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Abstract: Recently, Impulse Radio Ultra Wideband (IR-UWB) signaling has become 

popular for providing precise location accuracy for mobile and wireless sensor node 

localization in the indoor environment due to its large bandwidth and high time resolution 

while providing ultra-high transmission capacity. However, the Non-line-of-sight (NLOS) 

error mitigation has considerable importance in localization of wireless nodes. In order to 

mitigate NLOS errors in indoor localization this paper proposes and investigates a novel 

approach which creates a hybrid combination of channel impulse response (CIR)-based 

fingerprinting (FP) positioning and an iterative Time of Arrival (TOA) real time 

positioning method using Ultra Wideband (UWB) signaling. Besides, to reduce the 

calculation complexities in FP method, this paper also introduces a unique idea for the 

arrangement of reference nodes (or tags) to create a fingerprinting database. The simulation 

results confirm that the proposed hybrid method yields better positioning accuracies and is 

much more robust in NLOS error mitigation than TOA only and FP only and a 

conventional iterative positioning method. 
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1. Introduction 

Lately, the Impulse Radio (IR)-Ultra Wideband (UWB) has been applied for the wireless personal 

area network (PAN), body area network (BAN), and RFID standards IEEE802.15.4a, 802.15.6, and 
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802.15.4f, respectively, because IR-UWB can perform ultra-high resolution of ranging, positioning, 

and high speed data transmission. Among the variety of prospective applications of IR-UWB, one of 

the most promising is in wireless sensor networks (WSNs), which require both robust communications 

and high-precision ranging capabilities [1]. Moreover, IR-UWB has some inherent properties like low 

power consumption, low cost, little interference to other systems, resistance to severe multipath 

conflicts and jamming, and has very high time domain resolution allowing for precise location and 

tracking, making it well suited for WSN applications [1]. 

Since IR-UWB signals have very short duration pulses, they can provide very accurate ranging and 

positioning capability in short range indoor radio propagation environments. Besides, the high time 

resolution characteristic of the UWB signal makes the time of arrival (TOA) method a good choice for 

location estimation in UWB communications. However, UWB localization and communication have to 

face lots of challenges like signal acquisition, multipath effects, multi-user interference and NLOS 

propagation. Among them NLOS propagation introduces positive bias for ranging estimation. Hence, it 

is difficult to recognize the impact of NLOS conditions on localization systems and to develop 

techniques that mitigate their effects [2]. 

Although, with enhanced sampling rates UWB receivers can accomplish high TOA resolution, their 

operating ranges are typically limited in reduced interference [3]. On the other hand, a suitable 

alternative to this real-time geometric positioning method is RF fingerprinting (FP) or pattern matching 

method, where a pre-calculated location database is used to match the properties of the received signal 

for position estimation. Moreover, the FP method is well suited in positioning under dense multipath 

conditions. 

Besides the FP method, to achieve higher accuracy in localization of mobile nodes, many 

conventional iterative methods like Gauss-Newton, Steepest Descent, Levenberg-Marquardt have been 

proposed in conjunction with TOA or TDOA methods for mitigating NLOS errors. Among them, the 

Steepest Descent algorithm shows the slowest convergence in the final iteration steps, but for 

maintaining higher accuracy and low complexity the Levenberg-Marquardt method is the most suitable 

one to estimate a node location among the iterative methods [4]. Moreover, these iterative methods 

require initial positioning guesses. If the guesses are not accurate, convergence problems may occur. 

Alternately, a non-iterative positioning method can provide good initial positions for an iterative 

positioning method [5]. This idea also leads to an energy efficient iterative localization scheme for 

wireless sensor nodes. In [6], a hybrid combination of pattern matching (PM) and TDOA positioning 

methods is proposed for a CDMA network, although the described method has low accuracy in an indoor 

environment where the GPS signal is not satisfactory. 

