(ojl − µil)
2



 . (19)

Theojl andµil in Equation (18) are thelth components of vectoroj andµi respectively. With respect to

Equation (19), if we define,

fl = −
k

∑

i=1

∑

oj∈Si

(ojl − µil)
2, (20)

then from Equation (19), we have,

F =

p
∑

l=1

fl. (21)

Sensors2013, 13 304

Noticingojl = dlj , we can get,

fl = −
k

∑

i=1

∑

oj∈Si

(dlj − µil)
2. (22)

In Equation (22), fl is a function of feature vectordl and clustering pattern vectorc. According to

Definition 4 and Equation (21), we conclude thatk-means clustering is feature-additive, and its feature-

oriented subCEF is defined in Equation (22).

The introduction of feature-additive clustering is valuable, in the sense that the feature selection

problem can be elegantly expressed as an optimization problem.

Definition 5. Feature-selected Clustering Problem. There is a feature-additive CEFF , and its feature-

oriented subCEF for featurel is fl. Thereby all thep fl form a vector functionf = (f1, f2, . . . , fp). Then

a feature-selected clustering problem becomes an optimization problem defined as:

max
ω,c

p
∑

l=1

ωlfl(dl, c)

subject to ωl ∈ {0, 1}, 1 ≤ l ≤ p,

c ∈ C.

(23)

Or, in the vectorial form as:

max
ω,c

ω · f(D, c)

subject to ω ∈ {(ω1, ω2, . . . , ωp) | ωl ∈ {0, 1}, 1 ≤ l ≤ p},
c ∈ C.

(24)

In Equation23, whenω = (1, 1, . . . , 1), we see that the feature-selected clustering problem can be

transformed into a standard clustering problem defined in Equation (17). That is to say, the standard

clustering problem is just a special case of feature-selected clustering problem, where all the features

are selected. To be concrete, according to what Definition5 suggests, we can generalize the standardk-

means into a feature-selected one. Recalling the example inFigure2, where we have given the clustering

results of standard and feature-selectedk-means respectively, we see that feature selection processis

essential tok-means clustering, even in the case dealing with such a simple dataset.

One may wonder how the optimization problem in Equation23 can be solved. In Equation23, if a

clustering patternc is given, thenfl(dl, c) will be determined simultaneously, as a result, the problem

in Equation23 can be treated as a standard binary integer programming (BIP) problem, which has been

studied thoroughly in mathematics. For instance, the Balasadditive algorithm [37] is a sort of specialized

branch and bound algorithm for solving standard BIPs. Similarly, if a feature patternω is given, the

problem in Equation23 can then be treated as a standard clustering problem, by considering only the

features selected byω. From the above discussions, we can employ a rolling manner methodology [34]

to handle the whole optimization problem. That is, first we start with a particular feature patternω, such

asω = (1, 1, . . . , 1), and then under this given feature pattern, an optimized clustering patternc can be

obtained accordingly, by a standard clustering procedure.Subsequently, we fix thisc, and do a Balas

BIP optimization to get a newω. With this newω, the above procedures could be performed iteratively

Sensors2013, 13 305

until ω andc converge. Although this kind of rolling optimization seemsfeasible in theory, it cannot

guarantee to give the global maximum, and often gives just a local maximum. Meanwhile, considering

the enormous complexity of this method, we are still motivated to develop more effective and efficient

algorithms to tackle the feature-selected clustering problem.

3.4. Coverability and Its Properties

As discussed previously,k-means clustering has some valuable properties, such as theadditivity

of feature-oriented subCEFs, which gives us the optimization perspective to tackle feature selection

problems (Equation23). In this subsection, we will introduce the concept of coverability, which can

provide us another novel perspective for feature selection.

As we know, a clustering pattern can be expressed as a vector of point sets, denoted as

c = (S1, S2, . . . , Sk), whereSi represents theith cluster, which is a set consisting of theN(i) data

points belonging to this cluster.

Now, let us inspect clusterSi. In this cluster, there areN(i) data points indexed by the set

Ii = {i1, i2, . . . , iN(i)}, satisfyingSi = {oi1 , oi2, . . . , oiN(i)
}. The mean (arithmetical average) of these

points is denoted asµi. That is:

µi =

∑N(i)
j=1 oij

N(i)
. (25)

Then, the mean-squared error (MSE) for clusterSi is:

MSEi =

∑N(i)
j=1 ||oij − µi||2

N(i)
. (26)

If we treat
√

MSEi as a kind of radius, then we have:

Definition 6. Effective Radius and Effective Circle. Regarding clusterSi, we call a radiusρi satisfying

ρ2i = MSEi or ρi =
√

MSEi the effective radius of clusterSi. Accordingly, the circle centered atµi with

radiusρi is the effective circle of clusterSi.

As we know,
√

MSEi can be regarded as the standard deviation of samples in clusterSi. Appealing

to Definition6, the effective radiusρi measures how widely the instances inSi are spread. Accordingly

the effective circle vaguely confines the space of influence of clusterSi. To be concrete, the two bold

circles in Figure6 illustrate effective circles visibly.

With above definitions, we can give the rigorous definition ofcoverability now.

Definition 7. Coverability. The coverability for a dataset is the infimum of the sum of

N(i)-weightedρ2i , whereρi is the effective radius ofSi. That is

C = inf
c∈C

{

k
∑

i=1

N(i) · ρ2i

}

. (27)

The following theorem can help us to interpret the essence ofcoverability more deeply.

Theorem 4. The coverability of a dataset is equal to the infimum of WCSS.

Sensors2013, 13 306

Proof. Becauseρ2i = MSEi, we have

C = inf
c∈C

{

k
∑

i=1

N(i) ·MSEi

}

= inf
c∈C

{

k
∑

i=1

N(i) ·
∑N(i)

j=1 ||oij − µi||2
N(i)

}

= inf
c∈C







k
∑

i=1

N(i)
∑

j=1

||oij − µi||2






. (28)

Because the infimum of WCSS for a specific dataset is definite, Theorem4 essentially tells us that

the coverability is an intrinsic property for a dataset and independent of any concrete clustering method.

Reviewing Theorem4, one may ask that, isn’t WCSS good enough? And why did we bother to introduce

the concept of coverability? Roughly speaking, what Theorem 4 presented is just one perspective to

interpret the concept of coverability. And the essence of coverability can only be exposed from another

point of view, where coverability is interpreted as the ability of a dataset to cover seeded points and make

them difficult to identify. We will explain this in detail below.

What are seeded points? Look at Figure6 again, some artificial noise points (the crosses in Figure6)

are injected into the original dataset. We call these artificial noise points seeded points or just seeds

for short.

Figure 6. An example. Bold circles are effective circles for the two clusters respectively.

Those little circles are original data points, and crosses are seeded points with uniform

distribution law. This dataset has been optimally clustered, and the points belonging to the

left-bottom cluster have been marked by solid circles.

To determine the quantity of seeds, we denote the number of seeded points asN0. Hence, we can

define the signal-to-noise ratio to be

SNR=
n

N0
, (29)

Sensors2013, 13 307

where the total number of instances in original dataset is denoted asn as before. In the example of

Figure6, we adopt SNR= 10. Besides that, we should also note that, the seeded points are uniformly

distributed into the data space spanned by the original datapoints. We will discuss the SNR and

distribution law again in Section3.6.

Now, let us try to interpret the term—N(i) ·ρ2i of Equation (27), when the infimum has been achieved.

From Figure6, we can see that if a seeded point is totally covered by a cluster, it will be very difficult

to be identified from the original points, thus we can call it afaded seed. In contrast, if a seeded point

departs from any cluster far enough, then it is distinct and can be extracted easily, so we call it a distinct

seed. For a specific clusterSi, recalling that the areaρ2i (we do not care about the constantπ here) of the

corresponding effective circle is a measurement of the range of this cluster, we can infer that, the bigger

the effective circle is, the better the coverability will be, as a result more seeds will be faded. Besides,

the number of points inSi (N(i)) is another important factor that is tightly relevant to coverability.

