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Abstract: Mobile laser scanning is an emerging technology capable of capturing  

three-dimensional data from surrounding objects. With state-of-the-art sensors, the 

achieved point clouds capture object details with good accuracy and precision. Many of the 

applications involve civil engineering in urban areas, as well as traffic and other urban 

planning, all of which serve to make 3D city modeling probably the fastest growing market 

segment in this field. This article outlines multiplatform mobile laser scanning solutions 

such as vehicle- and trolley-operated urban area data acquisition, and boat-mounted 

equipment for fluvial environments. Moreover, we introduce a novel backpack version of 

mobile laser scanning equipment for surveying applications in the field of natural sciences 

where the requirements include precision and mobility in variable terrain conditions. In 

addition to presenting a technical description of the systems, we discuss the performance of 

the solutions in the light of various applications in the fields of urban mapping and 

modeling, fluvial geomorphology, snow-cover characterization, precision agriculture, and 

in monitoring the effects of climate change on permafrost landforms. The data performance 

of the mobile laser scanning approach is described by the results of an evaluation of the 

ROAMER on a permanent MLS test field. Furthermore, an in situ accuracy assessment 

using a field of spherical 3D targets for the newly-introduced Akhka backpack system is 

conducted and reported on.  
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1. Introduction 

Increasing interest has been shown in vehicle-based (mobile) surveying applications of laser 

scanning since the beginning of the 21st century when laser scanners began to be incorporated in what 

may be called mobile mapping systems (MMS) [1]. Mobile laser scanning (MLS) is a rapid and 

flexible method for acquiring high-resolution three-dimensional topographic data. MLS systems are 

lidar-based mobile mapping systems, which produce three-dimensional point clouds from the 

surrounding objects using profiling scanners; however, new types of scanners are emerging into the 

market. The spatial coverage is achieved by the movement of the vehicle and motion-tracking 

navigation devices, as illustrated in Figure 1. The survey is conducted as the ground vehicle moves 

around while the navigation system, typically based on a global navigation satellite system (GNSS) 

and inertial measurement unit (IMU), tracks the vehicle‘s trajectory and attitude for producing a 3D 

point cloud from the range data collected by the onboard scanners. Analogous to airborne laser 

scanning (ALS), the characteristics of the obtained point cloud, e.g., density, point pattern, and 

distribution, depend largely on the sensor arrangement on the platform, and the sensor properties, such 

as point measurement rate, scan frequency, and wavelength (e.g., [2–4]). Different layouts and 

approaches have been reported in numerous papers, e.g., [3,5–10]. 

Figure 1. Mobile laser scanning utilizes GNSS-IMU positioning for direct geo-referencing 

of laser scanning data for three-dimensional mapping of objects. 

 

Mobile mapping is expected to provide ease of mobilization and low costs when compared to 

airborne laser scanning. These points are especially attractive for projects involving small areas and 

specific tasks. In addition, the sensor layout of an MMS and other surveying arrangement can be 

adjusted more freely in comparison to the ALS to meet task-specific requirements. Furthermore, 
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stationary data collection has some weaknesses: poor efficiency in data acquisition, difficulty of 

planning for viewpoints and directions in data acquisition when measuring large and complicated 

scenes, and the complexity of a registration method capable of succeeding in automated registering of 

all kinds of range data [11,12]. 

The applications of MLS to environmental remote sensing have thus far focused on vegetation and 

erosion studies and hydrology [13–16], while a number of applications has been presented for urban 

road environments [1,9,17,18]. The MLS systems are capable of faster and more efficient 3D data 

acquisition than stationary terrestrial laser scanning (TLS), especially in cases where ground validation 

(e.g., small-scale details) is needed for purposes such as airborne experiments or when dealing with 

areas covered by satellites observing the Earth (see [19,20]). 

Most of the mapping applications in various fields stand to benefit from the accuracy and efficiency 

of MLS technology. Compared to traditional mapping methods, which utilize digital aerial images and 

airborne laser scanning, the precision of the data collected can be greatly improved. Furthermore, the 

time and cost of geodetic measurements with total stations and terrestrial lasers can be reduced. 

Beyond that, numerous advantages arise when using MLS data to produce high-resolution 3D models. 

This is demonstrated by the application examples in Section 2. Considering data acquisition compared 

to data from stationary terrestrial laser scanning, MLS provides high efficiency and a precise way for 

generating dense point clouds, and mobility makes it more suitable for surveying and modeling of 

large areas. 3D models processed from the data collected by MLS offer high-resolution visualization 

and surface analysis, which cannot be achieved from ALS and/or aerial images since they provide 

coarser rendition with considerably lower point density and precision. 

The current version of the ROAMER, a single-scanner mobile mapping system for road 

environment mapping, was launched internationally in 2007 [8]. It enables the operator to use vertical 

or tilted scanning planes for adapting the system for appropriate 3D point acquisition in the carrying 

out of different tasks. The latest scanner version of the system operates with a point measurement 

frequency of up to 976 kHz and a maximum profile measurement rate of 61 Hz, and an ambiguity 

interval in the phase-shift ranging of 153 m. The relative point precision of the system is estimated to 

be below 1 centimeter, but its absolute accuracy is mainly dependent on the GNSS-IMU navigation 

solution that can be provided in real-time, or more reliably through post-processing by means of a 

tactical-grade GPS-IMU with an output of 100 Hz. In the work described in this paper, we used the 

multiplatform approach to operate the ROAMER, and we describe and discuss the completely new 

Akhka backpack MLS system. The paper also presents results from an evaluation of the data accuracy 

of the ROAMER on a permanent MLS test field, as well as results from an accuracy assessment of the 

Akhka data against implemented in situ target field method and TLS reference data. 

