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Abstract: In structural vibration tests, one of the main factors which disturb the reliability 
and accuracy of the results are the noise signals encountered. To overcome this deficiency, 
this paper presents a discrete wavelet transform (DWT) approach to denoise the measured 
signals. The denoising performance of DWT is discussed by several processing parameters, 
including the type of wavelet, decomposition level, thresholding method, and threshold 
selection rules. To overcome the disadvantages of the traditional hard- and soft-thresholding 
methods, an improved thresholding technique called the sigmoid function-based thresholding 
scheme is presented. The procedure is validated by using four benchmarks signals with 
three degrees of degradation as well as a real measured signal obtained from a three-story 
reinforced concrete scale model shaking table experiment. The performance of the 
proposed method is evaluated by computing the signal-to-noise ratio (SNR) and the 
root-mean-square error (RMSE) after denoising. Results reveal that the proposed method 
offers superior performance than the traditional methods no matter whether the signals 
have heavy or light noises embedded. 

Keywords: vibration testing; wavelet transform (WT); denoise; wavelet thresholding; 
sigmoid function 
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1. Introduction 

Vibration-based structural damage detection methods have attracted considerable attention in recent 
years for the assessment of health and safety of large civil structures [1]. However, the measured 
signals are often contaminated by noise originating from both the measurement system and the 
specimens. The noise embedded in useful signals, sometimes even very heavy, disturbs the reliability 
and accuracy of measurements, and thus places a fundamental limit on the detection of small defects. 
Therefore, noise reduction should be treated as an essential processing feature in structural dynamics tests. 

Up to now, a large number of signal denoising algorithms have been proposed in the literature, such 
as the linear low-pass filter [2], the Kalman filter [3], the median filter [4] and adaptive filtering based 
on neural networks [5]. However, these conventional methods all have inherent failings; for example, a 
linear low-pass filter is not good in a case whose signal overlaps the noise often in many frequency 
bands [6]. A moving average and median filter provides no means for detecting noise or filtering 
locally. Besides, a parametric estimation would be unworkable either due to lack of an a priori model 
or because parametric modeling would constrain the analysis in an undesirable way [7]. Hence, 
single-scale representations of signals, either in time or in frequency, are often inadequate when 
attempting to separate signals from noisy data. By combining the time domain and the classical 
frequency domain analysis, the wavelet transform (WT) becomes a potential tool for data analysis. The 
increasing interest in this method is due to several factors: (1) simplicity of the approach, (2) reduced 
computational complexity associated with the algorithm, and (3) the ability to provide simultaneously 
spectral representation and temporal order of the signal decomposition components. Since Donoho  
and Johnstone [8,9] originally proposed a method known as the wavelet transform (WT) shrinkage 
(thresholding) to estimate an unknown smoothed signal from data with noise, the WT has rapidly 
become very popular for signal denoising. However, the denoising performance of the wavelet 
shrinkage method is conditioned by several processing parameters, including the type of wavelet, 
decomposition level, thresholding method, and threshold selection rules. Among these parameters, the 
key one is the thresholding method. The traditional hard thresholding exhibits some discontinuities and 
may be unstable or more sensitive to small changes in the data, while in soft thresholding the wavelet 
coefficients are reduced by a quantity equal to the threshold value which will induce the deviation 
when the filtered wavelet coefficients is reconstructed by the inverse WT (IWT). To overcome the 
disadvantages of the hard- and soft-thresholding methods, researchers have proposed lots of improved 
thresholding methods. Gao [10] presented a kind of non-negative garrote shrinkage method, in which 
finite sample simulations proved that it generally had smaller mean square error and less sensitivity  
to slight disturbances in the data than both soft and hard shrinkage. Yoon and Vaidyanathan [11] 
demonstrated a custom thresholding function which could improve the denoised results significantly. 
In addition, Song and Zhao [12] proposed three models of threshold estimator, that were the 
polynomial interpolating thresholding method, compromising method of hard- and soft-thresholding 
and modulus square thresholding method, and experimental results showed that the improved 
techniques were efficient. 