Assuming that two clusters with the same size of effective circles are given, we can easily infer that the

cluster with more data points is prone to higher density, hence it is more capable of covering seeded

points, and eventually will be superior in coverability. Through the above discussions, Equation (27) as

a whole can be interpreted as the overall seed-covering ability of all the clusters in a dataset, when the

WCSS has been minimized.

Next, let us consider the probabilityP, with which the seeded points can be distinguished from the

original data points correctly. From the above analysis, itis obvious thatP is closely related with the

coverability of a dataset. If the coverability is larger, then a seeded point is more likely to be covered by a

cluster less likely to be detected by an outlier detector. Thus we can infer thatP is inversely proportional

to the coverability of a dataset.

From the above, we can summarize and make our fundamental hypothesis as follows.

Hypothesis 1.The probabilityP, with which the uniformly seeded noise points can be detected correctly,

is negatively correlated with the coverabilityC of a dataset.

As we have pointed out, coverability is an intrinsic property for a dataset, hence Hypothesis1

essentially tells us thatP is also an intrinsic property for a dataset. We can explain itin this way

that if a dataset is given, then how possibly the seeded points can be detected is determined accordingly.

Furthermore, if we treat the uniformly injected seeded points as outliers against the original dataset, then

we can adopt a particular outlier detector to evaluateP. BecauseP is determined on a concrete dataset if

the outlier detector is given, the validity of Hypothesis1 only depends on the characteristic of the outlier

detector we adopted. That leads to the definition of ideal outlier detector as follows.

Definition 8. Ideal Outlier Detector. An outlier detector is an ideal outlier detector if and only if

Hypothesis1 holds when this outlier detector is adopted.

Essentially speaking, the requirement that Hypothesis1 imposes on an outlier detector is that the

correct detection probability should be negatively correlated with the space covered by the original

points. This requirement is so loose that Hypothesis1 seems to be a characteristic feature of outlier

detectors in general. In this paper, whenever we talk about an outlier detector, we exclusively refer to the

ideal outlier detector, where Hypothesis1 holds. In practice, the validity of Hypothesis1 can be verified

Sensors2013, 13 308

phenomenologically by experiments or mechanistically by theories. Through plenty of experiments and

theoretical investigations, we have found that most existing outlier detectors can be treated as ideal outlier

detectors to some extent. It again confirms that Definition8 reveals a sort of general property for outlier

detectors. In this paper, we will give a detailed description of the uniformly partitioning-based outlier

detector in Section4.1. Furthermore, in Section4.2we will prove that it conforms to Hypothesis1.

3.5. Feature-Projected Coverability and Its Properties

From now on, we will take the feature selection effect into consideration, which is indicated by the

vectorω as before. With feature selection, an observationo can be projected into a feature-selected

vectoro|ω defined as

o|ω = ω · o, (30)

where only the components corresponding to the “1” elementsof ω are relevant and survived from

feature selection. According to Equation (30), we have the following results in the feature-selected

situation, by improving Equation (25) and Equation (26).

For clusterSi, the mean of this cluster in the feature-selected circumstances is denoted asµ|ω,i.

That is

µ|ω,i =

∑N(i)
j=1 o|ω,ij

N(i)
. (31)

Then, the feature-selected mean-squared error (MSE|ω) for clusterSi is

MSE|ω,i =

∑N(i)
j=1 ||o|ω,ij − µ|ω,i||2

N(i)
. (32)

Analogously to Definition6, we can define

ρ|ω,i =
√

MSE|ω,i. (33)

Thus, similar to Definition7, the coverability for a feature-selected dataset can be defined as

C|ω = inf
c∈C

{

k
∑

i=1

N(i) · ρ2|ω,i

}

. (34)

With the above discussions, we can define the optimal featurepattern as follows.

Definition 9. Optimal Feature Pattern. We call a feature patternωo the optimal feature pattern if

ωo = argmin
ω

{

C|ω

}

, (35)

whereω ∈ {(ω1, ω2, . . . , ωp) | ωl ∈ {0, 1}, 1 ≤ l ≤ p}.

Again, we would like to explain Definition9 in a concrete manner by investigatingk-means clustering.

The following theorem will reveal the underlying relationship between optimal feature pattern and the

optimization problem defined in Equation23.

Theorem 5. In feature-selectedk-means clustering, the maximum of Equation23can be achieved if and

only if the features are selected according to the optimal feature patternωo defined in Definition9.

Sensors2013, 13 309

Proof. From Equation (30), Equation (32), Equation (33), and Equation (34), we get

C|ω = inf
c∈C

{

k
∑

i=1

N(i) ·MSE|ω,i

}

= inf
c∈C







k
∑

i=1

N(i)
∑

j=1

||o|ω,ij − µ|ω,i||2






= inf
c∈C







k
∑

i=1

∑

oj∈Si

||ω · oj − ω · µi||2






. (36)

Next, from Equation (20) and Equation (23), we get
p

∑

l=1

ωlfl(dl, c) = −
p

∑

l=1

k
∑

i=1

∑

oj∈Si

ωl(ojl − µil)
2

= −
k

∑

i=1

∑

oj∈Si

p
∑

l=1

ωl(ojl − µil)
2

= −
k

∑

i=1

∑

oj∈Si

p
∑

l=1

(ωlojl − ωlµil)
2 (37)

= −
k

∑

i=1

∑

oj∈Si

||ω · oj − ω · µi||2. (38)

The reason for Equation (37) is ωl = ω2
l , becauseωl ∈ {0, 1}.

By comparing Equation (38) with Equation (36), we know that
∑p

l=1 ωlfl(dl, c) will be maximized if

and only ifC|ω is minimized. Hence the theorem is verified.

Essentially speaking, Theorem5 reveals an important fact that, the feature selection task for k-means

clustering can be accomplished by finding the feature pattern under which the smallest coverability is

achieved. Furthermore, one may wonder whether we could find asimpler methodology to evaluate

coverability instead of solving the optimization problem in Equation (35). Fortunately, Hypothesis1

offers us a great source of inspiration. From Hypothesis1, we know that the coverability of a dataset

is coupled with the probabilityP with which the seeded points can be detected correctly. Similarly,

in the feature-selected situation, we may also expect to evaluate the coverabilityC|ω by assessing the

probability with which the seeded points can be correctly identified from the dataset under feature

patternω. With this novel methodology, we could easily compare the coverabilities under various feature

patterns to get the best one, which is potentially an answer to the feature selection problem.

To make above discussions rigorous, first of all, we give a corollary of Hypothesis1.

Corollary 1. The probabilityP|ω with which the uniformly seeded noise points can be correctly detected

under a particular feature patternω is negatively correlated with the coverabilityC|ω under this feature

patternω.

Corollary1 is straightforward. If we treat the feature-selected database as a new database, then in this

new database,P|ω can be viewed as a newP andC|ω can be viewed as a newC. Via Hypothesis1, we

can easily verify what Corollary1 stated. By Corollary1, we get the fundamental theorem below.

Sensors2013, 13 310

Theorem 6. The maximum ofP|ω can be achieved if and only if the features are selected according to

the optimal feature patternωo defined in Definition9. Or equivalently,

ωo = argmax
ω

{

P|ω

}

. (39)

Proof. Because of Equation (35) and Corollary1, the statement of this theorem holds obviously.

Theorem6 tells us that we can accomplish feature selection tasks by finding the particular feature

pattern under which the seeded points can be extracted most probably. This methodology is simpler

and more feasible than solving the optimization problem in Equation23. To clarify the validity of this

methodology, first let us consider thek-means clustering. According to Theorem5, we know that, for

k-means clustering, the optimal feature pattern that Theorem 6 provides us is actually the solution to the

optimization problem expressed in Equation23. Then, how about a common situation? As we know,

coverability is virtually the minimized WCSS of a dataset. So Theorem6 actually gives us a practical

methodology to find the feature pattern under which WCSS can be minimized. This interpretation reveals

that, essentially, Theorem6 is consistent with existing feature selection criteria [15] in the sense of

minimizing WCSS. Hence, Theorem6 is sensible in a common sense.