In our proposal, we introduce a hybrid positioning technique which combines a Channel Impulse 

Response (CIR)-based FP method with polygonal arrangement (which will be discussed in a later 

section) of reference nodes (or tags) and an iterative-TOA positioning method using UWB signaling 

for wireless ad hoc networks such as PAN, BAN, and RFID as well as wireless sensor nodes. The 

proposed method assures significant improvement in positioning accuracy compared to TOA only, FP 

only and a conventional iterative-TOA positioning methods by reducing NLOS errors effectively  

in the indoor environment. Moreover, we employ a deterministic wave propagation model based  

on Geometrical Optics to predict indoor radio coverage and CIRs. 
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In this paper, we would like to concentrate on the successful implementations of our proposed 

hybrid method in an indoor radio propagation environment such as a typical office room. We shall 

discuss on how to utilize the positioning results of the CIR-based FP method with different polygonal 

arrangements (which will be discussed in Section 3) of reference nodes in an iterative-TOA 

positioning method and to get the mutual benefits of the TOA and FP methods in a hybrid method. 

Besides, we would like to limit our discussion on the positioning performances of FP and proposed 

hybrid localization considering various NLOS incidences experienced by access points (AP)s. We also 

compare the performances of proposed hybrid method with TOA only, FP only and a conventional 

iterative-TOA method in LOS cases as well as worst cases of NLOS. Besides, the detailed mathematical 

analysis of computational complexity of the proposed hybrid method is beyond the scope of this paper 

and hopefully would be provided in a future issue. 

The remaining of the paper is organized as follows: Section 2 illustrates the preparations for our 

proposal for hybrid positioning algorithm. The detailed analysis for our proposal for hybrid algorithm 

is provided in Section 3. Section 4 summarizes the model’s performance using computer simulations. 

Finally, a brief conclusion is made in Section 5. 

2. Preparations for Our Proposal for Hybrid Positioning Algorithm 

Before introducing our hybrid positioning algorithm the following three subsections are the 

necessary preparations for our proposal. Section 2.1 discusses and proposes a deterministic channel 

model constructed by a Ray Tracing technique for indoor radio wave propagation. Then, the  

CIR-based FP positioning method for an indoor propagation environment is explained in Section 2.2.  

Section 2.3 provides an overview on UWB TOA-based accurate ranging in a multipath environment. 

2.1. Deterministic Channel Model for Indoor Radio Wave Propagation 

We consider a typical well-furnished office room that provides an efficient means of simulating a 

short range indoor UWB channel. Due to reflection, transmission, refraction, and diffraction by 

obstacles signal propagation suffers from severe multipath effects in an indoor environment [7]. In 

order to predict the accurate indoor radio coverage and channel impulse response we consider a 

deterministic (site-specific) propagation modeling technique, called Ray Tracing (RT). The RT 

technique utilizes the knowledge of the locations and electromagnetic properties of indoor objects, is 

used to predict path loss, time invariant impulse response, and the RMS delay spread [8–10]. 

A general model of band-limited complex channel impulse response (CIR) is expressed as [11]: 
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where, An is the path attenuation, τn is the time delay of the nth path, δ is the Dirac delta function, θn is 

the phase of the nth path. For the implementation of this model, it is necessary to identify the 

amplitudes, time delay and phases of the N number of components of the response. 

We employed the RT technique to identify the components of the above mentioned channel model. 

RT technique follows the ray launching approach (based on geometrical optics), which involves a 

number of rays launched uniformly in space around the transmitter antenna (Figure 1). Each ray is 
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traced until it reaches the receiver or its amplitude falls below a specified limit. In our model, the 

specular reflections and transmissions are considered while diffraction and scattering are neglected, so 

that every wave component traverses one of more free space propagation paths between the transmitter 

and the receiver. 

Figure 1. Ray tracing for indoor propagation modeling. 

 

The complex electric field incident at the receiver due to the nth impinging ray can be  

represented as: 
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(2)  

where: 

E0: transmitted electric field 

λc: wave length correspond to center frequency 

dn: propagation path length of nth ray 

Rn: number of reflections of nth ray 

Qn: number of penetrations of nth ray 

Γr: coefficient of rth reflection of nth ray 

Pq: coefficient of qth penetration of nth ray 

In Equation (2), the term 
n

c

d



4
is the freespace pathloss, the exponential term cndj

e
 /2 represents 

phase offsets due to pathlength dn, assuming omni-directional antennas where the azimuthal-plane 

antenna gains have been ignored for simplicity. 