2. Multiplatform MLS 

The FGI‘s ROAMER mobile laser scanning system, Figure 2, is a high-end surveying device for 

producing accurate, dense, and precise point clouds for three-dimensional mapping for the detection, 

localization, modeling, analysis, and monitoring of anthropogenic and natural phenomena and 

processes. The initial goal of having this system was to develop a system that would maximize the 

automation of feature extraction at the post processing phase [8]. To accomplish a high level of 
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automation in data processing, a laser scanner capable of providing dense point clouds was set as the 

requirement for the system. Additionally, the system was required to be a moving laboratory flexible 

as regards various applications. By upgrading the scanner unit several times, the data needs of different 

surveys have been met. The system performance has been improved by continuing with the 

development of processes and updates of hardware during the course of the past five years. 

Figure 2. ROAMER as a vehicle-mounted MLS installation (Photo courtesy of H. Hyyppä). 

 

Table 1 summarizes the current ROAMER equipment and the main data acquisition parameters that 

are operator-selectable to enable adapting the data acquisition to different tasks. The ROAMER system 

is a DC-powered compact unit that can be installed on various carrier platforms for mobility and to 

meet the requirements set by various applications. The system runs on battery power for several hours 

at a time, whereas when mounted on vehicles the vehicle‘s DC system can be used as its power source 

for continuous operation. The data recording computers are rugged laptops; one for navigation and the 

other for the laser scanning data. 

The laser scanning unit in ROAMER is a FARO Photon 120 that uses a 785 nm laser with a power 

of 20 mW (Laser class 3R). The laser beam diameter at the beam exit point of the scanner is 3.3 mm 

and the beam spreads according to 0.16 mrad divergence angle. This results in a laser footprint with a 

size of 20 mm at 100 m from the scanner; this, together with precise range measurement, enables 

detailed 3D measurements to be made of objects. The highest available angular resolution with a 

scanning frequency of 48 Hz is 0.3 mrad (0.018); with PRF of 976 kHz and with 61 Hz scanning 

frequency, the corresponding value is 0.8 mrad (0.045) with PRF of 488 kHz. Ultimately, the point 

distribution on the object surface depends on platform velocity, surface orientation, scanning angle, 

and object distance from the scanner.  
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Table 1. ROAMER MLS system equipment and characteristics. 

FARO Photon 120 scanner 

 120,000–976,000 pts/s, selectable 

 320° maximum field of view 

 3–61 Hz scan frequency, selectable 

 Wavelength 785 nm 

NovAtel SPAN GPS-IMU 

 NovAtel DL-4plus receiver and GPS-702 antenna 

 L1 and L2 frequencies 

 Honeywell HG1700 AG11 tactical-grade RLG IMU 

 Gyro bias 1.0 deg/h 

 Random walk 0.125 deg/rt-h 

 Data rate 100 Hz 

Data recording 

 Panasonic CF-29 

 Scanner operations and recording 

 Panasonic CF-19 

 Navigation system operation and recording 

Bi-trigger synchronization 

 Electronics built in-house 

 Scanning start-stop 

 Delivers scanner triggers to receiver log 

 Camera triggering × 4 

In a typical MLS project with the ROAMER, Waypoint Inertial Explorer™ GPS-IMU post-processing 

software is used for computing the system trajectory. The software combines the reference station data 

to the GPS and IMU data collected by the SPAN equipment on-board the moving mapping unit. The 

computed trajectory solution is combined with the raw laser data with system boresight calibration 

information to compute the 3D point clouds. 

2.1. Vehicle MLS for Urban Mapping 

Vehicle-mounted MLS is currently widely used in connection with mapping of urban areas, as the 

vehicle platform provides sufficient speed in pace with the traffic, and enough room and elevation for 

the surveying equipment. Large datasets of urban objects can be produced using MLS techniques and 

various surveying tasks can be performed using the dense and precise MLS data point cloud. 

Vehicle-mounted MLS street data typically contain intensity data, which can be used to 

automatically extract road paintings, e.g., zebra crossings, and geometric information about buildings, 

pavement, pedestrian structures, and islands, manholes, curbs, poles, signs and pylons, as shown in 

Figure 3. Intensity readings can be utilized in conjunction with geometric data for automatic extraction of 

different target types from the point clouds [17]. Detection and inventory of utility poles, traffic signs and 

lamp posts are prime examples of utilizing MLS in urban infrastructure maintenance, e.g., [18]. MLS data 

can also provide up-to-date information on power lines and other open-air infrastructure, railway 

facilities, etc. 
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Figure 3. Vehicle-mounted MLS data with intensity-scale coloring of a street corner; 

besides street geometry, intensity data enable identification of road paintings such as  

zebra crossings. 

