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Abstract: A microfibre device integrating a microfibre knot resonator in a Sagnac loop 

reflector is proposed for refractive index and temperature sensing. The reflective 

configuration of this optical structure offers the advantages of simple fabrication and ease 

of sensing. To achieve a balance between responsiveness and robustness, the entire 

microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter 

microfibre knot resonator sensing region. The proposed sensor has exhibited a linear 

spectral response with temperature and refractive index. A small change in free spectral 

range is observed when the microfibre device experiences a large refractive index change 

in the surrounding medium. The change is found to be in agreement with calculated results 

based on dispersion relationships. 
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1. Introduction 

Recently, there has been an increasing interest in the fabrication of miniaturized optical devices 

using microfibres due to the advantages of strong light confinement within the waveguide, great 
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flexibility in bending and twisting, high sensitivity to ambient conditions, simple fabrication and facile 

integration with optical fibre systems. The light confined in the microfibre creates a large evanescent 

field in the surroundings which enables a strong interaction between the light and the ambient medium. 

This property has been exploited using different approaches for refractive index (RI) sensing [1,2] with 

the sensitivity being enhanced by adopting thinner microfibres to achieve larger evanescent fields [3]. 

Additional methods of refractive index sensing using photonic crystal fibres and optofluidics 

microchannels offering similar or better sensitivity have also been reported [4,5]. However, these 

complex structures are not as easily produced, which translates into longer design-fabrication cycles. 

Another advantage of the large evanescent field of a microfiber is that it enables interaction of light 

between microfibres, making manipulation of light and the corresponding optical functions possible. 

These uniquenesses of microfibre provide microfibre-based devices with the potential of 

multifunctional integration. 

Microfibre resonators are known for their strong dependency on temperature. This property can be 

explained by the thermal expansion and thermo-optic effects of silica glass [6]. As the temperature 

increases, the microfibre experiences small changes in its physical dimensions and RI which in turn 

vary the phase of the wave propagating inside the resonator and result in a red-shift of the resonance 

wavelength. The linear relationship between wavelength shift and temperature is particularly attractive 

for its simple operating mechanism in temperature sensing. A simple modification of the microfibre 

knot resonator (MKR) with a thin conductor wire can transform it into a zero voltage drop ammeter 

whose current detection is based on the thermal-induced spectral shift, a result of heat generated from 

the conducting wire [7]. Besides, microfibre resonators are also found useful in many other applications 

such as lasers, optical filters, etc. [8–10].  

In Nature, microfibre devices are susceptible to environmental perturbations. One of the remedies 

for this is embedding them in low index UV-curable resins or Teflon [11] to maintain the physical 

structure and resonance conditions as well as to protect them from aging and contamination. However, 

the isolation between the microfibre and the analyte by the low index resin coating may compromise 

its sensitivity and fast response. On the other hand, the direct contact approach [2,12] provides a more 

sensitive and accurate detection but it is also less robust and more susceptible to environmental 

perturbations, therefore, finding an optimum balance between sensitivity and robustness is desirable. 

In this work, a microfibre device integrating a MKR inside a Sagnac loop reflector is demonstrated. 

The MKR serves as the sensing element while the Sagnac loop reflector allows signals to be collected 

through the incident path, making signal routing in the proposed device more effective in terms of cost 

and time. The entire microfibre device is embedded in a Teflon protective coating except for the 

sensing region, the MKR. Taking advantage of the overall rigid physical structure and strong interfibre 

coupling in the MKR, the proposed microfibre device exhibits a stable response for both temperature 

and RI changes. The device is repetitively immersed into and then withdrawn from solutions with 

different RI values in the test. The results have indicated that the sensor is capable of maintaining a 

consistent linear variation in spectral shift with both RI and temperature change. In relation with the 

effective index of the microfibre, a small variation in the free spectral range (FSR) was observed when 

the microfibre device experienced a large RI change in the surrounding medium, which is explained 

through dispersion relations. 
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2. Fabrication and Experiment 

Figure 1(a) shows the schematic diagram of the microfibre device comprising an MKR in a Sagnac 

loop reflector. With the assistance of a 3-port circulator, the input wave Ein is incident into port 1 and 

exits through port 2 before it enters the microfibre device. Then, the wave is split into two by the 

coupler, counter-propagates in the Sagnac loop and enters the MKR through its two arms. After that, 

the waves recombine at the coupler and the output wave Eout is routed out of the device through port 3 

of the circulator and analyzed using an optical spectrum analyser (OSA). 