3.6. Remaining Problems

There are still some remaining problems, which need to be discussed in detail.

How can we determine a suitable SNR?As stated previously, SNR= 10 has been adopted in the

example illustrated in Figure6. To explain this, we should note that the quantity of seeded points

cannot be too large. Otherwise, the seeded points will overwhelm the whole data space, and then

the distinguishability of feature patterns will suffer. Meanwhile, there should not be too few seeded

points either. Otherwise, the granularity becomes so coarse that it will dramatically degrade the

precision of feature subset evaluation. Finally, through alot of experiments, we found that,P|ω

in Equation (39) is substantially insensitive to SNR when SNR is set moderately, and we see that

SNR= 10 is a good choice in practice.

Why did we adopt the uniform distribution for seeding? As stated previously, coverability can be

viewed as the ability for a dataset to occupy the data space inwhich the seeded points are spread.

The number of the seeded points that have been affected by theoriginal dataset can be used

to assess the space occupation of the original dataset only when the seeded points are spread

uniformly. Thus, uniform distribution is the only sensiblechoice.

4. Practical Considerations

In this section, we are mainly planning to explain two important components of our framework in

detail, namely the harvester and the searcher. Next, let us talk about our uniformly partitioning-based

harvester as a beginning.

Sensors2013, 13 311

4.1. Uniformly Partitioning-Based Harvest Method

As stated above, if we treat the seeded points as outliers in original data points, the harvest procedure is

essentially an outlier detection process. There are a lot ofstate-of-the-art methods that can be employed.

In this paper, a recent uniformly partitioning-based method called ordinal isolation [16] is adopted

because it has some substantial advantages as follows:

• It is simple and fast, withO(n) complexity.

• It is scalable, because it arranges its main computations ina tree, whose branches can be pruned

out during the proceeding of the whole algorithm.

More details for this algorithm can be found in the literature [16].

In this paper, although we adjusted the ordinal isolation algorithm somehow to be more suitable for

our harvest tasks, we do not want to repeat the main principles of ordinal isolation here, which can be

found thoroughly in the literature. However, we will try to present the detailed processing procedures of

the harvester in a more practical way. That is, we will consider the simple example given in Section3.1

again, and show the detailed processing procedures of harvester towards this simple problem.

Figure 7, Figure8 and Figure9 illustrate the recursively and uniformly partitioning processes on

attribute subsets{a, b}, {b, c} and{c, d} respectively. The first subplots of each above figures show the

initial 2× 2 uniformly partitioning, which split each attribute uniformly into two equal halves. Then, we

get the remaining subplots by carrying out the same uniform partitioning operation recursively, which

generates the4×4, 8×8 and16×16 partitioning schemes sequentially. In each figure, the seeded points

are marked as crosses, and original points are marked as circles. If a seeded point is isolated, we denote

it as a dark cross. Similarly, we mark isolated original points as dark disks.

We denote the operation of counting the number of isolated seeded points (dark crosses) asS(S, l),

whereS is the attribute subset andl represents a2l × 2l partitioning. Similarly, we denote the operation

of getting the number of isolated original points (dark disks) asO(S, l). Then from Figure7, we can

count the numbers of isolated points, and get:



















S({a, b}, 1) = 0

S({a, b}, 2) = 2

S({a, b}, 3) = 12

S({a, b}, 4) = 15

and



















O({a, b}, 1) = 0

O({a, b}, 2) = 0

O({a, b}, 3) = 5

O({a, b}, 4) = 12

. (40)

If we defineMeritS,l (whereS andl have the same meanings as those inS(S, l)) as the following:

MeritS,l =
S(S, l)

O(S, l)
, S(S, l) > 0 and O(S, l) > 0, (41)

then we get the following equations:
{

Merit{a,b},3 = 12/5 = 2.40

Merit{a,b},4 = 15/12 = 1.25
, (42)

by appealing to Equation (41).

Sensors2013, 13 312

Figure 7. Recursively and uniformly partitioning on attribute subset {a, b}.

(a) 2× 2 partitioning (b) 4× 4 partitioning

(c) 8× 8 partitioning

(d) 16×16 partition-

ing

Analogously, from Figure8, we get:



















S({b, c}, 1) = 0

S({b, c}, 2) = 0

S({b, c}, 3) = 8

S({b, c}, 4) = 9

and



















O({b, c}, 1) = 0

O({b, c}, 2) = 0

O({b, c}, 3) = 9

O({b, c}, 4) = 43

. (43)

Appealing to Equation (41), we get:
{

Merit{b,c},3 = 8/9 ≈ 0.89

Merit{b,c},4 = 9/43 ≈ 0.21
. (44)

Finally, from Figure9, we get:



















S({c, d}, 1) = 0

S({c, d}, 2) = 0

S({c, d}, 3) = 1

S({c, d}, 4) = 10

and



















O({c, d}, 1) = 0

O({c, d}, 2) = 0

O({c, d}, 3) = 5

O({c, d}, 4) = 85

. (45)

Appealing to Equation (41), we get:
{

Merit{c,d},3 = 1/5 = 0.20

Merit{c,d},4 = 10/85 ≈ 0.12
. (46)

Sensors2013, 13 313

Figure 8. Recursively and uniformly partitioning on attribute subset {b, c}.

(a) 2× 2 partitioning (b) 4× 4 partitioning

(c) 8× 8 partitioning

(d) 16×16 partition-

ing

Thus, from Equation (42), Equation (44) and Equation (46), we get:
{

Merit{a,b},3 > Merit{b,c},3 > Merit{c,d},3

Merit{a,b},4 > Merit{b,c},4 > Merit{c,d},4
. (47)

Note that the order given in Equation47 is consistent with that given in Equation (5) and Figure4.

So we can induce thatMeritS,l can be treated as a merit order indicator for attribute subsets, by which

the order but not exact values of the merits of different attribute subsets can be preserved, as Equation47

and Equation (5) exhibit. In the next subsection, we will address why this uniformly partitioning-based

methodology conforms to Hypothesis1.

4.2. The Ideality of Uniformly Partitioning-Based OutlierDetector

As what Definition8 reveals, the uniformly partitioning-based outlier detector can be classified as the

ideal outlier detector if and only if∀D, whereD is a dataset, the possibilityP with which the uniformly

seeded noise points can be detected correctly is negativelycorrelated with the coverabilityC of a dataset.

In this section, we will explain the ideality of the uniformly partitioning-based outlier detector in a more

rational and rigorous way.

First, let us assume a situation illustrated in Figure10.

Sensors2013, 13 314

Figure 9. Recursively and uniformly partitioning on attribute subset {c, d}.

(a) 2× 2 partitioning (b) 4× 4 partitioning

(c) 8× 8 partitioning

(d) 16×16 partition-

ing

Figure 10. The seeded points have all been isolated in this32× 32 partitioning.

In this situation, we only consider the seeded points, whichare uniformly distributed in the data space.

We carry out a recursively and uniformly partitioning procedure. When we reach the32×32 partitioning

Sensors2013, 13 315

stage, we notice from Figure10 that all the seeded points have been isolated. Then in this situation, the

ratio of correctly detected seeds can be rationally inferred to be 100%.

Then, we consider what will happen when the original data points are populated into this data space.

We illustrate this situation in Figure11, where the original points are assume to be normally distributed

and indicated by solid discs. First, we investigate the caseof one particular seeded point. It is obvious

that when an original point locates in a cell in which a seededpoint has already been located, then the

distinctness of this seeded point is affected by this original point as illustrated by Figure11.

Second, when we consider the original data points as a whole,we can see that in the middle of

Figure11 the seeded points have been covered by the original points, which consequently makes them

less probable to be detected correctly. Thus, the ratio of correctly detected seeds can be rationally inferred

to be much less than 100%. That is to say, the existence of original points reduces the ratio of correctly

detected seeded points.

Figure 11. The situation when original points (solid ones) have been injected.