2.2. CIR Based FP Positioning Technique for Indoor Environment 

The estimated CIRs described in the previous subsection are utilized for FP positioning and TOA 

based ranging (will be described in Section 2.3). The contents of Sections 2.2 and 2.3 are the 

preparations for the hybrid algorithm described in Section 3. 
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The CIR-based FP positioning, is also known as pattern matching technique, is especially suited for 

positioning under dense multipath conditions [12]. This technique consists of two phases: 

(1) In the training phase, location signatures (fingerprints) based on the received signal’s CIRs’ are 

measured by several access points (APs) for various reference locations of nodes in a region to 

construct a fingerprinting database.  

(2) In the positioning phase, the run time estimation of node’s location is performed by correlating 

the CIRs’ of received signal with the fingerprints stored in the database. 

Generally, the FP technique requires exhaustive calculations for fingerprinting pattern matching as 

well as creating a database for storing the location fingerprints (signatures). Therefore, the 

computational complexity in the FP technique depends greatly on the size of the fingerprinting 

database employed in pattern matching. As the fingerprints of the reference nodes constitute a 

database, the larger the number of reference nodes the larger the size of the fingerprinting database 

needed to cover the whole area, but employing a smaller number of reference nodes reduces the 

computational complexity, although it will not provide a good accuracy in positioning. In order to 

combat this positioning constraint we introduce a new idea to optimize the number of reference nodes 

to cover the whole area as well as to generate a fingerprinting database of optimum size. 

In our new idea, we arrange the reference nodes in the room to form polygon shapes (as shown in 

Figures 2 and 3) instead of deploying them in a scattered way. The number of reference nodes required 

to cover the whole area depends on the size and quantity of such polygons. Similarly, the size of 

fingerprinting database also depends on the size of the polygons. Therefore, the optimum polygon size 

will reduce the computational complexity in fingerprinting pattern matching to a reasonable level while 

maintaining a certain degree of positioning accuracy in the FP method, so the main idea of arranging 

reference nodes (or tags) to form polygons is to reduce unnecessary deployment of reference nodes 

which increase the size of the fingerprinting database. Moreover, by varying the size of such polygons 

we can vary the size of the fingerprinting database as well as the complexity of the FP method 

calculations. 

In the training phase of the FP method, signatures (fingerprints) h(l,t) are estimated and recorded for 

various reference locations l   R, where R is the region of interest. Location of a node (or, tag) in 2D 

horizontal plane is defined as l(x,y) in Cartesian coordinates. 

Figure 2. Size of polygon. 

 

 



Sensors 2012, 12 11192 

 

 

Figure 3. Arrangements of reference nodes in the room forming polygonal shapes. 

 

In the positioning phase, an estimate    of the true instantaneous position l0, is obtained by using the 

corresponding instantaneous estimated CIR, h(    ,t). This estimated CIR is corrupted by channel noise. 

For, m = h(l, t) and n = h(    ,t), the channel spatial correlation R
m,n 

l  is defined as: 
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where E{.} denotes the expectation operator. The position of the node is estimated by maximizing the 

correlation coefficient R
m,n 

l , i.e., 

 
(4)  

Due to imperfect channel estimation at the receiver the ideal correlation cannot be attained. Hence, 

a correlation threshold Rth is used such that, R
m,n 

l  ≥ Rth. The values of R
m,n 

l crosses Rth are defined as  

R
m,n 

l  = [Rl1, Rl2,…..,Rlk], where k is the number of values of R
m,n 

l  crosses Rth 
 Then the values of R

m,n 

l  are 

indexed with their corresponding location coordinates in descending order. Finally, the node location is 

calculated by taking a weighted average of the coordinates of the first three locations in the index, 

assuming these three locations are very close to the node location. 

2.3. UWB TOA Based Ranging in Multipath Propagation Environment 

The TOA estimation technique used with UWB transmission can be used for conducting accurate 

ranging in indoor multipath environments. For the indoor multipath channel, the impulse response is 

usually defined as [13]: 
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where Lp is the number of multipath components and αk, ϕk and τk are the amplitude, phase and 

propagation delay of the kth path, respectively. The range measurement between a transmitter and a 

receiver is typically corrupted by multipath fading, thermal noise, blockage of direct path (i.e., NLOS 

path) and direct path excess delay [14].  
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For TOA estimation, we employ a threshold-based first path detection method which utilizes the 

strongest path of CIR. This method makes use of an iterative search back algorithm, referred in [14], to 

calculate the noise floor to be used in the detection of the first path. 