Figure 1. (a) Schematic diagram of the proposed microfibre device; (b) Schematic 

illustration of the fabrication in steps. 

 

 

The illustration in Figure 1(b) explains the fabrication of the proposed microfibre device in steps. 

First, the microfibre device was assembled from a tapered fibre with 5–6 cm long waist produced 

using a flame brushing technique. The fabricated microfibre diameter is in the range of 3–8 µm but a 

larger diameter is preferable because it is less fragile and easy to use. On the other hand, higher order 

modes might be excited in the large diameter microfibre which produces irregular interference fringes. 

The MKR was made at the waist of the tapered fibre based on Xiao’s technique [13]. To reduce the 

diameter of the knot, both untapered ends were pulled away from each other slowly until a desired 

knot diameter is achieved as illustrated in Figure 1(b)-(i). The microfibre knot made from this  

double-ended tapered fibre has the advantage of low loss because no termination along the microfibre 

was required during the fabrication of MKR. One end of the microfibre was fusion spliced to port 2 of 

the circulator while the other end was left unconnected. Then, the Sagnac loop reflector was made by 

twisting the unconnected fibre end with the MKR kept within the loop reflector as illustrated in  

Figures 1(b)-(ii,iii). The microfibre coupler formed by the twisting enables the output from the 

microfibre knot resonator to be reflected back to the circulator. The coupling length of the twisted 

microfibre coupler is a key element that influences the reflected power which can be adjusted by 
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controlling the number of twists applied to the fibre end. However, a large Sagnac loop reflector was 

adopted to reduce bending losses and to prevent structural deformation on the MKR located in the 

Sagnac loop reflector during the twisting process. In our observation, during the twisting process there 

was very little change in the interference fringes except for the output power level. The bending of 

microfibre of the loop was good enough to attenuate the power of higher order modes in the large 

diameter microfibre. After the microfibre device was assembled, it was laid on a thin glass plate 

substrate deposited with a thin layer of low-refractive-index resin. Figure 2 shows the microscope 

image of the microfibre device laid on the glass slide. To enhance the robustness of the microfibre 

sensor, a few drops of Teflon solution (RI~1.31) were applied on the entire microfibre device except 

for the MKR. The output spectrum was monitored closely when the solution was applied. No 

significant change in the interference fringes was observed except that the power level varied as the 

coupler due to the change in coupling coefficient when it was immersed in the solution. After drying 

for ~15 min, a thin layer of solidified Teflon was coated on the microfibre device.  

Figure 2. (a) Optical microscope image and (b) output spectrum of the proposed microfibre 

device. The size of the MKR is ~0.5 mm in diameter. 

  

Similar to ordinary MKR, the proposed microfibre device shares the same transmission 

characteristics as shown in Figure 2(b) and the FSR can be expressed as:  

2

ef f

FSR
n L


  (1)  

where neff is the effective index, L is the round-trip length of the knot and λ is the corresponding 

wavelength. 

3. Temperature and Refractive Index Sensings 

To evaluate its temperature sensing performance, the microfibre device was placed on a hotplate 

and the temperature was varied between 30–130 °C. It was found that the microfibre device exhibits a 

linear response to temperature variation as presented in Figure 3. During the test, as both MKR and 

Sagnac loop are polarization-dependent optical components, it is therefore essential to maintain the 

input state of polarization to the microfibre device by protecting the experimental setup from any 

disturbance. From the linear fitting of the experimental result, the calculated temperature sensitivity is 

20.6 pm/°C which is lower than that found in [6]. It is believed that the un-embedded MKR is 
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responsible for the lower temperature sensitivity due to less effective thermal conduction from the 

glass substrate to the MKR during the heating process.  

Figure 3. Temperature response of the proposed device in the range of 30–130 °C. The 

calculated temperature sensitivity from the linear fitting is 20.6 pm/°C. 