Now, let us consider how the original points act on the correct detection ratio.

First, we consider the position of the original points as a whole. That is to say, we consider the

effect of a common position transposition for all the original points. In this situation, we can imagine

that, because the seeded points are distributed uniformly,the state of interfering is also uniformly spread

in the data space. That is to say, the transposition of original data points cannot significantly alter the

correct detection ratio.

Second, we consider how the size of the original data points affects the correct detection ratio when

the concentration sustains at a fixed level. As Figure11 illustrates, the ratio of affected seeded points

are positively correlated with the size of original data points. Because the concentration is fixed, we

can infer that the ratio of affected points will increase with positively ascending size of original points.

But the intensity of this kind of affectation will not changebecause of the constant concentration. As a

Sensors2013, 13 316

whole, the correct detection ratio is negatively correlated with the size of original data points when the

concentration is fixed.

Last, we should consider how the concentration of the original data points affects the correct detection

ratio when its size sustains at a fixed level. In this situation, it is straightforwardly to see that when the

ratio of affected points is fixed, if the concentration is increased, then it will be more likely that the

original points can be isolated, which results in the detection of the original points rather than the seeded

points and thus reduces the ratio of correct detection. So, as a whole, the correct detection ratio is

negatively correlated with the concentration of original data points when its size is fixed.

Until now, we have been armed enough to investigate how the coverability of original points is

correlated with its size and concentration. As we have discussed, the coverability of a dataset depict

its space-covering ability. And, as we proved in Theorem4, the coverability of a dataset is equal to the

infimum of WCSS. We can conclude that the coverability of original points is positively correlated with

its concentration and size.

Generally speaking, from the above discussions, we can conclude that the coverability of original

points is negatively correlated with the possibility (ratio) of correct detection. That is to say, the

uniformly partitioning-based outlier detector we adoptedis indeed one particular type of ideal outlier

detectors.

In the next subsection, we will address why the “order” is superior to the “value” and explain the main

principles of ordinal searching methodologies.

4.3. Ordinal Searching Principle

Most traditional heuristic searching methodologies are value-based, where the searching directions

are determined according to the merit values of attribute subsets. The cooperating pattern between

heuristic searchers and attribute subset evaluators is illustrated in Figure12.

Figure 12. Schema of traditional value-based feature selection.

Heuristic searcher

Attribute subset evaluator

attribute subset merit value

From Figure12, it is obvious that in traditional value-based searchers, there are a lot of merit values

that need to be evaluated in each step of searching. To be concrete, let us consider the greedy hill

climbing method, which is a simple but common kind of searcher. In one step of greedy hill climbing,

the attribute with the highest merit gain is added into the attribute subset, which will be treated as the

searching result when the merit value cannot be further enhanced by adding any individual attribute.

Hence, the essential operation in one step is evaluating a sequence of attribute subsets and fetching the

one with the best merit. As we know, in high-dimensional circumstances, considering the potential huge

Sensors2013, 13 317

number of merit values to evaluate, we see that this value-based manner is really time-consuming. Then,

one may ask, if what we want to find out is just the best one, why do we bother to evaluate all the

merit values? Can we abandon the concern with concrete meritvalues, and just produce a descendingly

ordered sequence of attribute subset somehow, and then pickthe first one? Is the order more feasible

than the value? Is the ordinal searching methodology better?

The above questions are straightforward to answer. Let us take an example. If Tom is1.75m tall,

and Jack is1.88m tall, then the conclusion “Jack is taller than Tom” will be much easier to get than

the conclusion “Jack is0.13m taller than Tom”. This argument is elaborated by the two well-known

principles [38] in ordinal optimization theory:

1. “Order” is much more robust against noise and easier than “Value”.

2. Do not insist on getting the “Best” but be willing to settle for the “Good Enough”.

So, in this paper, we improve the traditional value-based search methods into order-based ones.

Accordingly, the value-based pattern in Figure12 turns into the ordinal pattern illustrated in Figure13.

This is a novel searching methodology in avoiding the evaluations of merit values, by means of merit

order indicators such asMeritS,l defined ascendingly to sort the input sequence of attribute subsets. This

methodology can not only save a lot of computing time but alsoproduce more robust results.

Figure 13. Schema of novel order-based feature selection.

Ordinal searcher

Attribute subset sorter

ordered sequence
attribute subsets
sequence of

The last question is: how we can get the order of attribute subsets by means of our seeding and harvest

framework? Appealing to Equation47, whose order is consistent with that given in Equation (5) and

Figure4, we see that the attribute subsets have been perfectly ordered in levell, where the numbers

of isolated seeded points and isolated original points in each attribute subset are all non-zero for the

first time. For instance, the order can be determined by Equation (5) when l = 3, and this order

will sustain whenl > 3, so this property can be used to reduce computing complexityby pruning

off the computations beyond levell, where∀S, S(S, l) > 0 andO(S, l) > 0 hold. We will give all the

implementation details in the next section.

5. Implementation

From previous discussions, we see that our seeding and harvest framework is capable of sorting the

input attribute subsets in terms of their relative importance. This order is used by order-based searcher

to determine the direction for the next searching step. The main structure of their cooperation has been

Sensors2013, 13 318

illustrated in Figure13. In this section, we will exhibit the implementation details of all the relevant

algorithms. First, let us talk about the order-based searching algorithms.

5.1. Ordinal Searcher

In AI, heuristic search is a metaheuristic method for solving computationally hard optimization

problems. Heuristic search can be used on problems that can be formulated as finding a solution

maximizing a criterion among a number of candidate solutions. Heuristic search algorithms move from

solution to solution in the space of candidate solutions (the search space) by applying local changes,

until a solution deemed optimal is found or a time bound has elapsed [39].

There are a lot of state-of-the-art heuristic searching algorithms that can be adopted in the feature

selection applications. In this subsection, we will show how the simple greedy hill climbing searching

algorithm can be transformed into a corresponding order-based one.

First, Algorithm1 gives the traditional value-based greedy hill climbing searching method.

Algorithm 1 greedy hill climbing search

1: s← start state.

2: Expands by making each possible local change.

3: Evaluate each childt of s.

4: s′ ← t with the highestMerit(t)

5: if Merit(s′) ≥ Merit(s) then

6: s← s′, goto 2

7: end if
8: return s

In this algorithm, we evaluate all the possible directions for the next step and pick the direction with

the highest merit gain. Obviously, it is value-based, because it depends on merit values and comparisons.

Then, we transform Algorithm1 into an order-based searching algorithm, which is elaborated in

Algorithm 2.

Algorithm 2 ordinal greedy hill climbing search

1: s← start state.

2: Expands by making each possible local change.

3: Make alist consists ofs and each childt of s.

4: ordered list← attribute subset sorter(list)

5: h← head of(ordered list)

6: if h 6= s then
7: s← h, goto 2

8: end if
9: return s

In this algorithm, thehead of() operator is used for extracting the head node of a list, and

attribute subset sorter(list) represents a procedure that sorts the input sequence of attribute subsets

Sensors2013, 13 319

list into the output sequenceordered list according to the relative importance of these attribute

subsets. Hence, from this point of view, our seeding and harvest framework can be seen as a concrete

implementation of theattribute subset sorter(list) procedure. The implementation details of S&H

will be addressed in the next subsection.

The purpose of Algorithm2 is self-explanatory. Note that a state in Algorithm2 is virtually an

attribute subset. Essentially speaking, line 4 of Algorithm 2 takes advantage of a so-called attribute

subset sorter to order the sequence comprising the current state and all the possible child states derived

from this state into an ordered sequence of attribute subsets. Hence the head of this sequence can then be

treated as the next state, which is supposed to present the highest merit gain in practice. As we expect,

the above procedure can be applied iteratively until the current state cannot be improved further. Then

the corresponding attribute subset is the result of an ordinal feature selection task.

As we know, there are plenty of heuristic searching algorithms, such as best first search and genetic

search. They can be transformed into ordinal-based ones analogously. In this paper, we adopt the method

shown in Algorithm2 as our ordinal searcher (Figure13).