Figure 4. Search-back detection method. 

 

3. Proposal for a Hybrid Localization Algorithm 

3.1. A Brief Idea of the Proposal for Hybrid Localization 

The deterministic channel model described in Section 2.1, the FP positioning method explained in 

Section 2.2, and followed by UWB TOA-based ranging technique described in the Section 2.3, are the 

preparation for the hybrid localization that will be described in this section. Our proposal for hybrid 

localization is a combination of the CIR-based FP positioning and iterative-TOA positioning methods. 

It is obvious that an iterative positioning algorithm needs an initial guess which will influence the 

iterative process. A good approximation of the initial value also reduces the calculation complexity as 

well as increases the positioning accuracies. In our proposed method, we initialize the iterative-TOA 

positioning with position location estimated by the CIR-based precalculated FP method. As the  

CIR- based FP method has better positioning accuracy than the TOA method in dense multipath indoor 

conditions, the location point estimated in of the FP method acts as a better initial value for our hybrid 

method. Moreover, by varying the size of the fingerprinting polygons (as discussed in the previous 

section), the positioning errors as well the complexities in the proposed hybrid method could be 

minimized. The brief idea of the proposed localization algorithm is provided in the flow chart in  

Figure 5. 

3.2. Hybrid Positioning Algorithm Combining CIR Based FP and Iterative-TOA Positioning Methods 

In hybrid positioning, the node location estimated in the FP method is considered as the accurate 

initial values for an iterative-TOA method. The Levenberg-Marquardt based iterative algorithm (will 

be described in the later part of this section) is used to mitigate NLOS error in the iterative process of 

the hybrid positioning. 

Let M access points (AP)s with position coordinates (xi, yi), where i = 1, 2,..,M. Assume (x0, y0) is 

the sensor node location to be determined and it is away from access points (AP)s. In the NLOS case, 

the measured range Ri is always larger than the LOS range. This inequality can be expressed as: 
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LOS range =  Ri, i = 1,2,…,M (6)  

Figure 5. Flow chart for the proposed positioning algorithm. 
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Let us define the range between position (x, y) and the APi in LOS condition as: 

di (x,y) = , i = 1,2…,M (7)  

As di(x, y) is a nonlinear function, the measurement of di(x, y) is erroneous in accordance with the 

severity of nonlinearity. This ranging error will be minimum at the immediate vicinity of the minimum 

of the cost function [15]. The nonlinear model of ranging can be represented as an optimum 

interpolation between a Taylor series method and a gradient method. 

If (xes, yes) is an estimated position of the true position of node, expanding the function di(x, y) in a 

Taylor’s series we get: 

)(
),(

)(
),(

),(),( es

xx

yy
i

es

xx

yy
i

esesii yy
y

yxd
xx

x

yxd
yxdyxd es

es

es

es


















  (8) 

In Equation (8), only the terms of zero-order and first-order are kept. Let θ0 = [x0, y0]
T
 be the 

position vector and D(θ0) = [d1(θ0), d2(θ0),…, dM(θ0)]
T
 be the distance vectors. According to  

Equation (8), the distance vectors D(θ0) can be written as: 

D (θ0 ) ≈ D(θes) + J(θes ) (θ0 – θes) (9)  

where, the Jacobian matrix J(θes) can be expressed as: 

J(θes ) = 
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 (10)  

Thus, the most M linear independent ranges are: 

D(θ) = [D1(θ), D2(θ), …DM(θ)]
T
 (11)  

and the corresponding observed ranges are given by: 

R = [R1, R2,…..RM] (12)  

Then, according to [16,17] the cost function is defined as: 
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which should be minimized for the optimum case. 

The minimization of the cost function is shown as: 

)(minargˆ    (14)  

Then, we assemble the individual components of [Ri –Di(θ)] from Equation (13) into a residual 

vector ε: R
n
→R

m
 defined by: 

ε (θ) = [ε1(θ), ε2(θ), …,εM(θ)]
T
 (15)  

Using the notation ||  ||2 for Euclidean norm, we can rewrite Equation (13) as: 

22 )()( ii yyxx 
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Φ(θ) = ½ || ε || 2

2
 (16)  

Consider the linear case, where every εi(θ), i = 1,2,...,M is linear and Jacobian J of ε is constant. 