This paper is concerned with the rational selection of processing parameters in the wavelet based 
filtering method, and is especially relevant to a novel thresholding method, which generalizes the hard- and 
soft-shrinkage proposed by Donoho and Johnstone [8]. The remainder of this paper is organized as 
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follows: Section 2 summarizes the basic theory of wavelet denoising. Section 3 describes the proposed 
sigmoid function based thresholding scheme, as well as how to select the rational wavelet 
decomposition level and threshold. Section 4 analyzes the discriminations between the proposed and 
other existing method according to the numerical simulation results. In Section 5, results from the 
analysis of real measured signals are presented. Finally, conclusions are given in Section 6. 

2. Mathematical Background 

2.1. Discrete Wavelet Transform 

Considering a signal xn (n = 1,2,…,N) ϵ L2(R), the discrete wavelet transform (DWT) approach 
represents the time record xn using a linear combination of basis functions ,j kφ  and ψjk:  

, , , , 1, 1, 1, 1,( ) ( ) ( ) ( ) ( )J k J k J k J k J k J k k k
K K K K

x t s t d t d t d tφ ψ ψ φ− −= + + + +∑ ∑ ∑ ∑  (1)

where sJ,k, dJ,k,…,dl,k are the wavelet coefficients; J is a small natural number which depends mainly on 
N and the basis function; and k ranges from 1 to the number of coefficients in the specified component. 

The basis for the above decomposition is formed from the mother wavelet ψ(t) and father wavelet 
( )tφ  by translating in time and dilating in scale: 

/ 2
, ( ) 2 (2 )j j

j k t t kψ ψ− −= −     ,j k Z∈  (2)
/ 2

, ( ) 2 (2 )j j
j k t t kφ φ− −= −      ,j k Z∈  (3)

where k = 1,2,…, N/2, in which N is the number of data record; j = 1,2,…, J, in which J is a small 
natural number; Z is the set of integers. 

Broadly speaking, the DWT performs a recursive decomposition of the lower frequency band 
obtained from a previous decomposition. As a result, a hierarchical set of approximations and details 
can be obtained through the various decomposition levels. This procedure, known as the 
multi-resolution analysis (MRA), was introduced by Mallat and it can be carried out using a 
computationally efficient algorithm [13]. Figure 1 shows an example of a two level wavelet 
decomposition of a signal xn. First, the signal xn is split into an approximation A1 and a detail D1. Then 
the approximation A1 is also split into a second level approximation A2 and D2. 

Figure 1. A two-level wavelet decomposition of signal. 

 

2.2. General Denoise Procedure via Wavelet 

Suppose the measured signal y(ti) can be expressed as the sum of two components: 

( ) ( )i i iy t x t e= +  (4)

where x(ti) is the signal of the detected object buried in the noise ei. The signal y(ti) is corrupted by 
noise, in which, much valuable information for structural dynamic characteristics is weakened, and 
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some even disappears, especially in heavy noise. Removing noise completely is impossible. The goal 
of denoising is to obtain a signal y(ti) as close as possible to x(ti), thus minimizing the effect of ei. 

In general, the wavelet based denoising procedure can be described as follows: 

Step (1) Decomposition of the input noisy signal into several levels of approximations and 
detailed coefficients, using the selected wavelet basis; 

Step (2) Thresholding of coefficients. Extract the coefficients actually containing the true signal 
and discard the others; 

Step (3) Reconstruction of the signal using approximations and detailed coefficients by means of 
the inverse wavelet transform. 

The methodology can be applied to the DWT and stationary wavelet transform (SWT), as well as to 
the wavelet packet transform (WPT). In the present paper, we only focus on the DWT. 

3. Improved Noise Cancellation Technique 

3.1. Wavelet Basis Selection 

The choice of the mother wavelet for the aforementioned denoising procedure is theoretically 
arbitrary, but it is critical and important in practice, because it affects the performance of the technique. 
The properly selected wavelet can give rise to an orthogonal/non-orthogonal analysis; allow a fast 
algorithm, existence of discrete transforms, possibility of perfect reconstruction, good localization in 
time and/or in frequency, etc. In fact, the coefficients of the wavelet transform represent how well the 
signal matches the scaled and translated replicas of the mother wavelet. Therefore, it is better to choose 
a mother wavelet that is as ‘‘similar’’ as possible to the measured signal. 

Since a quantitative criterion for selecting the attenuation factor is not available, in this paper we 
restricted ourselves to the Daubechies wavelet by trial and error. In all our experiments listed below, 
the Daubechies 4 (db4) wavelet was found to perform better in preserving fine signal details. As 
shown in Figure 2, the compact spatial support of db4 wavelet with four vanishing moments can 
provide better frequency localization and approximation and hence lead to good performance. 