 

The scanning geometry and point density for a mobile lidar are different from those for airborne 

laser scanning. The point spacing of adjacent points in a profile projected on a plane perpendicular to 

the beam at the typical range of 20 m in urban mapping is thus 6 mm for a scanning frequency of  

48 Hz and 16 mm for a scanning frequency of 61 Hz. This is sufficient for 3D modeling purposes at 

any resolution level within the scan profile. Along-track profile spacing is less than 0.5 m even for 

speeds up to 70–80 km/h when high mirror speeds are used. For platform speeds of 50–60 km/h, a 

profile spacing of around 1.0 m is achieved also for the mid-frequencies of mirror revolution. With a 

scanning frequency of 48 Hz, the profile interval becomes better than 25 cm when the speed of the 

mapping unit is kept under 40 km/h, and even then the point resolution along the profile is 2–5 cm, 

which is sufficient for practical ranges of 20–40 m, respectively, in the urban environment. One factor 

influencing the distribution of the laser points on the scene is whether the scanner is vertical or has 

been placed in one of the tilted positions. Further performance upgrading of the ROAMER system can 

only be achieved by increasing the scan frequency. 

Tilted scanner positions are mostly used to obtain points from the road surface while bearing in 

mind the scanners 320° field of view. The tilted scanning plane also produces multiple hits even of 

narrow pole structures usually present on the both sides of the road, e.g., traffic signs, light poles, and 

bridge pylons. This is a function of scan frequency and point density along the profile, and due to the 

fact that the wide FOV of the scanner makes it possible to acquire multiple hits from several sequential 

profiles from an object as the mapping unit passes by. Such an approach enables higher platform 

speeds than when using vertical profile orientation that may completely miss narrow vertical 

structures. As the only non-fixed variable during the survey is the speed of the vehicle, it ultimately 

determines the number of profiles sweeping the object. The positioning and modeling of the object 

becomes more reliable with multiple point arcs; this is demonstrated by [18]. 
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A further advantage of using the tilted scanning plane is the ability then of capturing vertical and 

horizontal edges with equal, angular-resolution-dependent sampling, independently on profile spacing; 

see [12] for more details. Such objects include corners of buildings and driveways, and window and 

door frames in the facades of building. Moreover, at a corner of a building, the laser beam illuminates 

portions of the two facades of the building, and thus data points are measured from the two walls. This 

helps in more reliably locating the building corners from the point data. This also applies to window 

frames for more detailed surveys. With equal scan frequency, angular resolution and velocity, tilted 

scanning provides more information about the object along the track direction than vertical scanning. 

Thus, platform velocity and scan frequency have greater impacts on the data pattern, i.e., point 

distribution, when using systems with a vertical scanning plane. 

2.2. Trolley MLS for Restricted Areas 

Some environments and application tasks are such that a motorized vehicle is not practical due to its 

weight, dimensions, noise, and exhaust gases. For such situations, the ROAMER MLS can be mounted 

on a trolley. A trolley provides an easy-to-handle and steady transportation of the MLS unit in and 

around the area to be mapped, e.g., urban pedestrian areas and farmland, as is shown by Figure 4. 

Figure 4. Initializing the cart carried MLS in urban mapping. 

 

Urban modeling is the field into which global enterprises focusing on 3D products, such as Nokia 

NAVTEQ, Microsoft and Google, are investing a lot of efforts. Mobile mapping is the only technology 

to offer the pedestrian point of view with sufficient level of detail for personal navigation using mobile 

handheld devices such as those introduced in the 3D-NAVI-EXPO project [21]. 

Tapiola is one of the main suburban centers of the City of Espoo, in southern Finland, and it was 

selected as a test area for mobile navigation research conducted by the FGI. Mobile laser scanning data 

were acquired on May 12th, 2010 using a ROAMER on a trolley with vertical scanning, which 

provides good coverage of building facades along narrow passages and when making steep turns. The 

scanner head was set to capture 244,000 pts/s with 48 Hz mirror scan frequency. The GPS reference 

station data were acquired from the Finnish virtual reference station (VRS) network. The Tapiola 

MMS data include a total of some 160,000 profiles; with each profile having 5,000 points with a  
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3D-position and a return-intensity-producing point cloud; a section of this is seen in Figure 5(a). The 

data collection lasted about one hour and it covered an area 200 m × 300 m in size. 

Figure 5. (a) A three-dimensional point cloud; (b) a photorealistic model of Tapiola, 

Finland, processed from MLS data and digital imagery (Image on the right by courtesy of 

A. Jaakkola). 

  

(a) (b) 

The models were reconstructed mainly in two steps: (i) Fully automated geometry reconstruction 

from raw laser data to produce buildings and to enable corner detection. This step included also 

interactive model checking and refining using software for building geometry; (ii) Photo realistic 

texture preparation and mapping. To produce the final model, the image data were taken separately for 

the textures of building facades because of high buildings and narrow streets. The images taken  

by the ROAMER system did not cover all of the building facades in the case of high buildings  

and these images did not meet the photographic requirements for high-quality textures. The  

delineation of the automatic processes used in the model point data manipulation is described in detail  

by [22]. The navigable Tapiola model is available on the Android Market as a free download 

(http://market.android.com/details?id=com.FGI.Tapiola3D). 

2.3. Fluvial Geomorphology Research with MLS Installed on a Boat 

The first non-urban application of the ROAMER was to install the system on a boat as shown in 

Figure 6(a). Having a fast laser scanner, it enables detailed riverine topographical data to be acquired 

for fluvial applications such as hydraulic modeling and geomorphology. In addition to static modeling 

of riverine topography, there is growing need to map changes in topography as the geomorphology and 

topography of the river channel and surrounding floodplain are affected by fluvial erosion and 

deposition processes, which vary from constant grain-scale displacement to large-scale flood-related 

avulsions [23–25]. 