Then the cost function Φ is given by the quadratic as [16,17]: 

Φ(θ) = ½ || J.θ + ε || 2

2
 (17)  

Φ(θ) = J
T
 ( J.θ + ε) (18)  

2
 Φ(θ) = J

T
 J (19)  

Setting Φ(θ) = 0 yields θmin = − ( J
T
 J)

−1
 J

Tε , which is the solution to the set of normal equations. 

For the non-linear case, as mentioned in [16,17],we have: 

Φ(θ) = J
T
 ε  (20) 

2
 Φ(θ) = J

T
 J (21)  

In order to estimate the node position by reducing NLOS error, it is required to minimize the cost 

function Φ(θ). We applied the Levenberg-Marquardt [15,17] iterative algorithm that minimizes Φ(θ) 

and can be expressed as: 
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The Levenberg-Marquardt algorithm starts with an initial value, θ
(0)

 = [x
(0)

,y
(0)

]
T
 which is obtained 

from the FP method. In Equation (22), λ is the damping factor; whose value is reconfigured during 

iteration in order to reduce the influence of gradient descent. The value of λ affects both direction and 

step-size of iterations. Therefore, the initial value of λ should be chosen according to the size of the 

elements in A
0
 = J(θ

0
)T J(θ

0
), such that [18]: 

λ0 = τ . maxi { aii
(0)

} (23)  

Here, τ is defined by the user (by a rule of thumb, but a small value should be chosen). Throughout 

iteration the size of λ is updated and is controlled by the cost function Φ(θ). In an iteration, a smaller 

value of Φ(θ) indicates a good approximation to θ
 n+1

, and we can keep the weights at their new values 

and decrease λ by a certain (say, 10) factor so that the next Levenberg-Marquardt step is closer to the 

Gauss-Newton step. In contrast, if Φ(θ) is large, then θ
 n+1

 is a poor approximation, and we should 

reset the weights at their previous values and increase λ by same factor for getting closer to the 

direction of Steepest Descent and reduce the steps. 

4. Simulation Models and Performance Evaluations of Proposed Hybrid Method 

This section provides the performances of our proposed hybrid method for node positioning by 

computer simulations. The performances of FP positioning method with various fingerprinting 

polygons (discussed in Section 2.2) are also evaluated in this section. Moreover, a comparison of the 

proposed hybrid method with TOA only, FP only and a conventional iterative method is shown in the 

later part of the section. 

Tables 1 and 2 show the parameter values for evaluating model’s performances and the properties 

of materials we employed in the RT technique, respectively. 
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Table 1. Parameter values for evaluating model’s performance. 

Parameter Value 

Transmitted signal Gaussian monopulse 

Channel bandwidth 2 GHz 

Sampling frequencies 30, 50, 80 GHz. 

AWGN parameter σ = 0.5 m 

Transmitted Power −60 dBm 

Fingerprinting polygon size 20 cm, 30 cm, 50 cm 

Number of Access Point 4 

Area 8 m × 6 m 

Table 2. Properties of the materials employed in RT technique. 

Materials σ[S/m] εr Thickness[cm] 

Concrete wall 0.01 9 7.5 

Table, chair, cabinet (wood) 10−5 13 3.0 

Window (glass) 10−12 7.6 3.0 

To get the accurate results in the ray launching type RT technique, many rays have to be launched 

and only a fraction of these reach the receiver. The accuracy of this technique also depends on the 

radius of the reception sphere. If it is too small, rays will pass by. If it is too large, paths might be 

duplicated. We set the radius of the reception sphere at 1.5 cm. Moreover, we consider the reflection of 

rays up to the third order, since the received signal strength beyond third order ray reflection becomes 

very low and is neglected. CIRs collected by the RT technique are convoluted with a UWB signal with 

bandwidth of 2 GHz. To consider a sufficient amount of multipath effects in the CIR pattern for NLOS 

incidences we allow a wider observation window, i.e., 65 ns, since the probability that the direct path 

is further apart from the strongest path is higher in the NLOS than in LOS. Therefore, it could 

accommodate maximum of 20 paths in the CIR patterns of NLOS cases. 