Figure 2. Sketch map of the db4 wavelet. 

 

3.2. Determination of Decomposition Level 

The second factor that strongly influences the signal denoising is the level of DWT decomposition. 
If the level of decomposition is not enough, the improvement of the signal to noise ratio (SNR) will be 
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limited. On the other hand, if the decomposition level is too much, the amount of computation will 
increase largely, and the noise reduction may be not satisfactory as well. No perfect procedure for 
choosing the best level of DWT decomposition has yet been proposed, here, a kind of “white noise 
test” is adopted (Zhang et al. [14]). 

As stated before, in the DWT a measured signal is broken down into two sub-signals, a detail and 
an approximate, then the detail sub-signal in turn is broken down into two other sub-signals, 
respectively, forming a binary tree. Since the amplitude and arrival time of every noise peak is random, 
this will cause a disturbance that affects the signal or masks the objective signal completely (i.e., the 
noise in the experimental signal is distributed uniformly over all detail wavelet coefficients with small 
amplitudes, which generally obeys the white noise distribution). From WT theory, the white noise is 
still the white noise through the orthogonal WT. But, different with the noise, the desired signal, with 
certain time and frequency localization, is concentrated into just a few coefficients, which present the 
non-white noise characteristics. Thus, based on statistical properties of each detail wavelet coefficients, 
the rational decomposition level could be determined. The procedure for choosing the rational level of 
DWT decomposition based on “white noise test” is summarized as follows: 

Step (1) Decomposition of the input noisy signal into i = 1 level of the approximation A1 and detailed 
coefficient D1; 

Step (2) Retain the approximation coefficient A1 obtained by Step (1) and perform the white noise 
test on the detailed coefficient D1. Continue to take the decomposition of A1 if D1 passes the white 
noise test; 

Step (3) Repeat the above steps, i.e., to perform the white noise test on the corresponding detailed 
coefficient after the decomposition of each layer until the detailed coefficient cannot pass the white 
noise test; 

Step (4) Abandon the last decomposition result in which the detailed coefficient hasn’t passed the 
white noise test, i.e., the decomposition level should be n − 1 if it is decomposed n times. 

3.3. Sigmoid Function Based Thresholding Scheme 

The purpose of the thresholding procedure is to eliminate or suppress small value wavelet 
coefficients which mainly represent the noise content. This process can be carried out following  
two basic rules: namely the ‘keep-or-kill’ hard thresholding and ‘shrink-or-kill’ soft thresholding 
introduced by Donoho and Johnstone [8,9]. In hard thresholding, coefficients with absolute values 
lower than the threshold are set to zero, while soft thresholding in addition shrinks the remaining 
nonzero coefficients toward zero. 

The hard thresholding method is defined as follows: 

, ,
,

,

0 ,   otherwise
k j k j

k j

for Tω ω
ω

⎧ ≥⎪= ⎨
⎪⎩

  ( ) (5)

Where ῶk,j and ωk,j represent the shrunk and original DWT coefficients, respectively, and T denotes the 
threshold. 

The other is called the soft thresholding: 
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where sgn( )⋅  is the Signum function, which returns 1 if the element is greater than 0, 0 if it equals zero 
and −1 if it less than 0. The recovered signal can be obtained from ῶk,j by the inverse WT (IWT). 

Ideal thresholding functions retain or shrink only wavelet coefficients exceeding a threshold value T. 
However, comparing both hard- and soft-shrinking schemes, it can be seen that the hard thresholding 
exhibits some discontinuities at ±T and may be unstable or more sensitive to small changes in the data. 
On the other hand, in soft thresholding the wavelet coefficients are reduced by a quantity equal to the 
threshold value which will induce the deviation when the filtered signal is reconstructed by the inverse 
WT. To overcome this shortcoming, an alternative procedure which provides a compromise between 
the advantages and drawbacks of hard- and soft-thresholding is proposed. The sigmoid function, also 
called the sigmoidal curve or logistic function, is defined as: 

+1    R
1 xy

e β β−= ∈
+

 (7)

The sigmoid function is so-called because it is shaped like one form of the Greek letter sigma. In 
general, a sigmoid function is real-valued and differentiable, having either a non-negative or 
non-positive first derivative which is bell shaped. The degree of approximation of the sigmoid function 
to the signum function can be adjusted by regulating the value of β. The sigmoid function only 
produces an output y over the range 0 to +1. By making a simple change of Equation (7) as follows, 
the output range can be extended from −1 to +1: 

+2 -1    R
1 xy

e β β−= ∈
+

 (8)

Figure 3 shows the typical plot of the modified sigmoid function with β equal to 0.05, 0.1, 0.5, 1, 2, 
5, 10 and 100. 