 

Besides functioning as a temperature sensor, the proposed sensor can be used for RI sensing as 

well. In the experiment, a small drop of water-isopropanol mixture solution with known RI was 

applied on the microfibre knot. The spectrum shifted almost instantaneously after the solution drop 

was applied and it stabilized after 5–8 s. After the measurement, the solution drop was removed by 

slanting the glass substrate of the sensor and the spectrum was restored to the original wavelength after 

complete drying which takes about 5 min at room temperature. Figure 4(a) shows the spectral response 

of the microfibre device to the solutions of different RI.  

Figure 4. (a) Output spectra of the microfibre device in the solutions with different RI.  

The labeled value for each spectrum indicates the estimated RI of the solution from the 

water-isopropanol composition; (b) Linear relationship between resonance wavelength and 

RI of solution. 

  

The RI of the solutions was controlled by varying the composition of the water-isopropanol 

mixtures. The arrow indicates the direction of the spectral shift with increment in RI. The linear 

relationship between resonance wavelength and RI is clearly seen from the graph in Figure 4(b). The 
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measured RI sensitivity is 30.49 nm/RIU in the RI range of 1.334–1.348. Good repeatability in sensing 

solutions of different RIs was achieved.  

Figure 5 shows the relationship between the effective index, neff and radius of the microfibre when 

immersed in two different media, namely air and isopropanol solution (RI~1.37). These effective 

indices can be calculated from the dispersion relationship [14]. The variations of effective indices are 

bound between the RIs of silica glass and surrounding medium. Following the solid curve and dashed 

curve in the graph, both effective indices are close to the RI of silica glass when the microfibre radius 

is large (more than 6.5 µm). Both curves decrease as the microfibre radius decreases and reached the 

RI of the respective surrounding medium when the radius approaches 0.5 µm.  

Figure 5. Variation of effective index with microfibre radius in the air (solid) and 

isopropanol (dash). The operating wavelength λ = 1,550 nm. 

 

The curve in Figure 6 corresponds to the relative effective index difference:  

, ,

,

eff eff isopropanol eff air

eff eff air

n n n

n n

 
  (2)  

where the subscripts ‘air’ and ‘isopropanol’ correspond to the surrounding medium of microfibre.  

Analyzing the curve of the relative effective index difference, it is particularly large for the small 

microfibre radius, the region where the evanescent field is large and the system is sensitive to the 

ambient conditions. As the radius increases, the curve decays exponentially and eventually diminishes 

to zero. In the scenario where the microfibre device is immersed into an isopropanol solution with an 

RI of 1.37, the microfibre device experiences not only a resonance wavelength shift but a noticeable 

change in FSR, a result of large increment in effective index. From Equation (1), the following 

expression is given: 

ef f

ef f

nFSR

FSR n


   (3) 

where:  

isopropanol air

air

FSR FSRFSR

FSR FSR


  (4) 
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To acquire accurate results, the output spectrum of the device was measured using an OSA at the 

finest resolution of 0.07 nm and the measurements for FSR were taken from the average of 4–5 

consecutive interference fringes to reduce the resolution error. Figure 6 shows the comparison between 

relative FSR change and relative effective index difference. The results indicate that they are in 

agreement. The RI sensitivity of the sensor can be linearly related to the relative effective index 

difference. To enhance the RI sensitivity, smaller microfibre radius should be adopted in the 

fabrication of microfibre device. 

Figure 6. Comparison of relative effective index difference and relative FSR change. The 

values follow the same trend and are larger for smaller microfibre radius. 

 

4. Conclusions 

A microfibre device with an MKR integrated in a Sagnac loop reflector is fabricated. It exhibits a 

linear response to both temperature and refractive index variation. Temperature sensitivity of  

20.6 pm/°C is achieved for the current device in the temperature range of 30–130 °C. On the other 

hand, the measured RI sensitivity is 30.49 nm/RIU in the RI range of 1.334–1.348. Combining the 

physical strength of Teflon coating with the high responsitivity of an opening window at the sensing 

region, the proposed integrated microfibre device provides a solution for robust temperature and 

refractive index sensing. The current device forms the foundation on which additional functions can be 

integrated, together with improvements to the sensitivities and immunity to polarization changes. 
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