As we consider an indoor office room of size 8 m × 6 m for our simulations, we think four APs are 

enough to cover radio mapping of this limited area and adequate for CIR-based FP positioning. It is 

obvious that increasing the number of AP would increase the possibility of LOS incidences and thus 

improve the accuracy in TOA-based positioning. However, increasing the number of APs will also 

increase the size of the fingerprinting database and thus increase the computational complexity of 

positioning in the FP method. 

To evaluate the performance of the FP method for positioning of the same test nodes which are used 

in an iterative TOA positioning, we place the reference nodes (or tags) in such a manner to form 

polygon shapes (as mentioned in Section 2.2). We employ three different sizes of polygon, 20 cm,  

30 cm and 50 cm and evaluate the positioning accuracy by varying signal’s sampling rate (i.e., 30 GHz,  

50 GHz and 80 GHz) for each case. Here, Figures 6–8 show cumulative distribution function (CDF) of 

distance errors (distance between estimated and real positions of test nodes) in the FP method for LOS 

cases as well as worst cases of NLOS. The NLOS rates shown in the figures are the ratios of the 

number of access points (AP)s experiencing NLOS among all APs. For instance, a NLOS rate of 0.5 

means the half of the total number of APs are experiencing NLOS. 
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Figure 6 depicts that, in LOS cases, 50% probability is achieved for the accuracy of less than 10 cm 

in cases with a polygon size of 20 cm, whereas, 35% and 15% probability is achieved for the cases 

with polygon size of 30 cm and 50 cm, respectively, for the accuracy of less than 10 cm. Hence, cases 

with polygon size of 20 cm have better positioning accuracies than other polygon cases in LOS. This is 

because in cases with smaller polygons the reference nodes (or tags) are in close proximity to the test 

nodes positions as compared to the cases with larger polygons. Therefore, in smaller polygons, there 

are fewer chances of errors in matching the CIR pattern of the test node with that of its close 

neighbouring reference nodes under LOS conditions. 

Figure 6. CDF of the distance errors for FP method in different cases with LOS. 

  

(a) (b) 

 

(c) 
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Figure 7. CDF of the distance errors for FP method in different cases with NLOS rate = 0.5. 

  

(a) (b) 

 

(c) 

In NLOS situations, unlike LOS conditions the position estimation mostly depends on the multipath 

components of the received signal. Therefore, the estimated position would be very far away from the 

real position of the test node in NLOS conditions. As the estimated position is shifted from its real 

position, it is more likely to match the CIR pattern of estimated location with that of a far location 

point rather than matching CIR pattern of the point near to its real position. Figures (7) and (8) show 

the CDF of distance error in the FP method for worst cases of NLOS. With a NLOS rate of 0.5, the 

case with polygon size of 50 cm (with sampling rate 50 GHz.) has a 35% probability to achieve 

accuracy of less than 1.5 m, whereas the cases with polygon sizes of 30 cm and 20 cm have a 

probability of 20% to achieve accuracy of less than 1.5 m. Therefore, the case with polygon size of  

50 cm (with sampling rate 50 GHz.) performs slightly better than other cases with different polygons 

because when the NLOS rate is 0.5, two of the APs cannot see the test node and CIR patterns 

measured by these NLOS APs are also considered for node positioning. These two NLOS CIR patterns 

of the test node could have a better match with the CIR patterns of reference node points of a polygon 
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size of 50 cm (which are relatively far away from the real position of the test node) rather than 

matching with the CIR patterns of reference node points of polygon size 30 cm and 20 cm. Similarly, 

when the NLOS rate is 0.75, three out of four APs cannot see the test node and CIR patterns measured 

by these three NLOS APs are also considered for node positioning. Therefore, in these worst NLOS 

conditions, for the reasons stated above, the case with polygon size of 50 cm performs slightly better 

than other cases. 

Besides, in the above results, the cases with higher received signal sampling rate sometimes 

provides slightly better positioning accuracies. Because, the higher sampling rate of the received signal 

reduces the time quantization error in the time delay estimation. Therefore, positioning accuracy 

increases with higher time resolutions. 

It is obvious that, the smaller the polygon size the larger the fingerprinting database as well as the 

higher calculation complexity will be in the FP method. Alternatively, the cases with the larger 

polygon size provide lesser calculation complexity in FP positioning. 

Figure 8. CDF of the distance errors for FP method (8a-c), Hybrid method (8d) in 

different cases with NLOS rate = 0.75. 