Figure 3. Plot of the modified sigmoid function. 
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Thereby, the modified sigmoid function is very suitable as a thresholding scheme which can be 
defined as follows:  
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(9)

It can be easily proved that the presented thresholding scheme is a kind of compromise between 
hard and soft thresholding, where the difference is caused by the constant β. If β = 0, soft thresholding 
can be considered, and if β→ +∞, the equation corresponds to hard thresholding. Figure 4 illustrates 
the comparison of soft, hard and sigmoid function based thresholding scheme (with T = 30 and β equal 
to 0.1, 0.3, 0.6, 1.0, 1.5, 2.0, 3.0, 5.0, 8.0, 15.0 and 30.0). 

Figure 4. The comparison of soft, hard and sigmoid function based thresholding scheme. 

 

3.4. Threshold Estimation 

Although the presented thresholding scheme is simple and effective, selection of a rational 
threshold value is a crucial task as it directly affects the denoising results. For example, choosing a 
very large threshold will shrink almost all the coefficients to zero and may result in over smoothing of 
the measured signals. On the other hand, a small value of threshold will retain the sharp edges and 
details but may fail to suppress the noise artifacts. Among the existing methods, the most popular one 
is the universal threshold [15,16]. The universal threshold is defined as: 

= 2lnT Nσ  (10)

where N is the signal length and σ denotes the standard deviation of the noise. The later is estimated 
from the median of the detail coefficients at the first level of signal decomposition:  
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=

0.6745
jmedian ω

σ  (11)

The universal threshold may be unwarrantedly large since its dependence on the number of samples. 
It will yield an overly smoothed estimate and in some cases, the pseudo Gibbs phenomena may appear [17]. 
Considering that the wavelet coefficients within subbands are, in fact, locally stationary and have 
dependency both in scale and across scales, here a level-dependent thresholds, which are more 
adaptive to the noise and signal characteristics, is adopted by the formula: 

,( )
= 2 ln = 2 ln

0.6745
i j

i i i

median
T N N

ω
σ  (12)

The proposed denoising procedure is summarized in Figure 5. 

Figure 5. Flowchart of the proposed DWT denoising method. 

 

4. Numerical Simulations and Results 

In order to verify the performance of the proposed denoising approach, computer generated noises 
with variable amplitudes are added to well-known benchmark signals; moreover, the classical 
algorithms are performed for comparison. A number of quantitative parameters can be used to evaluate 
the performance of the denoising procedure in terms of the reconstructed signal quality. In this case, 
the following parameters are compared: 

(1) Signal-to-noise ratio (SNR): 
2

1
2

1

( )
( ) 10 ln

[ ( ) ( )]

N
k

N
k

x k
SNR dB

x k x k
=

=
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∑
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where x′(k) is the denoised signal, and x(k) is the original signal. The constant, N, is the number of 
samples composing the signals. 

(2) Root-mean-square error (RMSE):  

[ ]2
1 ( ) ( )N

k x n x n
RMSE

N
= ′−

= ∑  (14)

4.1. Simulation Setting 

A simulation experiment is conducted to investigate the performance of the proposed filtering 
procedures to different signals and to various degradations. For comparison, the simulation involves 
four known benchmark signals (Block, Bumps, Heavy sine, and Doppler) and three kinds of degrees of 
degradation. The SNR of the selected signals is 2.0000 dB (heavy blurred case), 5.0000 dB (medium 
blurred case) and 10.0000 dB (light blurred case) for each benchmark. The computations are 
performed with the MATLAB for Windows version 7.4 (MathWorks, Natick, MA, USA) [18], using 
our own developed programs. The MATLAB Toolbox for wavelets 4.0 is used for the library of 
wavelet filter coefficients. All the simulated signals contain 2,048 samples. The selected signals are 
transformed into wavelet coefficients by the db4 wavelet, and the rational wavelet decomposition level 
is 4, which is chosen by the aforementioned “white noise test” method. For the sake of comparison, 
two existing algorithms, hard- and soft-thresholding approaches, are also implemented here. 