5.2. Seeding and Harvest Sorter Framework

In this subsection, we will elaborate how to sort a sequence of attribute subsets by means of our

seeding and harvest framework. As discussed previously, there are three main components in our

algorithm. They are the seeding component, the harvest component, and the searcher component.

Figure14 illustrates their relationship.

Figure 14. Relationship among the main components (shaded blocks).

Seeded Dataset

Ordinal searcher

Harvester

input list ordered list

Dataset

Seeder

In Figure 14, the seeding component injects artificial noise points intothe original dataset and

produces the seeded dataset, which is shared among the 3 components as a global variable. The seeding

component is very simple, because it is essentially a randomnumber generator, which can produce

multidimensional uniformly distributed random vectors.

The searcher component has been studied thoroughly in Algorithm 2. The harvest component is

virtually an implementation of theattribute subset sorter(list) procedure of Algorithm2. It makes

use of the seeded dataset and the input list to produce an ordered output list, which is fed back into

the searcher component again to determine the state of next step. When the searching process cannot

proceed further, the whole algorithm can stop and give the best attribute subset. Next, we will talk about

the detailed algorithm of the harvest component.

Sensors2013, 13 320

Algorithm 3 elaborates the detailed implementation of the harvest component. Meanwhile, to make

Algorithm 3 easier to follow, we draw a really “big” graphical guidance to illustrate the main structure

of Algorithm 3 in Figure15.

Algorithm 3 harvest(list)

Input: list - the list of attribute subsets to sort

Output: ordered list - the output ordered list

1: initialize two arraysncrosses andndisks whose sizes are both|list|.
2: clear all the elements ofncrosses andndisks as0

3: repeat
4: for all subset ∈ list do
5: harvest in subset(subset)

6: end for

7: until all elements inncrosses andndisks are non-zero

8: ordered list← order by(list, ncrosses, ndisks)

9: return ordered list

Algorithm 3 is implemented in a “level by level” manner as illustrated inFigure 15, where the

dataset is iteratively partitioned. Theharvest in subset(subset) procedure is capable of pushing the

uniformly partitioning process one level forward with respect to a particular attribute subset provided

as the argumentsubset of this procedure. To be concrete, the arrows marked “harvest in {a,b}” in

Figure15are essentially procedure calls ofharvest in subset({a, b}). Moreover,ncrosses andndisks

are two arrays of counters for bold crosses and dark disks respectively, one cell for each attribute subset.

The meanings of “bold crosses” and “dark disks” are consistent with those in Figures7–9. If a new

value is produced in one level, then the corresponding counter should be updated (i.e., the old value is

overwritten), as operator “→” denotes in Figure15. Besides, theorder by procedure is confined in a

dotted frame as illustrated at the bottom of Figure15. It produces the output listordered list according

to the contents ofrelative merits, which could be assessed in terms ofncrosses andndisks. As

stated previously, therelative merits here is essentially a merit order indicator but not the true merit

value. To fillncrosses andndisks, the “repeat” marked procedures of Figure15, which correspond to

the “repeat” statement block of Algorithm3, proceed level by level, until all the cells inncrosses and

ndisks are non-zero. Finally, to cooperate with above iteration for levels, in each level, there is still an

iteration block marked as “for all” in Figure15, which fills contents intoncrosses andndisks for all the

attribute subsets.

Maybe there remains a dummy question. Why do we bother to givea whole ordered list as the

output—can we just give the best attribute subset instead? Of course, in the greedy hill climbing

search, the answer is positive, because the ordered list will be eventually used to find out the best

attribute subset. However, in terms of other more sophisticated searching methodologies where more

information is demanded (not just the best attribute subset) to decide the searching direction, the answer

is obviously negative. The above reasoning motivates us to implement the harvest algorithm in the

manner of Algorithm3 to potentially attain more flexibility.

In the next subsection, we will analyze the complexity of ourmethod.

Sensors2013, 13 321

Figure 15. The “big” structure of harvest algorithms, where “→” means “the variable is

overwritten by . . . ”.

ndisks

2

12
5

8 9 1
5

Level 1

Level 2

Level 3

harvest in {a,b}

harvest in {a,b}

harvest in {a,b}

harvest in {b,c}

harvest in {b,c}

harvest in {b,c}

harvest in {c,d}

harvest in {c,d}

harvest in {c,d}

ncrosses

relative_merits

sort

output ordered_list

Input list of attribute subsets

{a,b} {b,c} {c,d}

order_by procedure

{ for all statement

{rep
ea

t statem
en

t

5.3. Complexity

From Algorithm3 we see that the whole process can stop when all the cells inncrosses andndisks

are non-zero, which can be called the pre-pruning criterion(PPC). When PPC is satisfied, then the

algorithm can be stopped. This property saves a lot of CPU-time. Through a lot of experiments, we

found that the whole algorithm can complete withinL levels of partitioning, which is always a small

constant in most circumstances, just like the example shownin Figure15. This is an important fact, and

we will take advantage of it later.

In Figure15, there are 4 partitions for each attribute subset in level 1.This number becomes 16 in

level 2. Thus, in levell, there are4l partitions for each attribute subset. Therefore, the upperbound of

the number of partitions for an attribute subset in each level is 4L. Note thatL is a constant, soP = 4L

is a constant too.

Now, let us talk about the number of attribute subsets. Here we denote the dimension of the original

dataset asd. Appealing to Algorithm2, if starting from the empty initial state, we know that thelist given

to harvest procedure (attribute subset sorter(list)) hasd elements at the first time. In the following

steps, the size oflist is reduced tod− 1, d− 2, d− 3 Thus, the upper bound of|list|, which is the

input size of the harvest component, isd.

Sensors2013, 13 322

In each level of Algorithm3, a total scan of original dataset can achieve the partitioning mission,

whose complexity isO(Pnd), wheren is the size of dataset. So the total complexity of attribute subset

sorting process isO(LPnd). BecauseL andP are two constants, the complexity becomesO(nd).

Because dimensiond is much stickier than sizen, the complexity becomesO(n) virtually, when the

complexity we studied is dominated by the size of dataset.

6. Performance Study

In this section, we will carry out a series of experiments on plenty of real-life datasets from the UCI

Machine Learning Repository [40] to evaluate several aspects of performance of our method compared

with other existing methods. First, we introduce the platform we employed.

6.1. Platform

All experiments were conducted on an Intel Core 2 PC, with two1.80 GHz cores, 1 GB main

memory. Notice that each experiment runs as a single thread,which can only be processed by one core.

Our method is implemented in Java with Eclipse IDE. Our experimental platform is Weka (Waikato

environment for knowledge analysis) [41], which is an excellent tool in data mining and brings together

many machine learning algorithms under a common framework.Besides that, Weka is an open source

software issued under the GNU General Public License, and the official website of the Weka project can

be accessed at http://www.cs.waikato.ac.nz/ml/weka/. Note that the version we adopted in the following

experiments is the latest version from Weka’s svn system, which can be checked out from the source

code repository with:svn co https://svn.scms.waikato.ac.nz/svn/weka/trunk/weka.

To integrate our method into Weka, first we add two main modules into the original Weka package

“weka.attributeSelection”. One is “OrdinalGreedyStepwise”, which implements Algorithm2, and the

other is “SeedingAndHarvestSubsetSorter”, which implements Algorithm3. These two modules change

the traditionalsubset → evaluate attribute selection framework in Weka into a newsubset list →
ordered list one, for which we added the “SubsetSorter” interface into Weka. Through the above

modifications, the Weka Explorer [41] can finally use our method to carry out some simple experiments.

For the simple dataset illustrated in Figure3, appealing to Figure16, Weka gives the same result{a, b}
as that given in Section3, using our subset sorter and ordinal searcher.

However, this is just a beginning. In order to examine how well our method performs on given huge

datasets, we must rely on the Weka Experimenter, which can docomparisons among different methods

under varies conditions automatically [41]. To integrate our method into Weka Experimenter, we did

the following modifications to Weka. First, we added the “AttributeSelectedClusterer” module into the

“weka.clusterers” package, so that we can evaluate the contribution of attribute selection to clusterer

algorithms, appealing to Figure17.

