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Abstract: An active tendon, consisting of a displacement actuator and a co-located force 

sensor, has been adopted by many studies to suppress the vibration of large space flexible 

structures. The damping, provided by the force feedback control algorithm in these studies, 

is small and can increase, especially for tendons with low axial stiffness. This study 

introduces an improved force feedback algorithm, which is based on the idea of velocity 

feedback. The algorithm provides a large damping ratio for space flexible structures and 

does not require a structure model. The effectiveness of the algorithm is demonstrated on a 

structure similar to JPL-MPI. The results show that large damping can be achieved for the 

vibration control of large space structures. 
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1. Introduction 

In general, large flexible space structures contain cable elements [1]. The cables are adopted to 

increase the stiffness of flexible structures, to maintain structure configuration, and to eliminate 

geometric uncertainty due to gaps. In recent years, a further step in exploiting the potential of cables 

has been proposed, whereby the cable acts as an active tendon to suppress structural vibrations. The 

idea was first presented for the vibration attenuation of bridges and buildings [2]. Researchers have 

introduced a lot of control algorithms for the active tendon. Leipholz and Abdel-Rohman [2] adopted a 

pole assignment method and optimal control method to attenuate the vibration of bridges and buildings. 

Betti and Panariello [3] adopted a linear quadratic regulator (LQR) to suppress the vibration of a 
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building with a single degree of freedom (DOF). Chuang and Wu [4] extended the LQR to buildings 

with multi-DOFs to avoid structure destruction. Chang and Yu [5] proposed an optimal pole placement 

technique for the vibration control of a structure under a white noise ground excitation. Agrawal and 

Yang [6] investigated the performance of an optimal polynomial control method for the vibration 

suppression of a benchmark problem. Bani-Hani et al. [7] used a neural network control method for 

experimental vibration attenuation of a 1/4 scale model of a three-story steel frame. Kim and Yun [8] 

presented a sliding mode fuzzy control (SMFC) algorithm for vibration reduction of large structures. 

Lin et al. [9] adopted Hinfinity optimality and H2 optimality to control the vibration of buildings with the 

soil-structure interaction (SSI) effect. Nudehi et al. [10] explored the use of end forces for vibration 

control in a cantilever beam with unilateral saturated nonlinear tendons. Then, Issa et al. [11] adopted 

this nonlinear tendon for vibration suppression in space structures. 

Most control schemes are based on an accurate model of the structure. However, when the model of 

the structure is not precisely defined or some active tendons fail, the performance of those control 

schemes deteriorates and can even cause instability of the control system. As a result, some studies 

have adopted decentralized schemes, which consist of independent controllers to activate specific 

tendons with only local feedback information. The decentralized schemes are useful for high 

dimensional large space structures, and can also be adapted to address the failure of some active 

tendons. Magana et al. [12] introduced a robust decentralized active control scheme based on the 

Lyapunov stability approach. Cao et al. [13] proposed a set of decentralized controllers that minimize 

the performance index of each subsystem to control the vibration of cable-stayed bridges subjected to 

vertical seismic excitation, Luo et al. [14] adopted a sliding mode decentralized controller to reduce 

structure vibrations by considering uncertainties in the parameters of stay cable geometry and 

unknown environmental excitation. Xu and Wu [15] proposed a decentralized non-parametric 

identification and control strategy with artificial neural networks for large-scale structures by using a 

neural network control scheme to reduce structure vibrations. Overall, these control schemes are 

complex and difficult to realize in practice. Preumont and colleagues [16–18] proposed an active 

tendon and integral force feedback algorithm to attenuate structure vibrations. The active tendon 

consists of a displacement actuator (piezoelectric actuator) and a co-located force sensor on the cable 

end. The preloaded active tendon is installed on the structure, as shown in Figure 1. By measuring the 

tension change T and controlling the active displacement, the vibration can be suppressed. The integral 

force feedback control algorithm is: 

T
u g

s
   (1) 

where g is the integral feedback coefficient, u  is the active displacement, and 
 

 
 is the integral operator. 

Guo et al. [19] added a proportionality factor to the feedback law of Equation (1) and presented a 

proportional-integral (PI) algorithm to improve control effectiveness. The two control algorithms do 

not depend on the space structure model, and they are stable for the controlled structure. The control 

algorithm is simple, and the effectiveness of the algorithm is high. However, the achievable maximal 

damping ratio can be increased, especially for tendons with low axial stiffness. 
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Figure 1. Guyed truss structure. 

 

This study presents a differential force feedback algorithm to suppress structure vibrations. The 

algorithm can introduce large active damping to structures. The kernel idea of the control algorithm is 

velocity feedback, so the stability of the control system can be guaranteed. The control algorithm is 

simple, and also, no structural model is required. 

The paper is organized as follows: in Section 2, the governing equation of the structure is presented 

and the differential force feedback strategy is addressed. In Section 3, the stability and effectiveness of 

the control algorithm are discussed for when there are discrepancies between the actual axial stiffness 

of the tendon and the stiffness used for control law design. In Section 4, a simulation is demonstrated 

on a free-free structure similar to JPL-MPI [18], and the effectiveness of the control algorithm is 

investigated. Conclusions are drawn in Section 5. 