4.2. Results and Discussion 

The detailed results of the three thresholding methods are illustrated in Table 1. As known, 
sensitivity in the vibration tests could be enhanced by increasing SNR. It can be seen from the table, 
decrease of the RMSE of residuals and increase of sensitivity are achieved simultaneously. All of the 
applied thresholding approaches provide at least two-fold improvements in relation to the initial SNR 
value. One can also see from the comparison, the SNR obtained by using the sigmoid function based 
thresholding scheme is higher than the hard- and soft-thresholding (at least the same as hard 
thresholding). This trend is more evident when the light blurred case is considered which reveals that 
the sigmoid function based thresholding scheme to be an effective filter to some extent, no matter 
whether the SNR is high or low. The four kinds of noisy signals with the SNR at 2.0000 dB and 
10.0000 dB as well as their processed results are displayed in Figures 6 and 7. In the two figures, there 
are four sub-figures representing the four benchmark signals, respectively. It can be visually 
appreciated that a great amount of noise has been suppressed. In heavy blurred cases the huge noise is 
removed and the outline of benchmark signals is recovered; moreover, in light blurred cases the detail 
of benchmark signals are only slightly harmed after thresholding. Comparing the four sub-figures in 
Figure 7, one can easily see that the thresholding scheme is very important. The curves obtained by the 
proposed procedure are more similar to the original signals. This is due to the sigmoid function based 
thresholding scheme is flexible and adaptive, while the hard- and soft-thresholding method are coarse 
and rough, hence the proposed method performs the better performance to simulations. 
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Table 1. Performance evaluation of benchmark signals denoising with different thresholding schemes. 

 
Noisy signal Soft thresholding Hard thresholding 

Sigmoid 
thresholding 

SNR RMSE SNR RMSE SNR RMSE SNR RMSE 

Blocks 
2.0000 0.9826 12.8601 0.2814 13.0078 0.2767 13.0926 0.2740 
5.0000 0.9826 14.5781 0.3262 14.7936 0.3182 14.8078 0.3177 

10.0000 0.9826 17.5151 0.4136 17.9304 0.3943 17.9304 0.3943 

Bumps 
2.0000 0.9826 13.6467 0.2571 13.6467 0.2571 13.6467 0.2571 
5.0000 0.9826 15.9711 0.2779 16.0294 0.2760 16.1072 0.2735 

10.0000 0.9826 19.3004 0.3368 19.6685 0.3228 20.0682 0.3083 

Heavy sine 
2.0000 0.9826 18.9648 0.1393 18.9648 0.1393 18.9648 0.1393 
5.0000 0.9826 21.1270 0.1535 21.1270 0.1535 21.1270 0.1535 

10.0000 0.9826 23.9296 0.1976 23.9296 0.1976 23.9480 0.1972 

Doppler 
2.0000 0.9826 12.4548 0.2949 13.0133 0.2765 13.4134 0.2641 
5.0000 0.9826 14.0443 0.3469 14.7786 0.3187 14.8974 0.3144 

10.0000 0.9826 17.7133 0.4043 19.3587 0.3345 19.6503 0.3235 

Figure 6. Benchmark signals denoising by db4 wavelet using different thresholding schemes  
(SNR = 2.0000), (a) Blocks signal; (b) Bumps signal; (c) Heavy sine signal; (d) Doppler 
signal. 

(a) (b) 

(c) (d) 
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Figure 7. Benchmark signals denoising by db4 wavelet using different thresholding 
schemes (SNR=10.0000), (a) Blocks signal; (b) Bumps signal; (c) Heavy sine signal;  
(d) Doppler signal. 

(a) (b) 

(c) (d) 

5. Shaking Table Test and Data Analysis 

The simulation results have shown the good performance of the proposed method for improving the 
signal and suppressing the noise. In order to verify its ability in an actual vibration experiment, a 
shaking table test was carried out for this study. 