The attribute-selected wrapper for classifiers has been implemented by Weka already, so we can use

it directly. Second, for clusterers, we want to measure the squared errors to compare their performance.

Therefore, we implemented “AdditionalMeasureProducer” interface for a lot of corresponding modules.

Because the details are tedious, we omit them here. In the next subsection, we will introduce the datasets

we used in experiments.

Sensors2013, 13 323

Figure 16. Weka Explorer using our method.

Figure 17. Weka Experimenter using our method.

6.2. Benchmark Datasets

To rank performance evidently, we adopted 10 benchmark datasets from UCI Machine Learning

Repository [40]. Their basic information is shown in Table1.

Table 1. The description of 10 datasets in our experiments

No. Datasets Instances Features Classes

1 ecoli 336 5 8

2 wdbc 569 30 2

3 segmentation 2310 15 7

4 isolet 6238 617 26

5 magic 19020 10 2

6 segment 2310 17 7

7 sensor 5456 23 4

8 sonar 208 60 2

9 waveform 5000 40 3

10 yeast 1484 8 10

We should notice that, although our method does not need any label (class) information since it is an

unsupervised method, all the datasets we adopted contain label information, because we will compare

our method with several supervised feature selection methods like CFS [5] and IG (information gain),

Sensors2013, 13 324

which need classification information to evaluate merit of features or feature subsets. The number of

classes of each dataset is listed in the last column of Table1.

6.3. Experimental Methodology

To evaluate the performance of our method, at the beginning,we compare it with 4 classical feature

reduction methods, which are CFS [5], information gain (IG), principal component analysis (PCA) [9]

and relief [23,24]. Except PCA, the other three methods are all supervised ones. PCA is the only

feature transformation method that transforms original features into new ones. We should also note

that, except CFS and our method, all the other three methods are attribute evaluation methods, which

need the attribute ranker threshold to determine how many attributes should be retained. Second, as our

methodology is unsupervised, we will also carry out extra experiments to compare the performance

of our method with plenty of state-of-the-art unsupervisedfeature selection methods, which have

been reviewed briefly in Section2. They are the FSSEM method from [29], the CEPI method

from [30], the MCS method from [31], the SPECTRAL method from [32] and the SIMILARITY method

from [33]. These target methods are typical and comprehensive for performance comparisons. In our

experiments, we set as threshold the value that can make the best performance (least squared mean

or log-likelihood) for those feature selection methods on each specific dataset. That means, we will

compare the performance of our method with the best performance other methods can achieve.

How to compare the performance of feature reduction methods? As we have clarified, the main

purpose of our methodology is to try to tackle the feature-selected clustering problem described in

Definition 5. Hence, we employ a methodology comparing the squared errors and log-likelihoods of

clusterers after feature reductions. The more significantly a feature reduction method can reduce the

squared errors or increase log-likelihoods of a clusterer,the better performance this method achieves.

Brief descriptions about these clusterers are given as follows.

• Standardk-means [41] is a simple centroid-based technique. It randomly selectsk cluster means

or centers. For each of the remaining objects, an object is assigned to the cluster to which it is

the most similar, based on the distance between the object and the cluster mean. It then computes

the new mean for each cluster. This process iterates until the criterion function converges. In our

experiments we simply let Weka decidek automatically and adopt Euclidean distance.

• Hierarchical methods [41] work by grouping data objects into a tree of clusters. They can be further

classified as either agglomerative or divisive, depending on whether the hierarchical decomposition

is formed in a bottom-up (merging) or top-down (splitting) fashion. In our experiments, we

adopt bottom-up fashion, Euclidean distance definition, and let Weka decide the number of

clusters automatically.

• Simple EM (expectation maximization) methods [41] assign to each instance a probability

distribution that indicates the probability of it belonging to each of the clusters. EM can decide

how many clusters to create by cross validation, or one may specify a priori how many clusters to

generate. Hence, there is no need to concern about the numberof clusters parameter.

Sensors2013, 13 325

6.4. Results and Discussions

First, we present the performance comparisons with classical feature reduction methods

mentioned above.

Table 2 exhibits the experimental results of standardk-means clusterer (SimpleKMeans module

in Weka). In this table, S&H denotes our seeding and harvest method, RLF denotes relief method,

UnSelect denotes the corresponding clusterer without any feature selection, and other column names are

self-explanatory. Furthermore, each cell in Table2 denotes the squared error of SimpleKMeans after

carrying out a specific feature selection method (column name) on a dataset (row name). The table also

shows how often each method performs significantly better (denoted as a•) than performing no feature

selection (column 2). Throughout this paper, we speak of results being significantly different if the

difference is statistically significant at the 0.05 level according to a paired two-sidedt test.

From Table2, we see that all feature selection methods can significantlyimprove the performance of

SimpleKMeans, but only our method exhibits remarkable improvements on each dataset. Furthermore,

if we inspect the rows of Table2, we see that our method is always the one with the least squared

error, except just two datasets, namely “magic” and “sensor”. To clarify that fact, we make our method

the comparison target and summarize the results in Table3, from which we know that our method

is significantly superior (denoted as•) to other methods in most circumstances. There is only one

degradation (denoted as◦) and a few draws (blank cells). Thus, from experimental results in Tables2

and 3, we conclude that our method can not only significantly improve the accuracy of SimpleKMeans

but also exhibit dramatic superior performance to all the other four classical feature reduction methods

that we compare with.

Second, we would like to present the performance comparisons involving the five abovementioned

unsupervised feature selection methods.

With the same datasets and experimental procedures of Table3, we get Table4.

From Table4, we can see that our method shows superior performance than other unsupervised

methods in most circumstances (32 times), and shows statically equal performances 13 times, while

in the last 5 circumstances our method is worse than the target methods. Overall, from Table4, it is

enough evident to conclude that the performance of our method is generally better than the unsupervised

feature selection methods that we compare with.

Next, let us inspect how fast our method can achieve. In Table5, we make our method (S&H) the

comparison target. If some method takes significant longer time than ours does, we will mark a “◦”
beside it. As we have known, the total run time consists of feature reduction time and clustering time.

We are interested in feature reduction. Therefore, featurereduction time is put in front of total time in

Table5.

Sensors2013, 13 326

Table 2. Squared errors for feature selected SimpleKMeans (the fewer, the better).

Dataset UnSelect (target) CFS IG PCA RLF S&H

ecoli 142.15 142.15 142.15 139.71 142.15 124.17•
yeast 735.58 734.83 705.61 671.66 705.61 583.64•
sonar 476.80 116.96• 30.09• 26.78• 36.00• 20.59•
wdbc 212.10 76.66• 34.05• 29.31• 38.92• 4.34•
segmentation 2343.31 2111.75• 1819.35• 1733.75• 1871.64• 1577.10•
segment 2415.10 2118.06• 1790.06• 1653.19• 1800.69• 1509.59•
waveform 5109.59 2895.61• 1920.29• 1951.29• 1986.36• 1571.62•
sensor 10297.99 3470.06• 3015.37• 1636.99• 3634.48• 1815.81•
magic 5552.81 1535.06• 1662.54• 3014.03• 2255.46• 3486.68•
isolet 144413.40 52669.72• 6060.16• 5654.71• 6449.82• 5421.02•

• statistically significant improvement

Table 3. Comparisons of our method with classical feature reductionmethods by squared

errors of SimpleKMeans clusterer.

Datasets
Target Methods
CFS IG PCA RLF

ecoli • • • •
sonar •
wdbc • • • •
yeast • • • •

segmentation • • • •
segment • • • •
sensor • • •

waveform • • • •
magic ◦
isolet • • •

•, ◦ statistically significant improvement or degradation

Table 4. Comparisons of our method with state-of-the-art unsupervised feature selection

methods by squared errors of SimpleKMeans clusterer.