In the boat installation, a.k.a. Boat Mobile Mapping System (BOMMS), the laser scanner was 

elevated approx. 2.5 m above the water surface by means of a stand and vertical scanning was 

employed to yield adequate measurement geometry when considering the flat point bar areas. 

Combined with terrestrial laser scanning data (in the 2008 campaign), boat-mounted mobile laser 

scanning facilitated a whole new field mapping approach for fluvial studies [14]. The mobile mapping 
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approach proved to be an extremely rapid method for surveying riverine topography, taking only  

85 min to survey a reach approximately 6 km in length with typical profile density of 40 m
−1

. The 

approach also enables an effective survey angle for deep river banks. This is difficult to achieve when 

using airborne or terrestrial scanning. The BOMMS system has been used in data acquisition in 

numerous studies involving hydraulic modeling and analysis of geomorphological processes during the 

years 2008–2011 (e.g., [14–16]). 

Figure 6. (a) A boat-mounted MLS for mapping of fluvial processes; (b) 20 m high river 

bank subject to flood erosion mapped using a boat-mounted MLS. Geomorphological 

features are easily detected due to the dense point clouds. 

  

(a) (b) 

The results obtained in fluvial studies using the BOMMS indicate that the MLS could provide accurate 

and precise change information over large areas. However, the data need to be controlled for systematic 

errors, as these significantly affect the volumes derived from surface analysis. Sufficient reference can, for 

example, be carried out by setting specific targets in the surveying area and by providing additional ground 

reference points using conventional surveying techniques (RTK-GPS, TotalStation). 

2.4. Precision Farming: Leaching Field DEM 

A light weight MLS (around 50 kg) was applied in a study case to generate a high-resolution digital 

elevation model (DEM) of a leaching field belonging to Agrifood Research Finland and situated in 

Toholampi, Western Finland. The field consists of 16 plots of 1,600 m
2
 each. The soil type is fine 

sand, with 5% organic carbon in the ploughing layer. The field has been part of an experimental setup 

with organic and conventional crop rotations since 1997. The plots are sub-drained and water is 

collected separately from each plot and led into the monitoring building, where the volume of water is 

measured and flow-weighted water samples for analyses are taken manually. Surface water is also 

collected and measured. 

The aim of the case study was to collect dense MLS (mobile laser scanning) data for producing a 

high-resolution ground surface model of the leaching field. The ROAMER mobile laser scanning unit 

was employed for the task. The surface data were collected in May 2011 with the MLS on a trolley to 

avoid damaging the new crop. The scanner head was elevated 1 m higher than in the Tapiola data 



Sensors 2012, 12 11721 

 

acquisition exercise, and it was angled to point 45 degrees below the horizon to capture the ground. 

Otherwise the scanning parameters were the same. The survey took about an hour with the  

GPS-IMU initializations. 

Figure 7(b) shows an extract of the 10 cm DEM data processed from the point clouds. Separate field 

patches can be seen, including the seed drill traces and some of the drains for collecting the surface 

water. High point density thus enables detailed analysis of fine-scale ground elevations. This case 

shows, in addition to what was reported in the fluvial case above, that accurate high-resolution ground 

surface models can be rapidly produced with the MLS. 

Figure 7. (a) An MLS setup for the leaching field experiment; (b) Ground surface 

topography could be reproduced from the MLS point cloud with a high level of detail  

(10 cm DEM). 

  

(a) (b) 

2.5. All-Terrain MLS in Forestry and Snow 

The ROAMER system was utilized for three-dimensional snow data capture in the 2010 and 2011 

campaigns. The campaigns were conducted for snow surface characterization required for airborne and 

satellite-based snow measurement validation. In this application dense point clouds were acquired 

from a snow mobile installation. The weather conditions on the site where the system was operated 

were dry and a few degrees below zero. The scanner unit was covered with thermal insulation to help 

retain the operational temperature of the laser head. Despite the unconventional operating conditions, 

the data acquired show no degradation in quality or coverage. Figure 8 shows the arrangements for 

snow surface and ground free of snow in connection with the MLS data collection in the spring thaw 

and summer seasons in 2011. 

This arrangement facilitated the production of dense, precise, multi-temporal point cloud data over 

wide areas covered by snow (Figure 9).The data acquired in the course of each campaigns consisted of 

several strips of point data from study sites around Sodankylä Arctic Research Center. The longest 

stretch of continuous data was about 11 km long with the multi-temporal data acquisitions conducted 

usually on subsequent days. By utilizing the MLS, the spatial coverage and statistical variation in the 

data was dramatically improved when compared to traditional methods. The ease of application of the 

proposed system enables repeated surveys even for short-term analysis on a daily or hourly basis. 
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Figure 8. (a) A snowmobile application for studying the characteristics of and changes in 

snow cover; (b) an all-terrain vehicle towing the MLS when mapping in non-snow conditions. 

  

(a) (b) 

Figure 9. Snow surface and trees detected by classifying the MLS data. The purple line 

shows the scanner trajectory. 

 

The multi-temporal snow surface data enables one to study the changes in snow depth [26] and 

snow surface topography and roughness [27]. The MLS approach is capable of providing multi-scale 

data from millimeter to several meters in the vertical direction, and from the centimeter scale, mainly 

restricted by profile spacing, to tens of meters (and even kilometers) in the horizontal direction. Based 

on the experience from the two seasons in 2010–2011, applying the MLS in seasonal snow research 

appears to be a practical solution and opens up new possibilities for snow surface characterization. 