  

(a) (b) 

  

(c) (d) 



Sensors 2012, 12 11201 

 

 

Figure 8(c,d) depicts the comparison of positioning accuracies in between FP and the proposed 

hybrid method for the cases with polygon size 30 cm when the NLOS rate is 0.75. Figures depict that 

the proposed hybrid method has better positioning accuracies by mitigating NLOS errors than the FP 

method. Figure 9 shows the performances of the hybrid positioning in root mean squared error 

(RMSE) for various cases with polygon sizes in LOS as well as different NLOS conditions. Moreover, 

the smaller polygon size in FP positioning provides better location accuracies in the hybrid method for 

lower rates of NLOS, whereas, for higher rates of NLOS, the positioning accuracies for the cases with 

various polygon sizes are almost identical. 

Figure 9. Positioning accuracies in hybrid method for various cases with polygon sizes in 

LOS and different NLOS conditions. 

  

(a) (b) 

In the proposed hybrid method, there is possibility to get mutual benefits from the TOA only and FP 

only methods. If any case in FP method does not have better positioning accuracy than the TOA only 

method, so the hybrid method can choose its initial value from the positioning result of TOA only 

method for iterations. 

The positioning accuracies for different cases using the proposed hybrid method can be increased 

by increasing the iteration number. However, as depicted in Figure 10, the accuracy does not increase 

beyond 4 or 5 iterations for various NLOS cases. Hence, setting a maximum iteration number beyond 

4 or 5 would not be necessary. Moreover, in Figure 10, there is a wide gap between the RMSE 

performances of NLOS rates of 0.25 and 0.5. This is because we have a better positioning accuracy in 

the FP method using a polygon size of 20 cm when the NLOS rate is 0.25. Therefore, in hybrid 

positioning, RMSE for the case of a NLOS rate of 0.25 decreases and it is closer to the positioning 

accuracy of the case with LOS where the polygon size is 20 cm. Besides, we don’t have better 

positioning accuracy for the case using a polygon size of 20 cm than the case of polygon size of 50 cm 

in the FP method while NLOS rate is 0.5. Therefore, in hybrid positioning, RMSE performances in 
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each iteration for the case of NLOS rate of 0.5 are not good enough. Moreover, it is obvious that if we 

increase the number of test node samples in the FP method the positioning accuracy for the case of 

NLOS rate of 0.5 would also increase a bit. 

Figure 10. Performance of the hybrid method in each iteration for different NLOS 

conditions, considering fingerprinting polygon size: 20 cm and signal sampling rate: 50 GHz. 

 

Figure 11. Comparison on positioning accuracies for TOA only, FP only, conventional 

iterative TOA and hybrid methods in NLOS conditions. 

 

Figure 11 shows that the proposed hybrid method has better positioning accuracies by mitigating 

NLOS error than TOA only, FP only and a conventional iterative method under different NLOS 

conditions. In a conventional iterative TOA method, we also applied the Levenberg-Marquardt 

iteration algorithm; however, initial values are random guesses unlike considering the positioning 

results of the FP method. Similarly, the proposed method also renders better positioning accuracies 

than the Gauss-Newton based iterative-TOA positioning method, reported in [19]. 
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5. Conclusion 

We have proposed a hybrid approach for localization of mobile or wireless sensor nodes using 

UWB signaling which combines the CIR-based FP positioning and iterative-TOA real time positioning 

methods. The proposed hybrid method follows a Levenberg-Marquardt based iterative algorithm, 

which effectively reduces NLOS errors. Our simulation results show that the proposed hybrid method 

yields better performances and is more robust in NLOS error mitigation than TOA only, FP only and a 

conventional iterative method. Moreover, the smaller size of polygons, resembling reference nodes (or 

tags) arrangement in the FP method, the bigger the size of fingerprinting database as well as the higher 

calculation complexity in positioning. Alternately, the larger size of polygon provides a smaller 

fingerprinting database compromising positioning accuracies. The optimum size of polygon could be 

predicted while evaluating the trade-off between accuracies in the proposed hybrid method and the 

complexities in positioning calculations, which is beyond the scope of this paper. A detailed analysis 

of the computational complexity of the proposed method will be provided in our next paper on this topic. 
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