Datasets
Target Methods
FSSEM CEPI MCS SPECTRAL SIMILARITY

ecoli • • • • •
sonar • •
wdbc • • • ◦ •
yeast • • •

segmentation • ◦ • • •
segment • • • • •
sensor • •

waveform • • ◦ • ◦
magic ◦ •
isolet • • •

•, ◦ statistically significant improvement or degradation

Sensors2013, 13 327

Table 5. Run time comparisons (the less, the better).

Datasets
Feature Reduction Time (ms) Total Time (ms)

S&H CFS IG PCA RLF S&H CFS IG PCA RLF

ecoli 1.79 1.86 1.61 1.60 45.19◦ 4.67 8.80◦ 8.50◦ 9.88 53.76◦
wdbc 8.45 24.95◦ 17.56◦ 15.66◦ 507.98◦ 11.23 38.30◦ 25.82◦ 24.76◦ 516.19◦
sonar 10.13 25.88 10.12 25.04◦ 145.69◦ 11.67 34.98◦ 12.81 29.91◦ 148.23◦
yeast 10.62 7.50 6.68 8.80 928.76◦ 16.28 47.58◦ 41.99◦ 45.05◦ 962.06◦
segmentation 21.88 61.06◦ 57.86◦ 21.65 4219.27◦ 46.72 150.10◦ 143.97◦ 133.80◦ 4292.17◦
segment 25.68 65.66◦ 57.81◦ 25.22 4609.78◦ 33.87 156.54◦ 125.21◦ 105.82◦ 4678.81◦
sensor 100.02 224.30◦ 205.02◦ 98.17 34498.79◦ 152.80 403.86◦ 336.86◦ 342.87◦ 34624.76◦
waveform 118.89 196.46◦ 128.53 223.67◦ 49446.54◦ 150.47 619.43◦ 234.68◦ 412.53◦ 49597.85◦
magic 230.87 516.89◦ 454.70◦ 248.80 191700.68◦ 711.69 754.85 755.00 872.79 192034.83◦
isolet 10206.08 94062.01◦ 13641.42◦ 78800.67◦ 1126765.89◦ 10237.04 101905.68◦ 13830.86◦ 86849.56◦ 1126904.47◦

Our S&H is the comparison target;◦means statistically significant degradation compared withS&H

First, let us talk about the feature reduction time. From theleft part of Table5, we see that, our

method can achieve significant improvements (degradationsof other methods) in most circumstances

(27 times), and get just 13 draws. Furthermore, no significant improvements have been made by other

methods (degradations in our method), which would be indicated by “•” in Table5. In addition to that, it

is explicit that the relief method is time-consuming. To sustain resolvability, we give a figure of feature

reduction time without relief in Figure18.

In this Figure, we illustrate feature reduction time in two scales, where the sequence numbers of

datasets coincide with that listed in Table5. Figure17ashows the comparison plot corresponding to

dataset 1–9. We see that our method is more stable than others, and its curve is almost always the lowest

one. This property becomes more significant when the size anddimension of experiment dataset become

larger. Figure17b, which contains dataset 8–10, demonstrates this point clearly. From all above, we can

conclude that our method is generally faster and more stablethan other methods with which we make

comparisons, and more suitable for high-dimensional and large scale datasets.

When we inspect the total time section of Table5, we can confirm that our method is significantly

faster than others. Except the 5 draws, our method always shows significant improvements compared

with other methods. Because our method can select features not only more efficiently but also more

effectively, it is prone to producing less selected features to feed the clusterers, and as a result leading to

less total run time. Figure19 illustrates this conclusion evidently. In this figure, the sequence order of

datasets is different with that in Table5, because the datasets in Table5 are listed in the order of feature

reduction time.

Next, we give the log-likelihood comparisons of feature-reduced hierarchical clusterer in Table6.

As we know, the larger the log-likelihood quantity is, the better the model fits the data [41]. Hence,

we use “•” in this table to denote statistically significant degradation compared with our method. We

should notice that increasing the number of clusters normally increases the likelihood, but may overfit.

Therefore, to be fair, in the following experiments, we let the rankers of feature selectors retain the same

number of attributes. Also note that four datasets are removed from the comparisons because their sizes

or dimensions are too big to be populated into a typical computer RAM to give any experiment result.

In the future, we plan to develop a distributed version of ouralgorithm to do more experiments on this

kind of large-scale datasets. From the self-explanatory results in Table6 we can confirm the superior

performance of our method again.

Sensors2013, 13 328

Figure 18. Feature reduction time comparisons.

(a) Scale 1: datasets 1 to 9

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9

F
e
a
tu

re
 R

e
d
u
c
ti
o
n
 T

im
e
 (
m

s
)

Datasets

S&H
CFS

IG
PCA

(b) Scale 2: datasets 8 to 10

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

8 9 10

F
e
a
tu

re
 R

e
d
u
c
ti
o
n
 T

im
e
 (
m

s
)

Datasets

S&H
CFS

IG
PCA

Sensors2013, 13 329

Figure 19. Total time comparisons. In this figure, dataset sequence numbers denote ecoli,

wdbc, sonar, yeast, segment, segmentation, waveform, sensor, magic, isolet sequentially.

(a) Scale 1: datasets 1 to 9

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9

T
o
ta

l
T
im

e
 (
m

s
)

Datasets

S&H
CFS

IG
PCA

(b) Scale 2: datasets 8 to 10

0

20000

40000

60000

80000

100000

120000

8 9 10

T
o
ta

l
T
im

e
 (
m

s
)

Datasets

S&H
CFS

IG
PCA

Sensors2013, 13 330

Table 6. Log-likelihood comparisons of feature-reduced hierarchical clusterer.

Dataset S&H CFS IG PCA RLF

segmentation –47.18 –59.31• –59.29• –59.27• –59.29•
segment –42.65 –55.01• –55.01• –55.01• –55.01•
ecoli 2.58 0.13• 0.15• 0.20• 0.15•
wdbc 6.83 5.18• 5.18• 5.18• 5.18•
yeast 8.08 6.64• 6.64• 6.57• 6.64•
sonar 64.94 64.01• 64.01• 64.01• 64.01•
• statistically significant degradation compared with our method

Table 7 gives the similar comparisons of log-likelihood for feature reduced Simple EM clusterer.

Experiment results in this table confirm the conclusions derived from Table6 once again.

Table 7. Log-likelihood comparisons of feature-reduced simple EM clusterer.

Dataset S&H CFS IG PCA RLF

segmentation -55.99 -59.66 -59.26 -55.84 -59.29

segment -52.17 -55.45 -55.08 -51.43 -55.32

ecoli 2.24 1.37• 1.55• 1.55• 1.56•
yeast 7.35 6.89 6.89 6.89 6.89

wdbc 8.15 5.18• 5.02• 6.30• 5.15•
sonar 68.31 65.21• 65.17• 67.35 65.19•
• statistically significant degradation compared with our method

Lastly, note that although the results in Tables6 and 7 look simple and clear, it took us really

long computing time to get them, because of the inefficiency and large memory requirement of these

two target back-end methods (hierarchical clusterer and simple EM clusterer), together with the huge

quantities of the experiment datasets adopted in these two tables. Although we have not given the

run time comparisons of experiments illustrated in these two tables because of the limitation of space,

our method runs much faster than other methods. Besides, thanks to the high efficiency in design and

implementation, our method can even give the experiment results when dealing with extremely large

datasets, while nothing could be given by some other target methods, because of either the CPU-power

or main memory limitations. Furthermore, because it is moreeffective and can give less selected features,

the back-end methods can run much faster and have much lower limitations on main memory, thus the

total speed and feasibility can be improved a lot by our method.

7. Conclusion

In this paper, we proposed a novel two-stage framework for feature reduction/selection. The first stage

is random seeding and the second stage is uniformly partitioning-based harvest. Our new framework

improved the traditional value-based evaluation and searching schema into an order-based one, which

is much more effective, more efficient, and more robust. We did a series of experiments to compare

our method with other state-of-the-art feature reduction methods on several real-life datasets. The

experiment results confirm that our method is superior to traditional methods not only in accuracy but

also in speed.