Mobile laser scanning provides better possibilities for statistical analysis of the snow surface roughness 

and its impact on the surface albedo than do traditional field methods, the latter being labor intensive 

and thus often spatially limited. In our on-going research, we use MLS data for computing fine-scale 

surface roughness in connection with different ground sampling densities and sizes, ranging from 

centimeters to hundreds of meters, and then evaluate the results [27]. 
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2.6. Akhka-Backpack MLS for Mobility 

A whole new approach for MLS was needed in a study case involving the monitoring of arctic 

permafrost palsa landforms from the viewpoint of climate change. One such study was conducted on 

the Vaisjeaggi palsa mire close to the Kevo Research Station, Utsjoki, in northernmost Finland. An 

innovative backpack solution was constructed to meet the challenges of mobility on the mire and it 

was named Akhka. The backpack platform provides mobility and high-performance 3D surveying 

capacity in environments where wheeled vehicles cannot be used due to the weak carrying capacity of 

the substrate, narrow passages or other such limitations. The scanner head in the Akhka solution is 

mounted directly under the IMU unit and it points downwards roughly at an angle of 40 degrees to 

yield cross-track profiles; see Figure 10. 

Figure 10. Mapping of permafrost palsa landforms in Finnish Lapland with the Akhka 

backpack mobile laser scanning unit. 

 

We used the Akhka backpack MLS system to map a palsa landform area measuring 50 m × 100 m 

in June and September 2011 to test the system‘s operability and to analyze its capability in producing 

high-resolution multi-temporal DEMs for change analysis for a climate change network. In the first 

field test, the Akhka MLS was operated by a crew of two, but work is going on to miniaturize the 

system to make it operable by one person. Currently, most of its 25 kg weight comes from the batteries 

and the scanner unit, which could be replaced with lighter ones in the future. However, the surveying 

capacity of the Akhka is essentially equal to that of the ROAMER as the sensors are the same (see 

Table 1) and only the integration platform differs. 

The offsets between the scanner, the IMU, and the antenna phase center were measured in 

laboratory conditions with an estimated accuracy of 2 mm. The boresight angles between the IMU and 

the scanner were determined by estimating them from the systematic discrepancies in the sphere target 

observations in relation to the scanner trajectory. 

Figure 11 shows the point cloud obtained in June 2011 with coloring for elevation inserted after 

processing. The scanner trajectory is illustrated at top of the point data as a purple line. The point 

density over the area of interest varied from 1,800 pts/m
2
 to 50,000 pts/m

2
, with the mean point density 

being 9,100 pts/m
2
. 
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Figure 11. An elevation model with a 20 cm grid size of Vaisjeaggi permafrost palsa 

landform surveyed with an Akhka backpack MLS in June 2011. The survey trajectory is 

represented by purple lines and the control spheres by red circles. 

 

The geometric quality of the point cloud data was verified against eight spherical targets erected on 

top of the palsas and located by means of RTK-GPS. Three scans with a Leica HDS6100 were 

acquired for validation of the data and these were geo-referenced using the spherical targets. The mean 

mismatch between the RTK-GPS and TLS data was 15 mm with a standard deviation of 7 mm. The 

maximum deviation between RTK-GPS and TLS scan registration was 32 mm at Target #6. In Section 3.2 

we show that this target also exhibited discrepancies in the other tests. The geometric analysis is 

reported in more detail in Section 3.2 of this article. 

To the best of our knowledge, the Akhka is a world-first and a very promising approach to  

high-performance MLS, although more generally backpack platforms have been deployed before [7,28]. 

The backpack version expands the range of applicability of mobile laser scanning technology by 

opening up new possibilities into research fields that have lacked detailed 3D surveying capability and 

areal coverage. The presented study case is a good example of that. We see that such MLS systems 

possess good potential in speeding up and intensifying the collection of 3D survey data and thereby 

widening spatial coverage with remarkable point density and data quality. Future applications could 

make their contributions in various modeling tasks in the vast fields of civil engineering, archaeology, 

and geoinformatics, as well as in monitoring and understanding of processes in different disciplines of 

natural sciences such as cryosphere (e.g., the monitoring of seasonal snow coverage) and glaciology, 

geography, hydrology, silviculture, and agriculture. 

3. Performance Analysis of the ROAMER and the Akhka MLSs 

Experiences gained from earlier research have shown that permanent test fields with accurate 

ground truth are valuable tools for analyzing the performance of remote sensing systems and methods 

in mapping tasks. The performance of the ROAMER equipment was verified on a MLS test field using 
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an EuroSDR comparison [29]. The mobile mapping test site set up by the Finnish Geodetic Institute is 

located about 16 km west of Helsinki, Finland. The test site consists of one block covering 1,700 m of 

urban road environment with different segments having varying GNSS visibility. 

The Akhka system utilizes the same navigation and data capturing equipment as the ROAMER (see 

Table 1). Thus, the performance of the systems can be expected to correspond to each other. However, 

the ground velocities for Akhka-based data collection are typically much lower than those for the 

vehicle-mounted ROAMER, and abrupt turns occur more frequently. A rugged terrain also adds abrupt 

vertical accelerations to the IMU data. All these factors may have impact on the quality of the 

navigation solution, and thus an in situ field calibration and control scheme was implemented for data 

quality assessment in the field. 