2. Control Strategy 

The mass of an active tendon in a large space structure is usually small compared with the mass of 

the truss structure. As a result, the dynamics of the active tendon can be restricted to the tension in the 

tendon in the vibration control and its interaction with the structure. A multi-tendon system is 

considered in the following deduction, where the number of tendons is n. The governing equation for 

the structure is: 

2

1

n

i i

i

s T


 M x Kx b  (2) 

where M and K denote the structure mass and stiffness matrices without active tendons; Ti is the 

tension on the i
th

 tendon, and bi is the influence matrix of the i
th

 tendon. The amount of damping on the 

large space structure is low, so it is neglected in the equation. Here, the mass of the tendon is small and 

neglected in the governing equation [16], therefore, the tendon can be considered as a spring. The 

tension in the i
th

 tendon is derived from the structure vibration and the tip displacement of the active 

tendon as follows:  

 T

i ci i iT k u b x , 1,2, ,i n  (3) 
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where kci is the stiffness of the i
th

 active tendon, bi
T
x is the relative displacement between the 

installation location of the i
th

 tendon on the space structure; and ui is the active displacement. Since the 

displacement actuator and the force sensor are co-located, the influence matrix bi is identical in 

Equations (2) and (3). 

The control algorithm is the differential force feedback: 

 i fi i ci iu k sT k su  , 1,2, ,i n  (4) 

where kfi is the feedback coefficient of the i
th

 active tendon. After eliminating the tension caused by the 

active displacement, the residual tension on the tendon is proportional to the vibration displacement. 

Therefore, the active displacement in Equation (4) is proportional to the velocity of the installation 

locations of the tendon, and the control algorithm increases the amount of damping to the structure.  

All controllable and observable states are asymptotically stable. From Equation (4), the active 

displacements of the i
th

 tendon can be expressed as follows: 

1

fi

i i

ci fi

k s
u T

k k s



, 1,2, ,i n  (5) 

Eliminating ui between Equations (3) and (5), we obtain the tension on the tendon: 

2 T T

i fi ci i ci iT k k s k  b x b x , 1,2, ,i n  (6) 

Substituting Equation (6) into governing Equation (2):  

2 2 T T

1 1

0
n n

fi ci i i ci i i

i i

s k k s k
 

   
      
   
 M x b b x K b b x  (7) 

Obviously, if the feedback coefficient kfi > 0, then the tendon acts as the active damper. The amount 

of damping on the structure can be adjusted by modifying the feedback coefficient kfi. The stability of 

the control system is guaranteed. 

3. Control Effectiveness 

The differential force feedback algorithm (5) is simple and stable for controlled structures. It only 

depends on two coefficients. One is the feedback coefficient kfi, and the other is the tendon stiffness kci, 

which can be measured. There is always some discrepancy between the actual tendon stiffness and the 

stiffness used for design of the control law. Therefore, it is necessary to analyze the stability and 

effectiveness of the control system when the error exists. Assuming that kci + ∆kci is used to design the 

control algorithm for the active tendon, kci is the actual stiffness of the tendon, and ∆kci is the error. 

The control law is described by: 

 i fi i ci ci iu k sT k k su     , 1,2, ,i n  (8) 

Eliminating ui between Equations (3) and (8), we obtain the tension on the tendon: 

2

T T

1

ci fi

i ci i i

ci fi

k k
T k s

k k s
  

 
b x b x , 1,2, ,i n  (9) 
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Substituting Equation (9) into Equation (2), we can obtain the governing equation: 

2

2 T T

1 1

0
1

n n
ci fi

ci i i i i

i i ci fi

k k
s k s

k k s 

 
    

  
 M x K b b x b b x  (10) 

If ∆kci > 0, the control system is stable. The vibrations of the structure can be suppressed by the 

active tendon. 

4. Numerical Results 

The free-free truss was adopted to assess the accuracy of the differential force feedback algorithm 

(Figure 1). The geometry is representative of the JPL-MPI [18]. The truss consists of aluminum pipes. 

The dimension of the structure and the parameters of the truss are shown in Table 1. The first three 

vibration modes without active tendons are displayed in Figure 2. In this study, two different types of 

tendon have been used: a soft tendon of 1 mm diameter made of polyethylene (EA = 4,000 N) and a 

stiffer one made of “Dynema” synthetic fiber (EA = 18,000 N) [18]. 

Table 1. Parameters of the space structure. 