Sensors2013, 13 331

Essentially speaking, our method transforms the feature reduction problem into the outlier detection

problem. Because there are a lot of state-of-the-art outlier detection methods, our framework can have

plenty of variants. In this paper we only explored the uniformly partitioning-based method. This new

framework is flexible for the facile integration of other outlier detection methods, which we will study

in the future. Moreover, we can also adopt other seeding methodologies. In practice, because of the

characteristics of outlier detection problems, our framework can achieve high tolerance of outliers in

target datasets, which is an extraordinary feature of our framework.

Because of the simple and clear structure and level-based implementation of our method, it can

be parallelized easily, and we will implement and study the parallel version of our S&H algorithm in

the future.

References

1. Han, J.; Kamber, M.Data Mining: Concepts and Techniques; Elsevier: Singapore, 2006; pp. 5–9.

2. Gopal, R.; Marsden, J.R.; Vanthienen, J. Information mining—Reflections on recent

advancements and the road ahead in data, text, and media mining. Decis. Support Syst.2011,
51, 727–731.

3. Lonardi, S.; Chen, J. Data mining in bioinformatics: Selected papers from BIOKDD.IEEE ACM

Trans. Comput. Bi.2010, 7, 195–196.

4. Lindenbaum, M.; Markovitch, S.; Rusakov, D. Selective sampling for nearest neighbor

classifiers.Mach. Learn.2004, 54, 125–152.

5. Hall, M.A. Correlation-Based Feature Selection for Machine Learning. PhD Thesis, Department

of Computer Science, University of Waikato, Hamilton, New Zealand, 1999.

6. Zhang, D.; Zhou, L. Discovering golden nuggets: Data miningin financial application. IEEE

Trans. Syst. Man Cybern. C Appl. Rev.2004, 34, 513–522.

7. Bellman, R.E. Adaptive Control Processes—A Guided Tour; Princeton University Press:

Princeton, NJ, USA, 1961; p. 255.

8. Kohavi, R.; John, G.H. Wrappers for Feature Subset Selection. Artif. Intell. 1997, 97, 273–324.

9. Parsons, L.; Haque, E.; Liu, H. Subspace clustering for highdimensional data: A review.

SIGKDD Explor. Newsl.2004, 6, 90–105.

10. Kusiak, A. Feature transformation methods in data mining.IEEE Trans. Electron. Packag.

Manuf.2001, 24, 214–221.

11. Mitchell, T.M. Machine Learning; McGraw Hill: New York, NY, USA, 1997; p. 414.

12. Yang, J.; Honavar, V. Feature subset selection using a genetic algorithm. IEEE Intell. Syst.1998,

13, 44–49.

13. Bhatt, R.B.; Gopal, M. On fuzzy-rough sets approach to feature selection.Pattern Recogn. Lett.

2005, 26, 965–975.

14. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers Inc.:

Burlington, MA, USA, 1993.

15. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection.J. Mach. Learn. Res.

2003, 3, 1157–1182.

Sensors2013, 13 332

16. Chen, G.; Cai, Y.; Shi, J. Ordinal Isolation: An Efficient andEffective Intelligent Outlier

Detection Algorithm. InProceedings of the 1st IEEE International Conference on Cyber

Technology in Automation, Control, and Intelligent Systems, Kunming, China, 20–23 March

2011; pp. 32–37.

17. Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers.

ACM SIGMOD Record2000, 29, 93–104.

18. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. InProceedings of the 8th IEEE International

Conference on Data Mining (ICDM’08), Pisa, Italy, 15–19 December 2008; pp. 413–422.

19. Hall, M.A.; Holmes, G. Benchmarking attribute selection techniques for discrete class data

mining. IEEE Trans. Knowl. Data Eng.2003, 15, 1437–1447.

20. Shannon, C.E. A mathematical theory of communication.SIGMOBILE Mob. Comput. Commun.

Rev.2001, 5, 3–55.

21. Liu, H.; Sun, J.; Liu, L.; Zhang, H. Feature selection with dynamic mutual information.Pattern

Recogn.2009, 42, 1330–1339.

22. Yan, H.; Yuan, X.; Yan, S.; Yang, J. Correntropy based feature selection using binary projection.

Pattern Recogn.2011, 44, 2834–2842.

23. Kira, K.; Rendell, L.A. A Practical Approach to Feature Selection. In Proceeding: ML92

Proceedings of the Ninth International Workshop on MachineLearning; Morgan Kaufmann

Publishers Inc.: Burlington, MA, USA, 1992; pp. 249–256.

24. Kononenko, I. Estimating Attributes: Analysis and Extensions of RELIEF. InProceedings of

European Conference on Machine Learning, Catana, Italy, 6– 8April 1994; pp. 171–182.

25. Demsar, J. Algorithms for subsetting attribute values withrelief. Mach. Learn. 2010, 78,

421–428.

26. Hall, M.A. Correlation-Based Feature Selection for Discrete and Numeric Class Machine

Learning. InProceedings of the Seventeenth International Conference on Machine Learning

(ICML 2000), Stanford, CA, USA, 29 June–2 July 2000; pp. 359–366.

27. Liu, H.; Setiono, R. A Probabilistic Approach to Feature Selection—A Filter Solution. In

Proceedings of the 13th International Conference on Machine Learning, Montreal, QC, Canada,

14–18 June 1996; pp. 319–327.

28. Almuallim, H.; Dietterich, T.G. Learning with Many Irrelevant Features. InProceedings of the

Ninth National Conference on Artificial Intelligence (AAAI-91), Anaheim, CA, USA, 14–19 July

1991; Volume 2, pp. 547–552.

29. Dy, J.G.; Brodley, C.E. Feature selection for unsupervisedlearning.J. Mach. Learn. Res.2004,

5, 845–889.

30. Hong, Y.; Kwong, S.; Chang, Y.; Ren, Q. Unsupervised featureselection using clustering

ensembles and population based incremental learning algorithm. Pattern Recogn. 2008,
41, 2742–2756.

31. Cai, D.; Zhang, C.; He, X. Unsupervised Feature Selection for Multi-cluster Data. InProceedings

of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD ’10), Washington, DC, USA, 25–28 July 2010; pp. 333–342.

Sensors2013, 13 333

32. Zhao, Z.; Liu, H. Spectral Feature Selection for Supervisedand Unsupervised Learning. In

Proceedings of the 24th International Conference on Machine Learning (ICML ’07), Corvalis,

OR, USA 20–24 June 2007; pp. 1151–1157.

33. Mitra, P.; Murthy, C.; Pal, S. Unsupervised feature selection using feature similarity. IEEE

Trans. Pattern Anal.2002, 24, 301–312.

34. Lloyd, S. Least squares quantization in PCM.IEEE Inform. Theory1982, 28, 129–137.

35. Johnson, R.; Wichern, D. Chapter 1. Aspects of MultivariateAnalysis. InApplied Multivariate

Statistical Analysis, 6th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007;

pp. 19–22.

36. Gallager, R. Principles of Digital Communication; Cambridge University Press: Cambridge,

UK, 2008.

37. Balas, E.; Glover, F.; Zionts, S. An additive algorithm for solving linear programs with zero-one

variables.Oper. Res.1965, 13, pp. 517–549.

38. Ho, Y.C.; Zhao, Q.C.; Jia, Q.S. Chapter 2 Ordinal Optimazation Fundamentals. InOrdinal

Optimization: Soft Optimization for Hard Problems; Springer: New York, NY, USA, 2007;

pp. 7–9.

39. Wikipedia. Plagiarism—Wikipedia, The Free Encyclopedia,2011. Available online:

http://en.wikipedia.org/wiki/Plagarism (accessed on 30December 2011).

40. Frank, A.; Asuncion, A. UCI Machine Learning Repository. Available online:

http://archive.ics.uci.edu/ml/ (accessed on 30 December2010).

41. Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques,

2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 2005.

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