3.1. ROAMER vs. FGI Permanent MLS Test Field 

To enable accuracy assessment, the ROAMER was placed on top of a vehicle and the test site was 

surveyed by driving the test route in two directions (Clockwise, CW, and counter-clockwise, CCW) in 

June 2009. At that time, the ROAMER consisted of a Faro Photon 80 terrestrial laser scanner and 

NovAtel SPAN positioning system (NovAtel DL-4 plus GPS-receiver, NovAtel GPS-702-GG antenna, 

and Honeywell HG1700 AG58 IMU with ring laser gyros). The maximum point measurement rate of 

the Photon 80 scanner was 120 kHz and the maximum range ambiguity was 76 m. Laser profiling was 

carried out using a scan frequency of 48 Hz, and the scanner was arranged to measure profiles tilted to 

45 degrees below horizontal to produce the point cloud seen in Figure 12. 

Figure 12. The ROAMER test data obtained on the FGI MLS performance test field. 

 

Firstly, the ground points were classified and a regular grid with 5 cm point spacing was computed 

to achieve an even distribution of the ground points. This grid was thinned by selecting every 1,000th 

point, and these thinned points were compared to the original ground points. All thinned points 

deviating more than 5 mm from the original data were deleted, and the remaining points were selected 

as reference points for analysis of elevation accuracy. The complete ground reference data for the 

elevation analysis consisted of 3,283 points; also the distance and direction to all possible driving 

trajectories were determined. 
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A set of targets was measured from the reference data for analysis of planimetric accuracy from an 

area 350 m long within the test site and having virtually the best GPS visibility. The targets included 

centers of poles, building corners, and curb corners. The pole center coordinates were measured by 

visually fitting a circle to the point cloud as seen from above. Altogether 273 planimetric reference 

targets were measured to analyze the system‘s accuracy. 

3.1.1. Detecting Gross Errors and Compensating for Systematic Shifts 

The elevation points showing the highest discrepancy were checked against the ground truth and 

deleted from the analysis if the error was due to the target, but not due to the system. These errors were 

mainly found to occur due to changes in the environment between the test field data collection and 

MLS data acquisitions (e.g., cars, vegetation, and the shadows caused by these). Next, the systematic 

errors were computed as averages of residuals along the three coordinate axes and the MLS data were 

compensated for as summarized in Table 2. The proper treatment of systematic discrepancies is 

essential for accuracy assessment; this is the case especially as large systematic shifts in a plane can 

lead to distorted elevation accuracy results. The remaining errors were assumed to be system-specific, 

i.e., calibration, positioning and scanner related. 

Table 2. Systematic errors for the ROAMER data. Driving directions: counter-clockwise 

CCW, and clockwise, CW. 

 
 Systematic error (mm) 

  
CCW CW 

Northing 
 

14 25 

Easting 
 

5 0 

Elevation 
 

59 43 

3.1.2. Assessing System-Specific Errors 

Subsequent to systematic error compensation, system-specific error values were computed. 

Minimum, maximum, and standard deviation values were computed for both elevation and planimetric 

estimation. Mean and RMSE (Root Mean Squared Error) were also derived for planimetric accuracy. 

A comparison between the elevation reference points and the ROAMER point clouds was carried 

out using the output control report tool in TerraScan software [30]. It reads in the reference points and 

loads every laser point within a given search radius from the individual reference point. Then a small 

triangulated surface model is created from the laser points and elevation is estimated for each reference 

point from the triangulated model surface. This effectively interpolates the required laser elevation 

from three laser points, which are closest to a given reference point. The search radius used in the 

computation was 50 cm. The maximum permitted slope in the triangulated model was set to 20 degrees, as 

steep slopes are generally not ideal when estimating the elevation error. 

The results of the elevation accuracy analysis are summarized in Table 3; there separate error 

figures are given for each of the opposite driving directions (CCW, CW). The elevation accuracy was 

analyzed at approx. 2,800 check points resulting in a standard deviation of 20 mm. 
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Table 3. Planimetric and elevation error values for the ROAMER MLS data. Driving 

directions: counter-clockwise, CCW, and clockwise, CW. 

 

Planimetric error (mm) Elevation error (mm) 

 

CCW CW CCW CW 

Number of reference 136 120 2819 2816 

Mean 22 18   

Min 2 3 −68 −75 

Max 67 51 60 50 

Std 11 9 20 20 

RMSE 25 20   

The planimetric accuracy was evaluated by measuring the reference targets within the MLS point 

clouds and computing the differences in easting and northing. The reference targets observed were 

typically building corners, lamp post and other pole center locations, and curb corners. The results of 

the planimetric accuracy analysis are presented combined in Table 3. The standard deviation shows 

pretty good figure for the ROAMER system‘s precision, and the RMSE level is a pleasing indicator of 

absolute accuracy. 

Figure 13. The elevation and planimetric errors as functions of distance from the trajectory 

for the two driving directions. 