5.1. Model Design and Experimental Process 

The test was conducted at the State Key Laboratory of Coastal and Offshore Engineering in Dalian 
University of Technology, China [19]. The tests model the scale of a three-story reinforced concrete 
frame-shear wall structure with an asymmetric shear wall distribution under simulated seismic 
excitations, as shown in Figure 8. The height of the structural model is 3.1 m, and the total mass is 
nearly 3 tons. The cross-section area of the column and beam is 0.08 m × 0.08 m and 0.06 m × 0.1 m, 
respectively. The thickness of the shear wall is 0.03 m. Accelerometers were installed in each story of 
the model and the shaking table deck, and they were placed at the center of mass of the structure, and 
near and away from the sides of the shear wall, respectively (see Figure 9). The base excitations were 
used by white noise and the data were acquired simultaneously at the rate of 500 Hz from 16 channels. 
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Figure 8. Experimental setup for shaking table tests. 

 

Figure 9. Schematic diagram of accelerator location. 
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5.2. Real Data Analysis 

The measured and denoised acceleration response at location 2 (center of mass) of every story in 
the Y direction is selected for analyses. Here, the measured signals are also transformed by the db4 
wavelet, and the rational wavelet decomposition level is 3, which is chosen by the aforementioned 
method. Figure 10 shows the measured and denoised acceleration response at the third story of the 
model. From the visual inspection of the results, it can be observed that the measured signals are 
corrupted by electromagnetic interference of the environment because the signal receiver has a relative 
wide bandwidth. The amplitude and arrival time of every noise peak is random, causing a disturbance 
that masks the objective signal to some extent. After application of the proposed procedure, it can be 
found that the signal is clearer than the measured signal. Statistical results of before and after filtering 
is demonstrated in Table 2. It can be seen that the accelerations between −0.39 g and 0.45 g for the 
measured signal and between −0.37 g and 0.39 g for the denoised signal, which indicates the measured 
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signal after filtering has a smaller spread of coordinates implies that proposed method is effective. In 
addition, the standard deviations demonstrated in Table 2 are also proved the point. 

Figure 10. Measured and denoised acceleration response. 

 

Figure 11 illustrates the power spectrum density (PSD) of signals at the third story of the model 
before and after processing. It is clear that the noise spectrum is distributed along almost the whole 
frequency band. Comparing the PSD, one can see the good effect of the proposed method in real signal 
denoising, even when embedded in broad band noises. From the identified results shown in Table 2, it 
can be seen, as expected, that the model frequencies are exactly the same. Therefore, although the 
proposed method works well for the noise, it doesn’t destroy the real frequency components of the 
signal at all. 

Figure 11. PSD of the signals before and after filtering. 

 

The first three orders of mode shapes of the model before and after filtering are displayed in Figure 12 
and the maximum errors between them are given in Table 2. As can be observed from this data, the 
first model shapes of the structure are almost the same and the errors become larger with the increases 
of the mode. It’s really an interesting phenomenon that the noise can affect the identification of the 
mode shape in this trend and the proposed method can achieve a reasonable performance level in 
reducing noise. 
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Figure 12. The first three orders of mode shapes of the model. 

 

Table 2. Experimental results before and after filtering. 

 
Acceleration/g Frequency/Hz The max. error of the mode shape/% 

Max. Min. Std. Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 
Before 0.45 −0.39 0.11 5.43 17.70 21.36 

0.36 4.57 6.01 
After 0.39 −0.37 0.10 5.43 17.70 21.36 

6. Conclusions 

How to remove the noise interference is a critical issue in vibration experiments. Especially in some 
tests there are not any prior knowledge of the noise, the conventional filters are not suitable. In the 
present work, this issue is tackled by a DWT-based denoising approach. To overcome the 
disadvantages of the traditional hard- and soft-thresholding method, an improved thresholding 
technique called the sigmoid function-based thresholding scheme is presented. Numerical and 
experimental results are presented to evaluate the performance of the proposed method, and the results 
have shown that the method is extremely efficient in eliminating noise, no matter whether the SNR is 
high or low. The sigmoid function-based thresholding technique can remove small coefficients and 
shrink large coefficients using its non-linear characteristics to reproduce peaks and discontinuities as 
accurately as possible, without sacrificing visual smoothness. In short, the proposed method is simple, 
efficient and could be easily implemented by hardware or software, which is especially suitable in 
vibration tests. 
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