Parameter Value 

Structure 

Dimension of bays on arm 1 0.9 m × 1.1 m × 0.5 m  

Dimension of bays on arm 2 0.9 m × 1.1 m × 0.5 m 

Dimension of bays on arm 3 0.9 m × 1.1 m × 0.7 m 

Truss 

Diameter 10 mm 

Thickness 1 mm 

Density  2,700 kg/m
3
 

Young’s Modulus 70 GPa 

Figure 2. Mode shapes of the structure. 
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The preloaded tendons are installed on the tips of the structure. The natural frequencies of the three 

cables are greater than the control frequencies after adjustment of the preloaded tension. The integral 

force feedback, the PI control algorithm and the differential force feedback are adopted to control 

structure vibrations. The stiffness error of the active tendon is ∆kci = 0.005kci. For the JPL-MPI 

structure, the root-locus with respective to the feedback coefficients gi and kfi is shown in Figure 3 with 

the polyethylene tendon. According to the root-locus figure, the integral control can provide light 

damping for the structure. The PI control algorithm can provide more damping than the integral 

control. The damping obtained by the differential force feedback is greater than the other two control 

algorithm. The root-locus with the “Dynema” synthetic fiber is shown in Figure 4. Obviously, the 

damping obtained by three control algorithm is increased with the stiffer tendon. However, the 

damping obtained by the differential force feedback is also greater than the other two control algorithm. 

The differential force feedback in this study can provide a larger damping ratio for the structure for all 

soft tendon and stiff tendon cases. 

Figure 3. Root locus with three control strategies (EA = 4,000 N). 
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Figure 4. Root locus with three control strategies (EA = 18,000 N). 

 

In order to compare the control effectiveness of the three control algorithm in the frequency region, 

a typical frequency-response function between the force applied in the middle of the truss and the 

displacement response on the top of arm 3 is shown in Figure 5 with three control algorithms. The 

active tendon is the synthetic fiber “Dynema” one. In fact, if the polyethylene tendon is adopted to 

attenuate the vibration, the comparative effectiveness of three control algorithm is more obvious. The 

integral feedback coefficient (gi = 0.044, i = 1, 2, 3), is selected to obtain the maximum damping ratio 

for the structure. The proportional integral feedback coefficient (the proportional coefficient kf = 1.1kc, 

the integral feedback coefficient gi = 0.0102, i = 1, 2, 3, are also selected to obtain the maximum 

damping ratio for the structure. The differential force feedback coefficients are set to kfi = 5.02 × 10
−5

 

and the stiffness error is set to ∆kci = 0.005kci, i = 1, 2, 3. The × in Figure 4 marks the pole locations of 

the first three modes. The differential force feedback can provide a higher damping ratio than the 

integral force feedback and the PI control algorithm on both high order modes and low order modes. 
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Figure 5. Frequency-response functions with three control strategies. 

 

In order to compare the control effectiveness in the time region, the three control algorithm is 

adopted to attenuate the truss vibration under the same while noise excitation in the middle of the truss. 

The coefficients of three control algorithm are selected as same as the coefficients on frequency-response 

curve. The displacement response on the top of structure is shown in Figure 6. The attenuation 

amplitude of structure vibration controlled by the differential force feedback scheme is lower than the 

PI control algorithm and the integral control algorithm. The active displacement is shown in Figure 7. 

The active displacement of the differential force feedback algorithm is larger slightly than the PI 

feedback algorithm. 

Figure 6. Displacement responses on the top of arm 3. 
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Figure 7. Active displacements on the cable 3. 

 

The differential feedback can suppress effectively the structure vibrations for both lower order 

modes and high order modes. In order to obtain a high suppression rate, the large active displacement 

u is required. It is easy to comprehend this phenomenon. The lower attenuation amplitude of the 

controlled structure requires large control forces, especially for a tendon with low axial stiffness. Thus, 

it is convenient to set kfi to obtain a rational attenuation rate within the output range of actuators. 

Because ∆kc is important in the control algorithm, the control effectiveness is investigated when 

there is a discrepancy between the actual stiffness of the tendon and the measured stiffness employed 

in the control law. If the stiffness of tendon changes, ∆kc will change, and the effectiveness of 

differential force feedback will also change. The root-locus of the control algorithm is shown under 

different ∆kc/kc in Figure 8. High damping can be obtained when ∆kc/kc is less than 2.5%. 

Figure 8. Root locus with different ∆kc/kc. (a) the first mode; (b) the second mode; (c) the third mode. 

  

(a) (b) 
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Figure 8. Cont. 

 

(c) 

When the differential force feedback coefficients are set to kfi = 5.02 × 10
−5

, the curve of the 

achieved damping ratio and the resulting error is shown in Figure 9. Only first three order modes are 

determined. Although, the damping ratio of controlled structure varies as the error increases, high 

damping can be obtained when ∆kc/kc is less than 2.5%. 

Figure 9. Relationship between damping ratio and error ∆kc/kc.  

 

5. Conclusions 

A differential force feedback algorithm to attenuate the vibration of large space structures was 

presented. The algorithm was based on the velocity feedback. The control algorithm did not require the 

structure model and the stability of the control system was guaranteed. The proposed control algorithm 

could achieve high damping ratios for structures. The effectiveness and stability of the differential 

force feedback algorithm was investigated accounting for discrepancies between the actual stiffness of 

the tendon and the stiffness used for the design of the control law. The simulation results for a free-free 

structure show that the proposed algorithm can provide more damping for the vibration suppression of 

a space structure. 
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