 

Elevation and planimetric accuracies expressed as functions of target distance from the trajectory 

are shown in Figure 13. The linear trend lines fitted to observed errors suggest that the system‘s 

boresight calibration, i.e., the alignment of the IMU with respect to the laser sensor, still has some 

minor erroneous systematic behavior. The slope of the trend lines describing the planimetric error 

show that the error in heading angle is approx. 0.033 (0.6 mrad). The elevation trend enabled us to 

estimate a systematic error of 0.023 (0.4 mrad) in the roll angle. These results suggest that quality 

calibration requires calibration observations also from the far field of the scanner (long-range 

observations) with adequate localization. 
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3.1.3. Factors Affecting MLS Accuracy 

As the results show, given good GNSS coverage, the ROAMER system is able to acquire accurate 

point cloud data with extremely good accuracy and resolution. It often happens that buildings, trees, 

and other structures obstruct satellite visibility and the performance of other navigation instruments, 

such as IMUs and odometers, as well as post-processing algorithms define the achievable accuracy. 

Tools for improving trajectory accuracy are being developed and new satellites are being launched, 

both of which should improve accuracy in areas where the current GNSS-IMU based mobile mapping 

systems run into problems. 

The result further indicates that system calibration has a major impact on performance. By 

implementing a field calibration scheme, i.e., using test field TLS data in estimating the bore-sight 

parameters of the ROAMER, accuracy can be improved considerably. When compared to the first 

point cloud data computed without improvements from the field calibration, the standard deviations of 

both elevation and planimetric errors were diminished by half; see [28] for further details. Errors in the 

relative orientation of the instruments lead directly to errors in the measured point clouds, which cause 

problems in continued manipulation of the data, e.g., in extraction and modeling of objects. 

3.2. Akhka vs. Field Reference 

Eight spherical reference targets (ATS Scan Reference System), 198.8 mm in diameter, were 

erected around the study area in connection with the September 2011 data acquisition for the purpose 

of assessing the quality estimates for the Akhka data in the field. The location of each sphere center 

was measured with RTK-GPS with an approximate base line length of 600 m from the bench mark 

with GPS base station. According to one report, RTK-GPS can, by default, provide 10 mm + 1–2 ppm 

horizontal and 15–20 mm + 2 ppm elevation accuracy for the target locations [31]. The spheres were 

also scanned with a Leica HDS6100 terrestrial scanner with a resolution of 0.036 (0.6 mrad, HIGH 

setting) from three locations to provide internal dimensions for the target field, and also to produce 

reference data of the ground surface. The scans were located in a least squares estimation according to 

the sphere coordinates from the RTK-GPS positioning. 

The internal precision of the Akhka system was analyzed against the sphere locations extracted 

automatically from the data each time that the spheres were detected in the field of view of the scanner. 

A model sphere 198.8 mm in diameter was matched by least squares estimation to the point sets to 

solve the target center location each time the MLS passed it. Figure 14 shows the target arrangement 

and extracted targets on top of the point cloud data. The purple line shows the MLS trajectory, and the 

green lines connect the targets pointed by the red circles to the trajectory locations from where they 

were detected. The point cloud coloring is inherent to the point elevation. The systematic errors found 

by comparing the coordinates of the sphere locations to the RTK-GPS data are shown at the bottom of 

Table 4. The 2D RMSE (Root Mean Square Error) for all the targets was 18 mm in the horizontal 

plane, and 29 mm in elevation so that the 3D RMSE for the targets was 34 mm. The values correspond 

closely to the result for the ROAMER case, showing even slightly better performance. 
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Figure 14. Assessing MLS data accuracy with spherical targets (red circles). 

 

Table 4. The internal deviation of the target sphere locations computed from the Akhka MLS 

passes, ‗n‘ column shows the number of visibility (passes) of each target in the MLS data. 

Target  Mean (m) Standard Deviation (m) Max. Absolute Error (m) 

# n E N h E N h E N h 

1 7 0.007 −0.011 −0.005 0.009 0.013 0.033 0.017 0.037 0.056 

2 11 0.005 0.004 0.011 0.010 0.010 0.026 0.022 0.017 0.042 

3 9 −0.005 −0.002 0.025 0.014 0.008 0.027 0.029 0.015 0.053 

4 4 0.001 0.010 0.018 0.004 0.013 0.027 0.005 0.018 0.050 

5 12 −0.004 0.011 0.028 0.013 0.016 0.040 0.024 0.030 0.089 

6 15 −0.007 0.010 0.015 0.013 0.018 0.038 0.028 0.042 0.085 

7 10 −0.009 0.005 −0.004 0.011 0.011 0.019 0.028 0.020 0.031 

8 5 −0.005 0.017 0.054 0.013 0.015 0.020 0.018 0.035 0.077 

Systematic errors 

  −0.003 0.006 0.018 0.009 0.009 0.019    

In Table 4, in summing up the error figures for each target, the ―Mean‖ column describes the 

average absolute error of the MLS point cloud data against RTK-GPS observations, while ―Standard 

deviation‖ shows the internal precision of the MLS data at each target location. ―Maximum error‖ 

shows the largest deviation in the data for each of the targets. It is worth bearing in mind that the target 

distance from the scanner affects the accuracy. In this study, the target-to-scanner distance varied from 

1.42 m to 19.95 m, being 9.72 m on average. In general, the error figures show good agreement 

internally as well as absolutely to the expected RTK-GPS accuracy levels of the target locations. The 

result reflects also the error estimation reported for the test field case with the ROAMER data. 



Sensors 2012, 12 11730 

 

We could see from the maximum errors that the largest planimetric error for Target #6 was 45 mm 

with 43 mm 3D target RMSE. The largest elevation discrepancy detected was 89 mm for Target #5, 

although Target #6 also showed exceptionally large elevation discrepancy when compared to the 

average. On the other hand, Target #8 appeared to have the largest mean elevation difference, which 

was an indication of problems in the navigation solution as all the observations for the particular target 

were only from over a short, 40 s, period of time. The internal precision of the target locations derived 

from the MLS data, however, indicated good performance; it was 11 mm in easting, 13 mm in northing, 

and 29 mm in elevation. The corresponding maximum deviations were 14 mm, 18 mm, and 40 mm. 

The initial analysis of the ground elevation data derivation using the Akhka system was tested 

against the TLS reference scans. In order to be able to compare the appropriate data, 5 cm lowest hit 

point grids were computed from both the TLS and MLS data. The lowest hit points were further 

filtered for isolated points requiring points to be closer than 6 cm to any of the other points to reduce 

non-ground points from the analysis. The MLS data were also translated to correct for the systematic 

shifts found earlier for more adequate comparison. 

After a subset of 2310 was filtered, TLS points were selected from locations close to the scan 

stations and where the surface roughness computed for the MLS data showed low roughness yielding 

thus higher probability of data expressing only bare ground observations (i.e., avoiding low vegetation 

from the statistics). In the analysis, a systematic lowest hit ground elevation shift of 7 mm was found 

between the datasets, and the average magnitude of the mismatch was 14 mm. The standard deviation 

for the elevation in the data comparison was 16 mm, and RMSE was 17 mm. This shows that the data 

quality is, considering the non-obstructed GPS visibility, in good agreement with the results of the 

EuroSDR test for the ROAMER. However, a more thorough analysis of using MLS point clouds for 

digital elevation model generation on vegetated surfaces becomes emphasized. Also, a more thorough 

study on correcting the time-dependent variations in the trajectory based on the retrieved target data is 

something to be borne in mind for the future. 

4. Conclusions 

We have presented a variety of different platforms for mobile laser scanning applied to the 3D 

mapping of objects in different fields of human endeavor. The ROAMER MLS system has been 

employed in performing numerous of tasks… in urban environments, in agriculture, in projects dealing 

with geophysical and climate research. Although the measurement and navigation sensors used have 

been the same in all four approaches, the platform and settings have been altered to suit the different 

applications. This has been possible thanks to the relative lightness and compactness plus simple 

design of the system. 

We have also presented the completely new Akhka backpack MLS platform for high-performance 

lidar mapping of areas where it is difficult, if not impossible, to operate with any ground-based vehicle. 

The Akhka system is built on a backpack pipe rig, and it enables exceedingly high point densities to be 

achieved with an absolute accuracy level of 20 mm. The Akhka is world-first and promising approach 

to high-performance MLS. It widens the range of applications of mobile laser scanning technology and 

enables new insights into research fields that have thus far lacked detailed 3D surveying systems with 

sufficient coverage, e.g., forestry and research focusing on fine-scale geographical processes. 
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It is evident that the proposed MLS approaches have the potential to speed up and improve the 

collection of 3D survey data and thereby widen spatial coverage with remarkable results as regards 

point density and quality. Future applications will have important parts to play in various modeling 

tasks in the vast fields of civil and transportation engineering, archaeology and geomatics, as well as in 

the monitoring and understanding of processes in different disciplines of natural sciences; e.g., 

cryosphere (an example of which is the monitoring of seasonal snow coverage) and glaciology, 

geography, hydrology, silviculture, and agriculture. 

The performance of the proposed systems based on the analyses of results achieved on a permanent 

MLS test field and in situ target field studies show that the presented MLS systems can produce dense 

point cloud data for object reconstruction with absolute accuracy being at the level of some centimeters 

(horizontal RMSE 23 mm for the ROAMER and 17 mm for the Akhka) both in regard to plane and to 

elevation. The short-term relative precision of the data was estimated to be around 12 mm, provided 

that the internal calibration of the system is carried out appropriately. The error figures for the 

precision of elevation were found to be slightly less than double of the horizontal errors, being 14 mm 

and 29 mm for the ROAMER and Akhka, respectively. The elevation accuracy for the ROAMER data 

included a range-dependent systematic trend of 0.007 mrad. For multi- or hyper-temporal studies, the 

possibility of positional discrepancies should be taken in to account to ensure reliable analysis, and yet 

even at this level the advantages of incorporating MLS techniques represent a huge leap in change 

analysis applications in many fields. There is a need for more thorough analysis of using MLS point 

clouds for the generation of digital elevation model on vegetated surfaces. Also, a study on correcting 

the time-dependent variations in the trajectory, based on the retrieved target data, is a matter requiring 

addressing in the future. 

Numerous authors have reported use of mobile scanners on different platforms, but no single group 

of authors has a yet reported an undertaking of this scope and variability. It has been shown through 

the application examples presented in this paper that when using an MLS system equipped with a  

high-performance laser scanner and sufficient navigation capacity, it is possible to produce accurate 

3D point cloud data meeting application-specific needs in terms of data quality, density, and coverage. 

The benefits of using MLS data for producing high-resolution 3D models are obvious, as has been 

demonstrated in this paper. Considering data acquisition compared to the data acquired when using a 

stationary TLS, the MLS provides high efficiency and a precise way of generating dense point clouds, 

and its mobility makes it more suitable for surveying and modeling large areas. Intelligent design with 

an easy to adjust approach together with light data recording facilities are the keys to the versatility of 

the proposed equipment. Future research contributions will concentrate on the further development  

of automatic data correction and field control schemes, as well as on object modeling and surface  

analysis methods. 
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